Towards Marker-Assisted Breeding for Black Rot Bunch Resistance: Identification of a Major QTL in the Grapevine Cultivar ‘Merzling’
Abstract
:1. Introduction
2. Results
2.1. Phenotyping
2.2. Genotyping and Linkage Mapping
2.3. Quantitative Trait Locus Analysis
2.4. Candidate Genes
3. Discussion
3.1. High-Density SNP Coupled with SSR Genotyping Provides Highly Informative Linkage Maps
3.2. Resistance Evaluation of Shoot and Bunch Reveals Organ-Specific QTLs
3.3. The Genes Underlyng Rgb Loci Suggest non-R-Gene-Mediated Resistance Mechanisms
3.3.1. Shoot Rgb1 Locus
3.3.2. Bunch Rgb3 Locus
4. Materials and Methods
4.1. Segregating Population
4.2. Phenotyping
4.3. Genotyping
4.4. Linkage Mapping
4.5. QTL Analysis
4.6. Candidate Gene Identification
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eurostat. Agriculture, Forestry and Fishery Statistics; Eurostat: Luxembourg, 2019. [Google Scholar]
- International Organisation of Vine and Wine (OIV). Vine Varieties Distribution in the World. Infographie focus OIV. 2017. Available online: https://www.oiv.int/public/medias/5336/infographie-focus-oiv-2017-new.pdf (accessed on 5 August 2022).
- Sartori, E. I Potenziali Mercati e La Valenza Economica Dei Nuovi Vigneti Resistenti Alle Malattie; VCR: Udine, Italy, 2016. [Google Scholar]
- Olmo, H.P. Vinifera Rotundifolia Hybrids as Wine Grapes. Am. J. Enol. Vitic. 1971, 22, 87–91. [Google Scholar]
- European Commission A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0381 (accessed on 5 August 2022).
- Rinaldi, P.A.; Broggini, G.A.L.; Gessler, C.; Molitor, D.; Sofia, J.; Mugnai, L. Guignardia Bidwellii, the Agent of Black Rot of Grapevine, Is Spreading in European Vineyards. Int. Congr. Plant Pathol. 2013, 211, 130. [Google Scholar]
- Pirrello, C.; Mizzotti, C.; Tomazetti, T.C.; Colombo, M.; Bettinelli, P.; Prodorutti, D.; Peressotti, E.; Zulini, L.; Stefanini, M.; Angeli, G.; et al. Emergent Ascomycetes in Viticulture: An Interdisciplinary Overview. Front. Plant Sci. 2019, 10, 1394. [Google Scholar] [CrossRef] [PubMed]
- Kuo, K.; Hoch, H.C. The Parasitic Relationship between Phyllosticta ampelicida and Vitis vinifera. Mycologia 1996, 88, 626. [Google Scholar] [CrossRef]
- Ramsdell, D.C.; Milholland, R.D. Black Rot. In Compendium of Grape Diseases; Pearson, R.C., Goheen, A.C., Eds.; APS Press: St. Paul, MN, USA, 1988; pp. 15–16. [Google Scholar]
- Cantu, D.; Walker, M.A. The Grape Genome; Cantu, D., Walker, M.A., Eds.; Compendium of Plant Genomes; Springer International Publishing: Cham, Switzerland, 2019; ISBN 978-3-030-18600-5. [Google Scholar]
- Spotts, R.A. Effect of Leaf Wetness Duration and Temperature on the Infectivity of Guignardia bidwellii on Grape Leaves Manually Increased or Decreased Hourly in Equal. Ecol. Epidemiol. 1977, 67, 1378–1381. [Google Scholar]
- Ferrin, D.M.; Ramsdell, D.C. Influence of Conidia Dispersal and Environment on Infection of Grape by Guignardia bidwellii. Ecol. Epidemiol. 1978, 68, 892–895. [Google Scholar] [CrossRef]
- Jailloux, F. In Vitro Production of the Teleomorph of Guignardia bidwellii, Causal Agent of Black Rot of Grapevine. Can. J. Bot. 1992, 70, 254–257. [Google Scholar] [CrossRef]
- Kuo, K.; Hoch, H.C. Germination of Phyllosticta ampelicida Pycnidiospores: Prerequisite of Adhesion to the Substratum and the Relationship of Substratum Wettability. Fungal Genet. Biol. 1996, 20, 18–29. [Google Scholar] [CrossRef] [PubMed]
- Shaw, B.D.; Hoch, H.C. The Pycnidiospore of Phyllosticta Ampelicida: Surface Properties Involved in Substratum Attachment and Germination. Mycology 1999, 103, 915–924. [Google Scholar] [CrossRef]
- Hoffman, L.E.; Wilcox, W.F.; Gadoury, D.M.; Seem, R.C. Influence of Grape Berry Age on Susceptibility to Guignardia bidwellii and Its Incubation Period Length. Phytopathology 2002, 92, 1068–1076. [Google Scholar] [CrossRef]
- Northover, P.R. Factors Influencing the Infection of Cultivated Grape (Vitis Spp. Section Euvitis) Shoot Tissue by Guignardia bidwellii (Ellis) Viala & Ravaz. Ph.D. Thesis, The Pennsylvania State University, State College, PA, USA, 2008. [Google Scholar]
- Ullrich, C.; Kleespies, R.; Enders, M.; Koch, E. Biology of the Black Rot Pathogen, Guignardia bidwellii, Its Development in Susceptible Leaves of Grapevine Vitis vinifera Originalarbeit. J. Für Kult. 2009, 61, 82–90. [Google Scholar]
- Wicht, B.; Petrini, O.; Jermini, M.; Gessler, C.; Broggini, G.A.L. Molecular, Proteomic and Morphological Characterization of the Ascomycete Guignardia bidwellii, Agent of Grape Black Rot: A Polyphasic Approach to Fungal Identification. Mycologia 2012, 104, 1036–1045. [Google Scholar] [CrossRef] [PubMed]
- Onesti, G.; González-Domínguez, E.; Rossi, V. Production of Pycnidia and Conidia by Guignardia bidwellii, the Causal Agent of Grape Black Rot, as Affected by Temperature and Humidity. Phytopatology 2017, 107, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Rex, F.; Fechter, I.; Hausmann, L.; Töpfer, R. QTL Mapping of Black Rot (Guignardia bidwellii) Resistance in the Grapevine Rootstock ‘Börner’ (V. Riparia Gm183 × V. Cinerea Arnold). Theor. Appl. Genet. 2014, 127, 1667–1677. [Google Scholar] [CrossRef] [PubMed]
- Bettinelli, P.; Nicolini, D.; Giovannini, O.; Stefanini, M.; Hausmann, L.; Vezzulli, S. Breeding for Black Rot Resistance in Grapevine: Advanced Approaches for Germplasm Screening. Euphytica, 2023; submitted. [Google Scholar]
- Jermini, M.; Gessler, C. Epidemiology and Control of Grape Black Rot in Southern Switzerland. Plant Dis. 1996, 80, 322. [Google Scholar] [CrossRef]
- Read, P.; Gamet, S. Evaluating Diseases on Nebraska’s Major Cultivars. Available online: https://viticulture.unl.edu/viticulture/Disease-Identification-on-Nebraskas-Major-Cultivars.pdf (accessed on 26 January 2022).
- Roznik, D.; Hoffmann, S.; Kozma, P. Screening a Large Set of Grape Accessions for Resistance against Black Rot (Guignardia bidwellii/(Ell.)). Mitt. Klosterneubg. 2017, 67, 149–157. [Google Scholar]
- Rinaldi Antonello Genetic Variability of P. Ampelicida. Master’s Thesis, Università di Firenze, Florence, Italy, 2013.
- Riaz, S.; Tenscher, A.C.; Ramming, D.W.; Walker, M.A. Using a Limited Mapping Strategy to Identify Major QTLs for Resistance to Grapevine Powdery Mildew (Erysiphe necator) and Their Use in Marker-Assisted Breeding. Theor. Appl. Genet. 2011, 122, 1059–1073. [Google Scholar] [CrossRef]
- Barba, P.; Lillis, J.; Luce, R.S.; Travadon, R.; Osier, M.V.; Baumgartner, K.; Wilcox, W.F.; Reisch, B.I.; Cadle-Davidson, L. Two Dominant Loci Determine Resistance to Phomopsis Cane Lesions in F1 Families of Hybrid Grapevines. Theor. Appl. Genet. 2018, 131, 1173–1189. [Google Scholar] [CrossRef]
- Karn, A.; Zou, C.; Brooks, S.; Fresnedo-Ramírez, J.; Gabler, F.; Sun, Q.; Ramming, D.; Naegele, R.; Ledbetter, C.; Cadle-Davidson, L. Discovery of the REN11 Locus From Vitis Aestivalis for Stable Resistance to Grapevine Powdery Mildew in a Family Segregating for Several Unstable and Tissue-Specific Quantitative Resistance Loci. Front. Plant Sci. 2021, 12, 1868. [Google Scholar] [CrossRef]
- Le Paslier, M.-C.; Choisne, N.; Bacilieri, R.; Bounon, R.; Boursiquot, J.-M.; Bras, M.; Brunel, D.; Di Gaspero, G.; Hausmann, L.; Lacombe, T.; et al. The GrapeReSeq 18K Vitis Genotyping Chip. In Proceedings of the IX International Symposium on Grapevine Physiology and Biotechnology, La Serena, Chile, 21–26 April 2013. [Google Scholar]
- Van Ooijen, J.W. JoinMap 5® Software for the Calculation of Genetic Linkage Maps in Experimental Population; Kyazma B.V.: Wageningen, The Netherlands, 2019; pp. 1–61. [Google Scholar]
- Ouellette, L.A.; Reid, R.W.; Blanchard, S.G.; Brouwer, C.R. LinkageMapView—Rendering High-Resolution Linkage and QTL Maps. Bioinformatics 2018, 34, 306–307. [Google Scholar] [CrossRef] [PubMed]
- Doligez, A.; Bouquet, A.; Danglot, Y.; Lahogue, F.; Riaz, S.; Meredith, C.P.; Edwards, K.J.; This, P. Genetic Mapping of Grapevine (Vitis vinifera L.) Applied to the Detection of QTLs for Seedlessness and Berry Weight. Theor. Appl. Genet. 2002, 105, 780–795. [Google Scholar] [CrossRef] [PubMed]
- Collard, B.C.Y.; Jahufer, M.Z.Z.; Brouwer, J.B.; Pang, E.C.K. An Introduction to Markers, Quantitative Trait Loci (QTL) Mapping and Marker-Assisted Selection for Crop Improvement: The Basic Concepts. Euphytica 2005, 142, 169–196. [Google Scholar] [CrossRef]
- Velt, A.; Frommer, B.; Blanc, S.; Holtgräwe, D.; Duchêne, É.; Dumas, V.; Grimplet, J.; Hugueney, P.; Lahaye, M.; Kim, C.; et al. An Improved Reference of the Grapevine Genome Supports Reasserting the Origin of the PN40024 Highly-Homozygous Genotype. BioRxiv, 2022; preprint. [Google Scholar] [CrossRef]
- Canaguier, A.; Grimplet, J.; Di Gaspero, G.; Scalabrin, S.; Duchêne, E.; Choisne, N.; Mohellibi, N.; Guichard, C.; Rombauts, S.; Le Clainche, I.; et al. A New Version of the Grapevine Reference Genome Assembly (12X.v2) and of Its Annotation (VCost.V3). Genom. Data 2017, 14, 56. [Google Scholar] [CrossRef] [PubMed]
- Grapedia. Grapevine Genomes—PN40024.v4.3 Annotation. Available online: https://grapedia.org/genomes/ (accessed on 19 January 2023).
- Unité de Recherche en Génomique-Info (URGI). Annotations of the 12X.2 Genome Assembly. Available online: https://urgi.versailles.inra.fr/Species/Vitis/Annotations (accessed on 19 January 2023).
- Fasoli, M.; Dal Santo, S.; Zenoni, S.; Tornielli, G.B.; Farina, L.; Zamboni, A.; Porceddu, A.; Venturini, L.; Bicego, M.; Murino, V.; et al. The Grapevine Expression Atlas Reveals a Deep Transcriptome Shift Driving the Entire Plant into a Maturation Program. Plant Cell 2012, 24, 3489–3505. [Google Scholar] [CrossRef] [Green Version]
- Hausmann, L.; Rex, F.; Töpfer, R. Evaluation and Genetic Analysis of Grapevine Black Rot Resistances. Acta Hortic. 2017, 1188, 285–290. [Google Scholar] [CrossRef]
- Di Gaspero, G.; Cipriani, G.; Marrazzo, M.T.; Andreetta, D.; Prado Castro, M.J.; Peterlunger, E.; Testolin, R. Isolation of (AC)n-Microsatellites in Vitis vinifera L. and Analysis of Genetic Background in Grapevines under Marker Assisted Selection. Mol. Breed. 2005, 15, 11–20. [Google Scholar] [CrossRef]
- Dalbó, M.A.; Weeden, N.F.; Reisch, B.I. QTL Analysis of Disease Resistance in Interspecific Hybrid Grapes. Acta Hortic. 2000, 528, 215–219. [Google Scholar] [CrossRef]
- Di Gaspero, G.; Copetti, D.; Coleman, C.; Castellarin, S.D.; Eibach, R.; Kozma, P.; Lacombe, T.; Gambetta, G.; Zvyagin, A.; Cindrić, P.; et al. Selective Sweep at the Rpv3 Locus during Grapevine Breeding for Downy Mildew Resistance. Theor. Appl. Genet. 2012, 124, 277–286. [Google Scholar] [CrossRef]
- Vitis International Variery Catalogue (VIVC). Data on Breeding and Genetics—Table of Loci for Traits in Grapevine. Available online: www.vivc.de/loci (accessed on 20 January 2023).
- Barba, P.; Cadle-Davidson, L.; Harriman, J.; Glaubitz, J.C.; Brooks, S.; Hyma, K.; Reisch, B. Grapevine Powdery Mildew Resistance and Susceptibility Loci Identified on a High-Resolution SNP Map. Theor. Appl. Genet. 2014, 127, 73–84. [Google Scholar] [CrossRef]
- Fu, P.; Wu, W.; Lai, G.; Li, R.; Peng, Y.; Yang, B.; Wang, B.; Yin, L.; Qu, J.; Song, S.; et al. Identifying Plasmopara Viticola Resistance Loci in Grapevine (Vitis amurensis) via Genotyping-by-Sequencing-Based QTL Mapping. Plant Physiol. Biochem. 2020, 154, 75–84. [Google Scholar] [CrossRef]
- Bettinelli, P.; Camponogara Tomazetti, T.; Zulini, L.; Nicolini, D.; Zatelli, A.; Dallaserra, M.; Dorigatti, C.; Stefanini, M.; Vezzulli, S. Forward Marker-Assisted Selection for Mildew Resistance in Grapevine: An Optimized Applied Process. In Proceedings of the 21st General Congress Eucarpia, Rotterdam, The Netherlands, 23–26 August 2021. [Google Scholar]
- Savary, S.; Delbac, L.; Rochas, A.; Taisant, G.; Willocquet, L. Analysis of Nonlinear Relationships in Dual Epidemics, and Its Application to the Management of Grapevine Downy and Powdery Mildews. Phytopathology 2009, 99, 930–942. [Google Scholar] [CrossRef]
- Buonassisi, D.; Cappellin, L.; Dolzani, C.; Velasco, R.; Peressotti, E.; Vezzulli, S. Development of a Novel Phenotyping Method to Assess Downy Mildew Symptoms on Grapevine Inflorescences. Sci. Hortic. 2018, 236, 79–89. [Google Scholar] [CrossRef]
- Clark, M.D.; Teh, S.L.; Burkness, E.; Moreira, L.; Watson, G.; Yin, L.; Hutchison, W.D.; Luby, J.J. Quantitative Trait Loci Identified for Foliar Phylloxera Resistance in a Hybrid Grape Population. Aust. J. Grape Wine Res. 2018, 24, 292–300. [Google Scholar] [CrossRef]
- Juyo Rojas, D.K.; Soto Sedano, J.C.; Ballvora, A.; Léon, J.; Mosquera Vásquez, T. Novel Organ-Specific Genetic Factors for Quantitative Resistance to Late Blight in Potato. PLoS ONE 2019, 14, e0213818. [Google Scholar] [CrossRef] [Green Version]
- Baumgarten, A.M.; Suresh, J.; May, G.; Phillips, R.L. Mapping QTLs Contributing to Ustilago Maydis Resistance in Specific Plant Tissues of Maize. Theor. Appl. Genet. 2007, 114, 1229–1238. [Google Scholar] [CrossRef]
- Su, Z.; Zheng, Z.; Zhou, M.; Shabala, S.; Liu, C. Tissue-Specific Responses of Cereals to Two Fusarium Diseases and Effects of Plant Height and Drought Stress on Their Susceptibility. Agronomy 2022, 12, 1108. [Google Scholar] [CrossRef]
- van Wersch, S.; Tian, L.; Hoy, R.; Li, X. Plant NLRs: The Whistleblowers of Plant Immunity. Plant Commun. 2020, 1, 100016. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.; Dangl, J. The Plant Immune System. Nature 2006, 444, 323–329. [Google Scholar] [CrossRef]
- Walker, G.P. Sieve Element Occlusion: Interactions with Phloem Sap-Feeding Insects. A Review. J. Plant Physiol. 2022, 269, 153582. [Google Scholar] [CrossRef] [PubMed]
- Anstead, J.A.; Froelich, D.R.; Knoblauch, M.; Thompson, G.A. Arabidopsis P-Protein Filament Formation Requires Both AtSEOR1 and AtSEOR2. Plant Cell Physiol. 2012, 53, 1033–1042. [Google Scholar] [CrossRef]
- Raven, P.H.; Evert, R.F.; Eichhorn, S.E. Biology of Plants; W. H. H. Free. Co., Ltd.: New York, NY, USA, 2005. [Google Scholar]
- Yu, Y.; Jiao, L.; Fu, S.; Yin, L.; Zhang, Y.; Lu, J. Callose Synthase Family Genes Involved in the Grapevine Defense Response to Downy Mildew Disease. Phytopathology 2016, 106, 56–64. [Google Scholar] [CrossRef]
- Agurto, M.; Schlechter, R.O.; Armijo, G.; Solano, E.; Serrano, C.; Contreras, R.A.; Zúñiga, G.E.; Arce-Johnson, P. RUN1 and REN1 Pyramiding in Grapevine (Vitis vinifera Cv. Crimson seedless) Displays an Improved Defense Response Leading to Enhanced Resistance to Powdery Mildew (Erysiphe necator). Front. Plant Sci. 2017, 8, 758. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Fan, B.; Zhu, C.; Chen, Z. Regulation and Function of Defense-Related Callose Deposition in Plants. Int. J. Mol. Sci. 2021, 22, 2393. [Google Scholar] [CrossRef] [PubMed]
- Lam, E.; Kato, N.; Lawton, M. Programmed Cell Death, Mitochondria and the Plant Hypersensitive Response. Nature 2001, 411, 848–853. [Google Scholar] [CrossRef] [PubMed]
- Malla, R.R.; Surepalli, N.; Farran, B.; Malhotra, S.V.; Nagaraju, G.P. Reactive Oxygen Species (ROS): Critical Roles in Breast Tumor Microenvironment. Crit. Rev. Oncol. Hematol. 2021, 160, 103285. [Google Scholar] [CrossRef]
- Sun, T.; Wu, W.; Wu, H.; Rou, W.; Zhou, Y.; Zhuo, T.; Fan, X.; Hu, X.; Zou, H. Ralstonia Solanacearum Elicitor RipX Induces Defense Reaction by Suppressing the Mitochondrial AtpA Gene in Host Plant. Int. J. Mol. Sci. 2020, 21, 2000. [Google Scholar] [CrossRef]
- Qiu, T.; Zhao, X.; Feng, H.; Qi, L.; Yang, J.; Peng, Y.L.; Zhao, W. OsNBL3, a Mitochondrion-Localized Pentatricopeptide Repeat Protein, Is Involved in Splicing Nad5 Intron 4 and Its Disruption Causes Lesion Mimic Phenotype with Enhanced Resistance to Biotic and Abiotic Stresses. Plant Biotechnol. J. 2021, 19, 2277–2290. [Google Scholar] [CrossRef]
- Zhang, D.; Meng, K.X.; Hao, Y.H.; Fan, H.Y.; Cui, N.; Wang, S.S.; Song, T.F. Comparative Proteomic Analysis of Cucumber Roots Infected by Fusarium oxysporum f. Sp. Cucumerium owen. Physiol. Mol. Plant Pathol. 2016, 96, 77–84. [Google Scholar] [CrossRef]
- Su, W.; Raza, A.; Gao, A.; Zeng, L.; Lv, Y.; Ding, X.; Cheng, Y.; Zou, X. Plant Lipid Phosphate Phosphatases: Current Advances and Future Outlooks. Crit. Rev. Biotechnol. 2022; ahead of print. [Google Scholar] [CrossRef]
- Marjolijn Peele, H. Defense Gene Responses Toward Necrotrophic Fungi in Arabidopsis Thaliana; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2015. [Google Scholar]
- Bernier, F.; Berna, A. Germins and Germin-like Proteins: Plant Do-All Proteins. But What Do They Do Exactly? Plant Physiol. Biochem. 2001, 39, 545–554. [Google Scholar] [CrossRef]
- Liao, L.; Hu, Z.; Liu, S.; Yang, Y.; Zhou, Y. Characterization of Germin-like Proteins (Glps) and Their Expression in Response to Abiotic and Biotic Stresses in Cucumber. Horticulturae 2021, 7, 412. [Google Scholar] [CrossRef]
- Rietz, S.; Bernsdorff, F.E.M.; Cai, D. Members of the Germin-like Protein Family in Brassica Napus Are Candidates for the Initiation of an Oxidative Burst That Impedes Pathogenesis of Sclerotinia sclerotiorum. J. Exp. Bot. 2012, 63, 5507–5519. [Google Scholar] [CrossRef]
- Ali, S.; Ganai, B.A.; Kamili, A.N.; Bhat, A.A.; Mir, Z.A.; Bhat, J.A.; Tyagi, A.; Islam, S.T.; Mushtaq, M.; Yadav, P.; et al. Pathogenesis-Related Proteins and Peptides as Promising Tools for Engineering Plants with Multiple Stress Tolerance. Microbiol. Res. 2018, 212–213, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Cantu Lab (UC Davis) Grapegenomics.Com. Available online: http://www.grapegenomics.com/ (accessed on 18 January 2023).
- Ficke, A.; Gadoury, D.M.; Seem, R.C. Ontogenic Resistance and Plant Disease Management: A Case Study of Grape Powdery Mildew. Phytopathology 2002, 92, 671–675. [Google Scholar] [CrossRef] [Green Version]
- Godfrey, D.; Able, A.J.; Dry, I.B. Induction of a Grapevine Germin-like Protein (VvGLP3) Gene Is Closely Linked to the Site of Erysiphe necator Infection: A Possible Role in Defense? Mol. Plant-Microbe Interact. 2007, 20, 1112–1125. [Google Scholar] [CrossRef] [PubMed]
- Manosalva, P.M.; Davidson, R.M.; Liu, B.; Zhu, X.; Hulbert, S.H.; Leung, H.; Leach, J.E. A Germin-Like Protein Gene Family Functions as a Complex Quantitative Trait Locus Conferring Broad-Spectrum Disease Resistance in Rice. Plant Physiol. 2009, 149, 286–296. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, J.; Maiti, M.K. Functional Role of Rice Germin-like Protein1 in Regulation of Plant Height and Disease Resistance. Biochem. Biophys. Res. Commun. 2010, 394, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Pei, Y.; Zhu, Y.; Jia, Y.; Ge, X.; Li, X.; Li, F.; Hou, Y. Molecular Evidence for the Involvement of Cotton GhGLP2, in Enhanced Resistance to Verticillium and Fusarium Wilts and Oxidative Stress. Sci. Rep. 2020, 10, 12510. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, X.; Chang, X.; Sun, M.; Zhang, Y.; Li, W.; Li, Y. Overexpression of Germin-like Protein GmGLP10 Enhances Resistance to Sclerotinia sclerotiorum in Transgenic Tobacco. Biochem. Biophys. Res. Commun. 2018, 497, 160–166. [Google Scholar] [CrossRef]
- Chung, C.L.; Longfellow, J.M.; Walsh, E.K.; Kerdieh, Z.; Van Esbroeck, G.; Balint-Kurti, P.; Nelson, R.J. Resistance Loci Affecting Distinct Stages of Fungal Pathogenesis: Use of Introgression Lines for QTL Mapping and Characterization in the Maize—Setosphaeria Turcica Pathosystem. BMC Plant Biol. 2010, 10, 103. [Google Scholar] [CrossRef] [PubMed]
- Nelson, R.; Wiesner-Hanks, T.; Wisser, R.; Balint-Kurti, P. Navigating Complexity to Breed Disease-Resistant Crops. Nat. Rev. Genet. 2018, 19, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Sargolzaei, M.; Maddalena, G.; Bitsadze, N.; Maghradze, D.; Bianco, P.A.; Failla, O.; Toffolatti, S.L.; De Lorenzis, G. De Rpv29, Rpv30 and Rpv31: Three Novel Genomic Loci Associated With Resistance to Plasmopara Viticola in Vitis vinifera. Front. Plant Sci. 2020, 11, 562432. [Google Scholar] [CrossRef] [PubMed]
- Monaghan, J.; Li, X. The HEAT Repeat Protein ILITYHIA Is Required for Plant Immunity. Plant Cell Physiol. 2010, 51, 742–753. [Google Scholar] [CrossRef] [PubMed]
- Odintsova, T.I.; Slezina, M.P.; Istomina, E.A.; Korostyleva, T.V.; Kovtun, A.S.; Kasianov, A.S.; Shcherbakova, L.A.; Kudryavtsev, A.M. Non-Specific Lipid Transfer Proteins in Triticum Kiharae Dorof. Et Migush.: Identification, Characterization and Expression Profiling in Response to Pathogens and Resistance Inducers. Pathogens 2019, 8, 221. [Google Scholar] [CrossRef] [Green Version]
- Manjula, S.; Murali, M.; Shivamurthy, G.R.; Amruthesh, K.N. Non-Specific Lipid Transfer Proteins (Ns-LTPs) from Maize Induce Resistance in Pearl Millet against Downy Mildew Disease. Phytoparasitica 2015, 43, 437–447. [Google Scholar] [CrossRef]
- Mochizuki, S.; Fukumoto, T.; Ohara, T.; Ohtani, K.; Yoshihara, A.; Shigematsu, Y.; Tanaka, K.; Ebihara, K.; Tajima, S.; Gomi, K.; et al. The Rare Sugar D-Tagatose Protects Plants from Downy Mildews and Is a Safe Fungicidal Agrochemical. Commun. Biol. 2020, 3, 423. [Google Scholar] [CrossRef]
- Maul, E.; Töpfer, R. Vitis International Variety Catalogue. Available online: www.vivc.de (accessed on 18 January 2023).
- Vezzulli, S.; Malacarne, G.; Masuero, D.; Vecchione, A.; Dolzani, C.; Goremykin, V.; Mehari, Z.H.; Banchi, E.; Velasco, R.; Stefanini, M.; et al. The Rpv3-3 Haplotype and Stilbenoid Induction Mediate Downy Mildew Resistance in a Grapevine Interspecific Population-Supplementary Material. Front. Plant Sci. 2019, 10, 234. [Google Scholar] [CrossRef]
- Maier, U.; Bleiholder, H.; Weber, E.; Feller, C.; Hess, M.; Wicke, H.; van den Boom, T.; Lancashire, P.D.; Buhr, L.; Hack, H. Growth Stages of Mono-and Dicotyledonous Plants–BBCH Monograph; Federal Biological Research Centre for Agriculture and Forestry: Bonn, Germany, 2001. [Google Scholar]
- OIV. Lista de Descriptores OIV Para Variedades de Vid y Especies de Vitis, 2nd ed.; OIV: Paris, France, 2009; Volume 232. [Google Scholar]
- Hammer, O.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- Illumina, Inc. Illumina Genotyping Data Analysis: A Guide for Analyzing Infinium Genotyping Data Using the Illumina GenomeStudio Genotyping Module; Technical Note of DNA Analysis; Illumina, Inc.: San Diego, CA, USA, 2013. [Google Scholar]
- Di Guardo, M.; Micheletti, D.; Bianco, L.; Koehorst-Van Putten, H.J.J.; Longhi, S.; Costa, F.; Aranzana, M.J.; Velasco, R.; Arús, P.; Troggio, M.; et al. ASSIsT: An Automatic SNP Scoring Tool for in- and Outbreeding Species. Bioinformatics 2015, 31, 3873–3874. [Google Scholar] [CrossRef]
- Fechter, I.; Hausmann, L.; Zyprian, E.; Daum, M.; Holtgräwe, D.; Weisshaar, B.; Töpfer, R. QTL Analysis of Flowering Time and Ripening Traits Suggests an Impact of a Genomic Region on Linkage Group 1 in Vitis. Theor. Appl. Genet. 2014, 127, 1857–1872. [Google Scholar] [CrossRef]
- Vervalle, J.A.; Costantini, L.; Lorenzi, S.; Pindo, M.; Mora, R.; Bolognesi, G.; Marini, M.; Lashbrooke, J.G.; Tobutt, K.R.; Melané, M.; et al. A High-Density Integrated Map for Grapevine Based on Three Mapping Populations Genotyped by the Vitis18K SNP Chip. Theor. Appl. Genet. 2022, 1, 4371–4390. [Google Scholar] [CrossRef]
- Grattapaglia, D.; Sederoff, R. Genetic Linkage Maps of Eucalyptus Grandis and Eucalyptus Urophlla Using a Pseudo-Testcross: Mapping Strategy and RAPD Markers. Genetics 1994, 137, 1121–1137. [Google Scholar] [CrossRef]
- Bhattarai, G.; Fennell, A.; Londo, J.P.; Coleman, C.; Kovacs, L.G. A Novel Grape Downy Mildew Resistance Locus from Vitis Rupestris. Am. J. Enol. Vitic. 2021, 72, 12–20. [Google Scholar] [CrossRef]
- Van Ooijen, J.W.; Jansen, J. Genetic Mapping in Experimental Populations; Cambridge University Press: Cambridge, UK, 2013; ISBN 9781107013216. [Google Scholar]
- Gutiérrez, O.A.; Puig, A.S.; Phillips-Mora, W.; Bailey, B.A.; Ali, S.S.; Mockaitis, K.; Schnell, R.J.; Livingstone, D.; Mustiga, G.; Royaert, S.; et al. SNP Markers Associated with Resistance to Frosty Pod and Black Pod Rot Diseases in an F1 Population of Theobroma cacao L. Tree Genet. Genomes 2021, 17, 28. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- RStudio Team. RStudio: Integrated Development Environment for R; RStudio, PBC: Boston, MA, USA, 2022. [Google Scholar]
- Voorrips, R.E. MapChart: Software for the Graphical Presentation of Linkage Maps and QTLs. J. Hered. 2002, 93, 77–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Ooijen, J.W. MapQTL 6® Software for the Mapping of Quantitative Trait Loci in Experimental Populations of Diploid Species; Kyazma, B.V.: Wageningen, The Netherlands, 2009. [Google Scholar]
- URGI Génomique-Info Unité de Recherche en GrapeReSeq_Illumina_20K. Available online: https://urgi.versailles.inra.fr/Species/Vitis/GrapeReSeq_Illumina_20K (accessed on 19 January 2023).
- SequenceServer 2.0.0 Custom BLAST Server for Grapevine—PN40024. Available online: http://138.102.159.70:4567/ (accessed on 19 January 2023).
- INTEGRAPE COST Action CA17111 PN40024.V4. Available online: https://integrape.eu/resources/genes-genomes/genome-accessions/ (accessed on 19 January 2023).
- INRAE—Institut national de la recherche agronomique GREAT—GRape Expression ATlas Application. Available online: https://great.colmar.inrae.fr/login (accessed on 19 January 2023).
- JBrowse—PN40024.V4. Available online: http://138.102.159.70/jbrowse/ (accessed on 19 January 2023).
- ShinyGO 0.76.3. Available online: http://bioinformatics.sdstate.edu/go/ (accessed on 19 January 2023).
- EMBL-EBI MUSCLE—Multiple Sequence Alignment. Available online: https://www.ebi.ac.uk/Tools/msa/muscle/ (accessed on 19 January 2023).
- Brown, N.P.; Leroy, C.; Sander, C. MView: A Web-Compatible Database Search or Multiple Alignment Viewer. Bioinformatics 1998, 14, 380–381. [Google Scholar] [CrossRef]
- EMBL-EBI MView—Multiple Sequence Alignment. Available online: https://www.ebi.ac.uk/Tools/msa/mview/ (accessed on 19 January 2023).
- CLUSTALW—Multiple Sequence Alignment. Available online: https://www.genome.jp/tools-bin/clustalw (accessed on 19 January 2023).
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree 2—Approximately Maximum-Likelihood Trees for Large Alignments. PLoS One 2010, 5, e9490. [Google Scholar] [CrossRef] [PubMed]
- Soares, A.; Râbelo, R.; Delbem, A. Optimization Based on Phylogram Analysis. Expert Syst. Appl. 2017, 78, 32–50. [Google Scholar] [CrossRef]
- Shimodaira, H.; Hasegawa, M. Multiple Comparisons of Log-Likelihoods with Applications to Phylogenetic Inference. Mol. Biol. Evol. 1999, 16, 1114. [Google Scholar] [CrossRef]
- PN40024.v4 Apollo Annotator. Available online: http://138.102.159.70:8080/apollo (accessed on 19 January 2023).
- Paysan-Lafosse, T.; Blum, M.; Chuguransky, S.; Grego, T.; Pinto, B.L.; Salazar, G.A.; Bileschi, M.L.; Bork, P.; Bridge, A.; Colwell, L.; et al. InterPro in 2022. Nucleic Acids Res. 2022, 51, D418–D427. [Google Scholar] [CrossRef] [PubMed]
- Lamesch, P.; Berardini, T.Z.; Li, D.; Swarbreck, D.; Wilks, C.; Sasidharan, R.; Muller, R.; Dreher, K.; Alexander, D.L.; Garcia-Hernandez, M.; et al. The Arabidopsis Information Resource (TAIR): Improved Gene Annotation and New Tools. Nucleic Acids Res. 2012, 40, D1202–D1210. [Google Scholar] [CrossRef] [PubMed]
- Consortium, T.U.; Bateman, A.; Martin, M.-J.; Orchard, S.; Magrane, M.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; Bye-A-Jee, H.; et al. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023, 51, D523–D531. [Google Scholar] [CrossRef]
- VitViz Vitis Visualization Platform EX-ATLAS Expression Atlases App of The. Available online: http://147.156.207.74:4242/AtlasCorvinaApp/ (accessed on 18 January 2023).
- TOMSBio Lab VitViz Platform. Available online: http://www.vitviz.tomsbiolab.com/ (accessed on 20 January 2023).
Map | Length | Markers | Bins | Max Gap | ||||
---|---|---|---|---|---|---|---|---|
Whole | Reduced | N° | Density a | Mean Distance b | cM | LG | ||
IN | 1677 | 7358 | 3249 | 1613 | 0.96 | 1.04 | 9.5 | 15 |
M | 1452 | 4681 | 2218 | 849 | 0.58 | 1.71 | 15.7 | 12 |
T | 1743 | 4553 | 2348 | 971 | 0.56 | 1.80 | 28.0 | 18 |
dhM | 943 | 2884 | 998 | 791 | 0.84 | 1.19 | 13.2 | 6 |
dhT | 1346 | 2744 | 1137 | 917 | 0.68 | 1.47 | 22.0 | 18 |
QTL | Organ | Trial | Most Associated Marker | LOD | Two-LOD Interval | Length (cM) | PVE | Additive Effect |
---|---|---|---|---|---|---|---|---|
Rgb1 | Leaf | GL1 | GF14-42 | 8.47 | 40.584–40.626 | 0.04 | 29.2% | 1.32 |
GL2 | 4.86 | 20.4% | 1.36 | |||||
GL3 | 7.13 | 22.9% | 1.28 | |||||
GL min | 5.79 | 18.4% | 1.01 | |||||
FL | 7.59 | 26.2% | 1.83 | |||||
Shoot internode | FS | 6.63 | 26.3% | 2.03 | ||||
Rgb3 | Cluster | FC1a | C14_20097630ae | 3.66 | 31.241–31.533 | 0.29 | 22.5% | 1.24 |
FC1b | 2.22 | 15.7% | 0.94 | |||||
FC1 | 5.96 | 20.3% | 1.22 | |||||
FC2a | 27.63 | 75.7% | 3.20 | |||||
FC2b | 35.70 | 83.9% | 3.42 | |||||
FC2 | 31.38 | 79.9% | 3.36 | |||||
FC min | 24.34 | 68.9% | 3.10 |
Rate | Description |
---|---|
1 | very low resistant: more than 60% of infected berries with pycnidia formation |
3 | low resistant: up to 60% of infected berries with pycnidia formation |
5 | medium resistant: no more than 20% infected berries with pycnidia formation |
7 | high resistant: few infected berries with pycnidia formation |
9 | very high resistant: no infected berries |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bettinelli, P.; Nicolini, D.; Costantini, L.; Stefanini, M.; Hausmann, L.; Vezzulli, S. Towards Marker-Assisted Breeding for Black Rot Bunch Resistance: Identification of a Major QTL in the Grapevine Cultivar ‘Merzling’. Int. J. Mol. Sci. 2023, 24, 3568. https://doi.org/10.3390/ijms24043568
Bettinelli P, Nicolini D, Costantini L, Stefanini M, Hausmann L, Vezzulli S. Towards Marker-Assisted Breeding for Black Rot Bunch Resistance: Identification of a Major QTL in the Grapevine Cultivar ‘Merzling’. International Journal of Molecular Sciences. 2023; 24(4):3568. https://doi.org/10.3390/ijms24043568
Chicago/Turabian StyleBettinelli, Paola, Daniela Nicolini, Laura Costantini, Marco Stefanini, Ludger Hausmann, and Silvia Vezzulli. 2023. "Towards Marker-Assisted Breeding for Black Rot Bunch Resistance: Identification of a Major QTL in the Grapevine Cultivar ‘Merzling’" International Journal of Molecular Sciences 24, no. 4: 3568. https://doi.org/10.3390/ijms24043568
APA StyleBettinelli, P., Nicolini, D., Costantini, L., Stefanini, M., Hausmann, L., & Vezzulli, S. (2023). Towards Marker-Assisted Breeding for Black Rot Bunch Resistance: Identification of a Major QTL in the Grapevine Cultivar ‘Merzling’. International Journal of Molecular Sciences, 24(4), 3568. https://doi.org/10.3390/ijms24043568