A Review of Applications of Solid-State Nuclear Magnetic Resonance (ssNMR) for the Analysis of Cyclodextrin-Including Systems
Abstract
:1. Introduction
2. An Overview of the Methods Used in the Analysis of CD Complexes
3. ssNMR Approaches for the Analysis of Cyclodextrin Complexes
CD | Guest | ssNMR Details | Reason for ssNMR Application | Other Experiments Used Alongside | Publication Year | Reason for Making a Complex with CD | Reference |
---|---|---|---|---|---|---|---|
novel β-CD based on N-halamine antimicrobial copolymer | sodium hydrochlorite | 13C MAS | structure characterization | SEM, XPS, XRD, TGA, and DSC | 2014 | antimicrobial CD acetate nano-fibres | [19] |
β | 2-hydroxy-1-naphthoic acid | 13C, 1H | structure characterization | UV-Vis, FT-IR, NMR, XRD, SEM | 2016 | sensory device for Ag cation | [20] |
polyamino-CD | Ag(I) cation | 13C CP MAS | structure characterization | TGA, FT-IR, ssNMR, SEM, HR-TEM | 2019 | nanosponge, sensory device for Ag(I) cation | [21] |
succinyl- β | albendazole | 13C, 15N MAS | structure characterization | ROESY and 1H NMR in solution | 2018 | potential drug carrier enhancing drug’s low aqueous solubility, spray-drying technique effectiveness | [22] |
β, methyl- β, hydroxypropyl-β, citrate- β | albendazole | 13C, 15N MAS | structure characterization, loss of crystallinity after spray-drying, explanation for differences in drug solubility enhancement found with different CDs | - | 2015 | potential drug carrier enhancing drug’s low aqueous solubility, spray-drying technique effectiveness | [23] |
β, hydroxypropyl- β | 1,2,4-thiadiazole derivative | 13C MAS | structure characterization, explanation of differences in stability of different CD complexes | DSC, TG, PXRD, FT-IR, hot-stage microscopy, solubility measurements | 2017 | potential drug carrier enhancing drug’s low aqueous solubility | [24] |
β | ciprofloxacin, doxorubicin, paclitaxel | 13C MAS | confirmation of CD grafting, complex characterization | SEM, PXRD, FT-IR, HPLC | 2019 | nanocarrier, CD grafted on bacterial cellulose nanowhiskers | [25] |
β | cinnamon and oregano essential oils | 13C MAS | structure characterization | TGA | 2017 | nanofiber for packaging systems | [26] |
β, methyl-β, hydroxypropyl- β | benznidazole | 13C CP MAS | structure characterization | - | 2015 | potential drug carrier enhancing drug’s low aqueous solubility | [27] |
β | benzoguanamine | 13C, 1H MAS | structure characterization | UV-Vis, fluorescence, FT-IT, mass spectrometry | 2018 | chomosensor for selective Ce4+ sensing | [28] |
β | bisacodyl | 13C MAS | structure characterization, comparison of the complexes obtained from 3 different preparation methods | FT-IR, PXRD, TGA-DSC, SEM, 1H and ROESY NMR in solution | 2015 | potential drug carrier | [29] |
β | bisphenol | 13C dipolar-decoupled MAS | structure characterization | FT-IR, DOSY NMR in solution | 2013 | CD-polymer, pollutant-removing agent | [30] |
2-hydroksypropyl- β | candesartan, candesartan cilexetil | 13C CP MAS | structure characterization | mass spectrometry, HPLC | 2019 | potential drug carrier enhancing drug’s low aqueous solubility | [31] |
per(3,5-dimethyl)phenylcarbamoylated-b | benzene homologues and phenylamine analogs | 13C MAS | attachment of the CD moiety on the silica | FT-IR | 2018 | enantioseparation for isoxazolines, flavonoids, and β-blockers, polymer | [32] |
β | ciprofloxacin hydrochloride | 13C CP MAS | confirmation of CD being grafted onto cellulose fibers | FT-IR | 2014 | cyclodextrin-grafted cellulose fibers for antimicrobial products | [33] |
β | - | 13C MAS | confirmation of CD being grafted onto cellulose fibers | polarized optical microscopy, FT-IR, TGA | 2012 | cyclodextrin-grafted cellulose fibers for antimicrobial products | [34] |
β | bisphenol A | 13C MAS | structure characterization | FT-IR | 2013 | carboxylmethylcellulose-based hydrogel for toxin removal | [35] |
β | acetylsalicylic acid | 13C MAS | structure characterization | FT-IR | 2014 | CD-fraften carboxyheksyl chitosan hydrogels, biodegradable active material with controlled drug release | [36] |
β | ketoconazole | 13C CP MAS | structure characterization, confirmation of CD being grafted onto cellulose fibers | ATR-FT-IR, TGA-DSC | 2017 | citric-acid-crosslinked b-cyclodextrin/hydroxyethylcellulose hydrogel films for controlled delivery of poorly soluble drugs | [37] |
β | ketoconazole | 13C CP MAS | structure characterization, confirmation of CD being grafted onto cellulose fibers | ATR-FT-IR, TGA-DSC | 2017 | citric-acid-crosslinked cyclodextrin/carboxymethylcellulosehydrogel films for controlled delivery of poorly soluble drugs | [38] |
β | ketoconazole | 13C MAS | structure characterization | ATR-FT-IR, TGA-DSC, SEM | 2016 | citric-acid-crosslinked cyclodextrin/hydroxypropylmethylcellulosehydrogel films for hydrophobic drug delivery | [39] |
salicylic acid, salicylamide, piroxicam, hydrocortisone | 13C CP MAS | structural changes under influence of raising temperature | PXRD, 1H NMR in solution | 2017 | CD columns in poly-ethylene–polyrotaxannes | [40] | |
β | sodium perfluorooctane | 13C CP, DP, 1H, 19F MAS | structure characterization | DSC, TGA, FT-IR, PXRD | 2015 | toxin-removing agent | [41] |
β | curcumin | 13C, 29Si MAS | structure characterization | XRD, FT-IR, XPS, BET, TG, DTA, TEM, DLS | 2015 | nanocarrier, potential drug carrier enhancing drug’s low aqueous solubility, pH responsive ‘‘gate’’ when functionalized on the surface of mesoporous silica | [42] |
β | diazepam | 1H MAS | structure characterization, number of water molecules in the cavity | - | 2014 | drug carrier, lipophilic ligand transporter water compartments in the cell | [43] |
β | 1,4-diazepine derivatives | 13C CP MAS | structure characterization | TGA, IR | 2020 | nanocarrier, potential drug carrier enhancing drug’s low aqueous solubility | [44] |
γ | doxorubicine | 1H -1H, 13C -27Al 2D MAS | structure characterization | - | 2021 | metal–organic frameworks nanoparticles with engineered cyclodextrin coatings | [45] |
β | essential oils | 13C CP MAS | structure characterization, comparison of different complexation techniques | FT-IR, DSC-TGA, PXRD | 2019 | antimicrobial sachets used as preservatives for foods | [46] |
β | estrogen (estradiol, bisphenol A) and metal (zirconium) pollutants | 13C MAS | structure characterization, adsorption mechanism | FT-IR, EDS | 2019 | Zr(IV)-cross-linked carboxymethyl-CD bifunctional adsorbent, toxin-removing agent | [47] |
γ | fisetin | 13C CP MAS | structure characterization | PXRD, Raman, TGA | 2017 | potential drug carrier enhancing drug’s low aqueous solubility | [48] |
β | furosemide polymorphs | 13C MAS | structure characterization | PXRD, SEM | 2016 | drug carrier, alternative matrices that improve physicochemical properties | [49] |
α, β | CO2, N2 | 13C, 15N MAS | ligand incorporation | FT-IR, XPS, SEM, gas sorption porosimetry, 13C NMR in solution | 2019 | polyurethane aerogels, dessicant | [50] |
β | hydrofluoroether | 13C CP, 19F MAS | structure characterization, changes with temperature change | TGA, TG-MS, WAXD | 2012 | removing agent | [51] |
α | -- | 13C MAS | structure characterization | ATR-FT-IR, transmission electron microscopy | 2018 | alkyl chains grafted on polysaccharides and CDs forming platelets used as therapeutic materials | [52] |
β | hydroxytyrosol | 13C, 2D 1H -13C HETCOR MAS | structure characterization, comparison of complexation methods | SEM | 2018 | drug carrier, obtaining better stability and extended shelf-life | [53] |
β | ibuprofen | 13C, 1H, variable contact time cross-polarization VCT-CP MAS | molecular structure and dynamics | PXRD, 1H NMR in solution | 2017 | nanosponges | [54] |
γ | efavirenz | 13C CP MAS | structure characterization | TGA, PXRD, 1H NMR in solution | 2021 | potential drug carrier enhancing drug’s low aqueous solubility | [55] |
β, hydroxypropyl- β | furazolidone | 13C, 2D WISE 1H -13C MAS | - | TGA-DSC, SEM, PXRD, Raman spectroscopy | 2020 | potential drug carrier enhancing drug’s low aqueous solubility and stability | [56] |
α, β | limaprost | 13C MAS | structure characterization | Raman spectroscopy, PXRD | 2016 | drug carrier, obtaining better stability and extended shelf-life | [57] |
β | limaprost | 2H MAS | structure characterization, complex stability | - | 2014 | drug carrier, obtaining better stability and extended shelf-life | [58] |
α | lipoic acid | 13C MAS | structure characterization, explanation of the complex formation | PXRD, 1H NMR in solution, SEM, PXRD, FT-IR, Raman spectroscopy | 2015 | ligand stabilization through complexation with CD | [18] |
β | lithium cation | 13C CP MAS, 7Li MAS | determine the dynamics of ion transport | PXRD, EIS | 2020 | tunnel-like polymer electrolytes, to facilitate lithium–ion transport | [59] |
α | lithium cation | 13C, 7Li, 13C CP MAS | reveal unique structural features | PXRD | 2018 | polymer | [60] |
α | lithium cation | 13C, 1H, 7N, 1H -13C, 2H, 7Li-7Li 2D MAS | detailed study of Li+ dynamics in nanochannel | WXRD, PXRD | 2014 | polymer | [61] |
α, β | menthol | 13C CP MAS | structure characterization | vibrational circular dichroism | 2020 | flavor encapsulation in preserved food and cosmetics | [62] |
γ | methotrexate | 13C CP MAS/TOSS | structure characterization | PXRD, FT-IR, SEM | 2020 | potential drug carrier enhancing drug’s low aqueous solubility and stability, metal organic framework | [63] |
hydroxypropyl-β | - | 13C CP MAS | structure characterization, amorphous/crystalline verification | SEM, AFM, PXRD, 2C ROESY | 2018 | drug-carrying nanofibers, different excipients | [64] |
α, γ: native and porous | - | 13C MAS | structure characterization, native vs. porous structure verification | FT-IR, 1H NMR in solution, SEM, PXRD | 2019 | absorption and separation CD-tunnels | [65] |
β | - | 13C MAS | structure characterization | PXRD, NMR in solution | 2013 | drug delivery systems, nanospheres | [66] |
β | - | 13C VCT 13C CP MAS | molecular structure and dynamics | FT-IR-ATR, Raman spectroscopy | 2012 | nanosponges | [67] |
β | naphthalene | 13C MAS | complex formation | FT-IR, TGA | 2018 | grafted CD on activated carbon for ligand absorption | [68] |
β | p-nitrophenol | 13C MAS | confirmation of CD immobilization on silica surface | FT-IR, TGA, SEM, XRS, XRD, ROESY NMR in solution | 2015 | CD-grafted silica gel for ligand absorption | [69] |
β | p-nitrophenol | 13C MAS | confirmation of CD immobilization on silica surface | FT-IR, TGA, SEM, XRS, XRD | 2015 | CD grafted on hybrid silica for ligand absorption | [70] |
β | norfloxacin | 13C MAS | conformation of obtaining a new solid-state form of a ligand upon crystallization | PXRD, FT-IR, SEM | 2013 | potential drug carrier | [71] |
α | - | 13C MAS | differentiation and description of amorphous and crystalline form | SEM, XRD, FT-IR, DSC, PSD, TGA | 2015 | organic-compound-absorbent | [72] |
AT1R antagonists | 13C CP MAS | structure characterization | 2D NOESY | 2020 | potential drug carrier enhancing drug’s low aqueous solubility | [73] | |
β | ornidazole | 13C MAS | structure characterization | SEM, FT-IR, PXRD, DSC, TGA, 1H NMR in solution | 2020 | polymer microspheres | [74] |
β | perfluorobutyric acid | 13C DP, CP, high-power 1H/19F decoupling MAS | confirmation of complex formation, structure characterization | PXRD, DSC | 2014 | pollutant-removing agent | [75] |
β | perfluorooctonic acid | 19F direct polarization (DP) and 13C cross polarization MAS | confirmation of complex formation, structure characterization | FT-IR, DSC-TGA, PXRD | 2013 | pollutant-removing agent | [76] |
2-hydroxypropylo- β | caffeinic and rosmarinic acid | 13C CP MAS | structure characterization | ITC, mass spectrometry, 1H NMR in solution | 2021 | optimize pharmaceutic profile, enhance stability of natural food additives | [77] |
β | CD modification with phosphorus groups | 31P, CP MAS | structure verification with regard to other applied methods | ICP-OES, TGA, PCFC | 2020 | CD modification, promising matrices for environmentally benign fire-resistant coatings (lower combustibility) | [78] |
β | pindolol | 13C CP MAS | confirmation of CD-including polymer formation | TGA, 1H NMR in solution, MALDI-TOF MS | 2020 | polymer–drug conjugates | [79] |
α, methylo-α, β, γ, γ50 | poly(lactic acid) | 13C CP MAS | confirmation of complex formation, possible complex ratio | 1H NMR in solution, DSC | 2018 | polymer with poly(l-lactic acid) used as a packaging material, also for medical equipment | [80] |
β, methoxy-azido-β, heptakis-(6-deoxy)-(6-azido)-β | calixarene | 13C CP MAS, LGFS | confirmation of complex formation | FT-IR, TGA, porosimetry | 2016 | obtain pH-tunable nanosponges, mixed cyclodextrin-calixarene co-polymers | [81] |
β | water organic pollutants | 13C MAS | structure characterization | water contact angle, SEM, FT-IR, TGA, nitrogen adsorption–desorption isotherms, elemental analysis | 2019 | porous CD/pillar [5]arene copolymer for rapid removal of organic pollutants from water | [82] |
β | p-nitrophenol | 13C CP MAS | structure characterization | FT-IR, TGA, DSC, SEM, elemental (C and H) microanalyses | 2011 | microsphere polymeric materials with poly(acrylic) acid, improve sorption characteristics in aqueous environment | [83] |
β | polyaniline | 13C CP MAS | elucidate the inclusion effect on the dynamic structure of polyaniline | UV-Vis | 2012 | isolate polymer chains in a bulk system | [84] |
β | methylene blue dye | 13C MAS | confirmation of complex structure | SEM, FT-IR, TGA, water-contact-angle measurement | 2018 | removing agent, CD-based polymer containing carboxylic acid groups | [85] |
2-hydroxy-propylo- β, α | carvedilol | 13C MAS | structure characterization | XRPD, FT-IR, DSC | 2020 | CD-based poly(pseudo)rotaxanes, supramolecular gel | [86] |
β | - | 13C MAS | comparison of CD hydrate and CD polymer | UV-Vis, FT-IR, TGA, 1H NMR in solution | 2016 | CD-based polyurethanes | [87] |
β, methyl-β, hydroxypropyl-β | praziquantel | 13C MAS | structure characterization | PXRD | 2015 | potential drug carrier enhancing drug’s low aqueous solubility | [88] |
2-hydroxypropylo- β | quercetin | 13C MAS | structure characterization | 1H NMR in solution | 2016 | potential drug carrier enhancing drug’s low aqueous solubility | [89] |
hydroxypropyl-β | ripovacaine | 13C CP MAS | prove the presence of the CD coating and ligand incorporation into CD | SEM, 1H NMR in solution | 2014 | drug carrier for local and prolonged delivery, crosslinked polymer with CD | [90] |
β | sertraline | 13C CP MAS | structure characterization and estimation of complex ratio | FT-IR, PXRD, Raman spectroscopy | 2015 | potential drug carrier enhancing drug’s low aqueous solubility | [91] |
2-hydroxypropylo-β | silibinin | 13C CP, 1H MAS | structure characterization | DSC, 2D NOESY and DOSY NMR, mass spectroscopy | 2015 | potential drug carrier enhancing drug’s low aqueous solubility and protecting against conjugation and metabolic inactivation | [92] |
α, β, γ | cyclic siloxanes | 13C, 29Si MAS | structure characterization | NMR in solution, FT-IR, TGA, PXRD, SEM–EDS, elemental analyses | 2012 | selective impurities removing agent | [93] |
2-hydroxypropylo-β, β | sumatriptan | 13C, 1H MAS | structure characterization | FT-IR, DSC | 2018 | potential drug carrier enhancing drug’s low aqueous solubility | [94] |
β, permethylated- β | (2,20-dipyridylamine)chlorido(1,4,7 trithiacyclononane)ruthenium(II) chloride | 13C CP MAS | structure characterization | PXRD, TGA, FT-IR, elemental analysis | 2017 | potential drug carrier enhancing drug’s low aqueous solubility | [95] |
β | thiurams | 13C CP MAS | structure characterization, encapsulation evidence | PXRD, TGA | 2022 | aqueous solubility increase | [96] |
Mono-2-tosylated α, β, γ | N-tosylimidazole | 13C CP MAS | structure characterization | XRD, mass spectrometry, diffuse reflectance UV−vis | 2015 | modified CD: mechanochemistry research | [97] |
γ | valsartan | 13C CP MAS | structure characterization | SR-FT-IR, PXRD, DSC, SAXS | 2019 | potential drug carrier enhancing drug’s low aqueous solubility, cyclodextrin metal organic framework | [98] |
β, randomly methylated β | zaleplon | 13C CP MAS | structure characterization | DSC, PXRD, SEM | 2012 | potential drug carrier enhancing drug’s low aqueous solubility, with hypromellose and polyvinylpyrrolidone | [99] |
β | ciprofloxacin | 13C MAS | structure characterization | cryo-SEM, FT-IR | 2016 | supramolecular CD hydrogel | [100] |
α, β | cyclosporine A | 13C CP MAS | structure characterization | PXRD, circular dichroism spectroscopy | 2018 | microspheres based on CD-polymers, potential drug carrier enhancing drug’s low aqueous solubility and bioavailability | [101] |
3.1. Direct Polarization versus Cross Polarization Experiments
3.2. Nuclei Other Than 13C
3.3. Relaxation Studies
3.4. Two-Dimensional Experiments
4. ssNMR Applicability for Analysis of the Cyclodextrin Complexes
4.1. Drug Carriers
Drug Carriers with Cellulose
4.2. Nanosponges and Functionalized CDs
4.3. Removing Agents and Sensory Devices
4.4. Other Application
4.5. The Limitations and the Difficulties of ssNMR Approaches in the Studies of CD-Based Materials
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, M.; Endo, T.; Zimmermann, W. Enzymatic Synthesis and Analysis of Large-Ring Cy-clodextrins. Aust. J. Chem. 2022, 55, 39–48. [Google Scholar] [CrossRef]
- Przybyla, M.A.; Yilmaz, G.; Becer, C.R. Natural cyclodextrins and their derivatives for polymer synthesis. Polym. Chem. 2020, 11, 7582–7602. [Google Scholar] [CrossRef]
- Jambhekar, S.S.; Breen, P. Cyclodextrins in pharmaceutical formulations II: Solubilization, binding constant, and complexation efficiency. Drug Discov. Today 2016, 21, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Irie, T.; Uekama, K. Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation. J. Pharm. Sci. 1997, 86, 147–162. [Google Scholar] [CrossRef]
- European Medicines Agency. Available online: https://www.ema.europa.eu/en (accessed on 28 December 2022).
- U.S. Food & Drug Administration (FDA). Available online: https://www.fda.gov (accessed on 28 December 2022).
- Pharmaceutical and Medical Devices Agency. Available online: https://www.pmda.go.jp/english/index.html (accessed on 28 December 2022).
- Jug, M.; Mura, P.A. Grinding as Solvent-Free Green Chemistry Approach for Cyclodextrin Inclusion Complex Preparation in the Solid State. Pharmaceutics 2018, 10, 189. [Google Scholar] [CrossRef]
- Wdowiak, K.; Rosiak, N.; Tykarska, E.; Zarowski, M.; Płazińska, A.; Płaziński, W.; Cielecka-Piontek, J. Amorphous Inclusion Complexes: Molecular Interactions of Hesperidin and Hesperetin with HP-B-CD and Their Biological Effects. Int. J. Mol. Sci. 2022, 23, 4000. [Google Scholar] [CrossRef]
- Mazurek, A.H.; Szeleszczuk, Ł. Current Status of Quantum Chemical Studies of Cyclodextrin Host–Guest Complexes. Molecules 2022, 27, 3874. [Google Scholar] [CrossRef]
- Mazurek, A.H.; Szeleszczuk, Ł.; Gubica, T. Application of Molecular Dynamics Simulations in the Analysis of Cyclodextrin Complexes. Int. J. Mol. Sci. 2021, 22, 9422. [Google Scholar] [CrossRef]
- Mentzafos, D.; Bethanis, K. β-Cyclodextrin dimeric inclusion complexes: A review of some crystal structure aspects. In Cyclodextrins: Synthesis, Chemical Applications and Role in Drug Delivery; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2015; pp. 241–268. [Google Scholar]
- Rodríguez-Tenreiro, C.; Alvarez-Lorenzo, C.; Concheiro, Á.; Torres-Labandeira, J.J. Characterization of cyclodextrin carbopol interactions by DSC and FTIR. J. Therm. Anal. Calorim. 2002, 77, 403–411. [Google Scholar] [CrossRef]
- Tarannum, N.; Suhani; Kumar, D. Synthesis, characterization and applications of copolymer of β-Cyclodextrin: A review. J. Polym. Res. 2020, 27, 89. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, L.; Wu, X.; Pan, Q.; Su, Y.; Li, H. X-ray powder diffraction data for inclusion complex of β-Cyclodextrin with fraxinellone. Powder Diffr. 2013, 28, 234–236. [Google Scholar] [CrossRef]
- Lamcharfi, E.; Kunesch, G.; Meyer, C.; Robert, B. Investigation of cyclodextrin inclusion compounds using FT-IR and Raman spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1995, 51, 1861–1870. [Google Scholar] [CrossRef]
- Maksimowski, P.; Janson, A. Nitration of γ-Cyclodextrin. Central Eur. J. Energetic Mater. 2020, 17, 362–383. [Google Scholar] [CrossRef]
- Ikuta, N.; Endo, T.; Hosomi, S.; Setou, K.; Tanaka, S.; Ogawa, N.; Yamamoto, H.; Mizukami, T.; Arai, S.; Okuno, M.; et al. Structural Analysis of Crystalline R(+)-α-Lipoic Acid-α-cyclodextrin Complex Based on Microscopic and Spectroscopic Studies. Int. J. Mol. Sci. 2015, 16, 24614–24628. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Dou, J.; Jiang, Q.; Li, J.; Xie, Z.; Liang, J.; Ren, X. Preparation and antimicrobial activity of β-cyclodextrin derivative copolymers/cellulose acetate nanofibers. Chem. Eng. J. 2014, 248, 264–272. [Google Scholar] [CrossRef]
- Sivakumar, K.; Ragi, T.R. 2H1NA/β-cyclodextrin inclusion complex: Preparation, characterization and chemosensory application for detecting Ag+. J. Macromol. Sci. Part A 2016, 53, 677–686. [Google Scholar] [CrossRef]
- Russo, M.; Spinella, A.; Di Vincenzo, A.; Lazzara, G.; Correro, M.R.; Shahgaldian, P.; Meo, P.L.; Caponetti, E. Synergistic Activity of Silver Nanoparticles and Polyaminocyclodextrins in Nanosponge Architectures. Chem. Select 2019, 4, 873–879. [Google Scholar] [CrossRef]
- Priotti, J.; Garcia, A.; Leonardi, D.; Ferreira, M.J.; Lamas, M.C.; Tunes, T.G. Succinyl-β-cyclodextrin: Influence of the substitution degree on albendazole inclusion complexes probed by NMR. Mater. Sci. Eng. C 2018, 92, 694–702. [Google Scholar] [CrossRef]
- Ferreira, M.J.; García, A.; Leonardi, D.; Salomon, C.J.; Lamas, M.C.; Nunes, T.G. (13)C and (15)N solid-state NMR studies on albendazole and cyclodextrin albendazole complexes. Carbohydr. Polym. 2015, 123, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Brusnikina, M.; Silyukov, O.; Chislov, M.; Volkova, T.; Proshin, A.; Mazur, A.; Tolstoy, P.; Terekhova, I. Effect of cyclodextrin complexation on solubility of novel anti-Alzheimer 1,2,4-thiadiazole derivative. J. Therm. Anal. Calorim. 2017, 130, 443–450. [Google Scholar] [CrossRef]
- Khattab, M.M.; Dahman, Y. Functionalized bacterial cellulose nanowhiskers as long-lasting drug nanocarrier for antibiotics and anticancer drugs. Can. J. Chem. Eng. 2019, 97, 2594–2607. [Google Scholar] [CrossRef]
- Munhuweyi, K.; Caleb, O.J.; van Reenen, A.J.; Linus Opara, U. Physical and antifungal properties of β-cyclodextrin microcapsules and nanofibre films containing cinnamon and oregano essential oils. LWT 2018, 87, 413–422. [Google Scholar] [CrossRef]
- Priotti, J.; Ferreira, M.J.; Lamas, M.C.; Leonardi, D.; Salomon, C.J.; Nunes, T.G. First solid-state NMR spectroscopy evaluation of complexes of benznidazole with cyclodextrin derivatives. Carbohydr. Polym. 2015, 131, 90–97. [Google Scholar] [CrossRef]
- Sivakumar, K.; Parinamachivayam, G.; Murali Krishnan, M.; Chakravarty, S.; Bharathi, A. Preparation, characterization and molecular modeling studies of the beta-cyclodextrin inclusion complex with benzoguanamine and its analytical application as chemosensor for the selective sensing of Ce4. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 200, 212–225. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhai, Y.; Yan, J.; Wang, L.; Xu, K.; Li, H. Effect of preparation processes and structural insight into the supermolecular system: Bisacodyl and β-cyclodextrin inclusion complex. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 58, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Kono, H.; Nakamura, N. Polymerization of β-cyclodextrin with 1,2,3,4-butanetetracarboxylic dianhydride: Synthesis, structural characterization, and bisphenol A adsorption capacity. React. Funct. Polym. 2013, 73, 1096–1102. [Google Scholar] [CrossRef]
- Ntountaniotis, D.; Andreadelis, I.; Kellici, T.F.; Karageorgos, V.; Leonis, G.; Christodoulou, E.; Kiriakidi, S.; Becker-Baldus, J.; Stylos, E. Host-Guest Interactions between Candesartan and Its Prodrug Candesartan Cilexetil in Complex with 2-Hydroxypropyl-β-cyclodextrin: On the Biological Potency for Angiotensin II Antagonism. Mol. Pharm. 2019, 16, 1255–1271. [Google Scholar] [CrossRef]
- Tang, X.; Li, X.; Sun, Y.; Xiao, Y.; Wang, Y. Thiol-ene click derived structurally well-defined per(3,5-dimethyl)phenylcarbamoylated cationic cyclodextrin separation material for achiral and chiral chromatography. J. Sep. Sci. 2018, 41, 2710–2718. [Google Scholar] [CrossRef]
- Dong, C.; Ye, Y.; Qian, L.; Hai He, B.; Xiao, H.N. Preparation, Characterization of Cellulose Fibers Grafting by β-Cyclodextrin and their Application for Antibacterial Products. Adv. Mater. Res. 2014, 936, 784–788. [Google Scholar]
- Medronho, B.; Andrade, R.; Vivod, V.; Ostlund, A.; Miguel, M.G.; Lindman, B.; Voncina, B.; Valente, A.J. Cyclodextrin-grafted cellulose: Physico-chemical characterization. Carbohydr. Polym. 2013, 93, 324–330. [Google Scholar] [CrossRef]
- Kono, H.; Onishi, K.; Nakamura, T. Characterization and bisphenol A adsorption capacity of β-cyclodextrin–carboxymethylcellulose-based hydrogels. Carbohydr. Polym. 2013, 98, 784–792. [Google Scholar] [CrossRef]
- Kono, H.; Teshirogi, T. Cyclodextrin-grafted chitosan hydrogels for controlled drug delivery. Int. J. Biol. Macromol. 2015, 72, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Ghorpade, V.S.; Yadaw, A.V.; Dias, R.J.; Mali, K.K. Fabrication of citric acid crosslinked β-cyclodextrin/hydroxyethylcellulose hydrogel films for controlled delivery of poorly soluble drugs. Inc. J. Appl. Polym. Sci. 2018, 135, 46452. [Google Scholar] [CrossRef]
- Ghorpade, V.S.; Yadav, A.V.; Dias, R.J. Citric acid crosslinked β-cyclodextrin/carboxymethylcellulose hydrogel films for controlled delivery of poorly soluble drugs. Carbohydr. Polym. 2017, 164, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Ghorpade, V.S.; Yadaw, A.V.; Dias, R.J. Citric acid crosslinked cyclodextrin/hydroxypropylmethylcellulose hydrogel films for hydrophobic drug delivery. Int. J. Biol. Macromol. 2016, 93A, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, M.; Higashi, K.; Namiki, S.; Liu, N.; Ueda, K.; Limwikrant, W.; Yamamoto, K.; Moribe, K. Solid-Phase Mediated Methodology to Incorporate Drug into Intermolecular Spaces of Cyclodextrin Columns in Polyethylene Glycol/Cyclodextrin-Polypseudorotaxanes by Cogrinding and Subsequent Heating. Cryst. Growth Des. 2017, 17, 1055–1068. [Google Scholar] [CrossRef]
- Karoyo, A.H.; Sidhu, P.S.; Wilson, L.D.; Hazendonk, P.; Borisov, A. Counterion Anchoring Effect on the Structure of the Solid-State Inclusion Complexes of β-Cyclodextrin and Sodium Perfluorooctanoate. J. Phys. Chem. C 2015, 119, 22225–22243. [Google Scholar] [CrossRef]
- Huang, P.; Zeng, B.; Mai, Z.; Deng, J.; Fang, Y.; Huang, W.; Zhang, H.; Yuan, J.; Wei, Y.; Zhou, W. Novel drug delivery nanosystems based on out-inside bifunctionalized mesoporous silica yolk–shell magnetic nanostars used as nanocarriers for curcumin. J. Mater. Chem. B 2016, 4, 46–56. [Google Scholar] [CrossRef]
- Pajzderska, A.; Mielcarek, J.; Wąsicki, J. Complex and mixture of β-cyclodextrin with diazepam characterised by 1H NMR and atom–atom potential methods. Carbohydr. Res. 2014, 398, 56–62. [Google Scholar] [CrossRef]
- Sancho, M.I.; Andujar, S.; Porasso, R.D.; Enriz, R.D. Theoretical and Experimental Study of Inclusion Complexes of β-Cyclodextrins with Chalcone and 2’,4’-Dihydroxychalcone. J. Phys. Chem. B 2016, 120, 3000–3011. [Google Scholar] [CrossRef]
- Li, X.; Porcino, M.; Qiu, J.; Constantin, D.; Martineau-Corcos, C.; Gref, R. Doxorubicin-Loaded Metal-Organic Frameworks Nanoparticles with Engineered Cyclodextrin Coatings: Insights on Drug Location by Solid State NMR Spectroscopy. Nanomaterials 2021, 11, 945. [Google Scholar] [CrossRef] [PubMed]
- Marques, C.S.; Carvalho, S.G.; Bertoli, L.D.; Villanova, J.C.O.; Pinheiro, P.F.; Dos Santos, D.C.M.; Yoshida, M.I.; de Freitas, J.C.C.; Cipriano, D.F.; Bernardes, P.C. β-Cyclodextrin inclusion complexes with essential oils: Obtention, characterization, antimicrobial activity and potential application for food preservative sachets. Food Res. Int. 2019, 119, 499–509. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.; Sun, Q.; Zhao, L.; Tang, Y.; Liu, Y.; Pu, H.; Gan, N.; Liu, Y.; Li, H. A simple and green method to construct cyclodextrin polymer for the effective and simultaneous estrogen pollutant and metal removal. Chem. Eng. J. 2019, 366, 598–607. [Google Scholar] [CrossRef]
- Pais, J.M.; Barroca, M.J.; Marques, M.P.M.; Almeida, P.F.A.; Braga, S.S. Solid-state studies and antioxidant properties of the γ-cyclodextrin·fisetin inclusion compound. Beilstein J. Org. Chem. 2017, 13, 2138–2145. [Google Scholar] [CrossRef] [PubMed]
- Garnero, C.; Cattah, A.K.; Loghi, M. Stability of furosemide polymorphs and the effects of complex formation with β-cyclodextrin and maltodextrin. Carbohydr. Polym. 2016, 152, 598–604. [Google Scholar] [CrossRef]
- Rewatkar, P.M.; Saeed, A.M.; Majedi, F.H.; Donthula, S.; Sotiriou-Leventis, C.; Leventis, N. Polyurethane Aerogels Based on Cyclodextrins: High-Capacity Desiccants Regenerated at Room Temperature by Reducing the Relative Humidity of the Environment. ACS Appl. Mater. Interfaces 2019, 11, 34292–34304. [Google Scholar] [CrossRef]
- Koito, Y.; Yamada, K.; Ando, S. Solid-state NMR and wide-angle X-ray diffraction study of hydrofluoroether/β-cyclodextrin inclusion complex. J. Incl. Phenom. Macrocycl. Chem. 2013, 76, 143–150. [Google Scholar] [CrossRef]
- Diaz-Salmeron, R.; Ponchel, G.; Gallard, J.F.; Bouchemal, K. Hierarchical supramolecular platelets from hydrophobically-modified polysaccharides and α-cyclodextrin: Effect of hydrophobization and α-cyclodextrin concentration on platelet formation. Int. J. Pharm. 2018, 548, 227–236. [Google Scholar] [CrossRef]
- Malapert, A.; Reboul, E.; Tourbin, M.; Dangles, O.; Thiéry, A.; Ziarelli, F.; Tomao, V. Characterization of hydroxytyrosol-β-cyclodextrin complexes in solution and in the solid state, a potential bioactive ingredient. LWT 2019, 102, 317–323. [Google Scholar] [CrossRef]
- Ferro, M.; Castiglione, F.; Pastori, N.; Punta, C.; Melone, L.; Panzeri, W.; Rossi, B.; Trotta, F.; Mele, A. Beilstein. J. Org. Chem. 2017, 13, 182–194. [Google Scholar] [CrossRef]
- Braga, S.S.; El-Saleh, F.; Lysenko, K.; Paz, F.A.A. Inclusion Compound of Efavirenz and γ-Cyclodextrin: Solid State Studies and Effect on Solubility. Molecules 2021, 26, 519. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, S.G.; Cipriano, D.F.; de Freitas, J.C.C.; Junior, M.Â.S.; Ocaris, E.R.Y.; Teles, C.B.G.; de Jesus Gouveia, A.; Rodrigues, R.P.; Zanini, M.S.; Villanova, J.C.O. Physicochemical characterization and in vitro biological evaluation of solid compounds from furazolidone-based cyclodextrins for use as leishmanicidal agents. Drug Deliv. Transl. Res. 2020, 10, 1788–1809. [Google Scholar] [CrossRef]
- Inoue, Y.; Iohara, D.; Sekiya, N.; Yamamoto, M.; Ishida, H.; Sakiyama, Y.; Hirayama, F.; Arima, H.; Uekama, K. Ternary inclusion complex formation and stabilization of limaprost, a prostaglandin E1 derivative, in the presence of α- and β-cyclodextrins in the solid state. Int. J. Pharm. 2016, 509, 338–347. [Google Scholar] [CrossRef] [PubMed]
- Inoue, Y.; Sekiya, N.; Katayama, K.; Narutaki, S.; Yamamoto, M.; Iohara, D.; Hirayama, F.; Uekama, K. Stabilizing effect of β-cyclodextrin on Limaprost, a PGE₁ derivative, in Limaprost alfadex tablets (Opalmon) in highly humid conditions. Chem. Pharm. Bull. 2014, 62, 786–792. [Google Scholar] [CrossRef] [PubMed]
- Xiaobin, F.; Yiyang, L.; Wei, W.; Han, L.; Yang, J.; Ge, M.; Yao, Y.; Liu, H. Probing the Fast Lithium-Ion Transport in Small-Molecule Solid Polymer Electrolytes by Solid-State NMR. Macromolecules 2020, 53, 10078–10085. [Google Scholar] [CrossRef]
- Fu, X.B.; Yang, G.; Wu, Z.; Wang, J.C.; Chen, Q.; Yao, Y.F. Fast Lithium-Ion Transportation in Crystalline Polymer Electrolytes. ChemPhysChem 2018, 19, 45–50. [Google Scholar] [CrossRef]
- Yang, L.Y.; Wei, D.X.; Xu, M.; Yao, Y.F.; Chen, Q. Transferring lithium ions in nanochannels: A PEO/Li⁺ solid polymer electrolyte design. Agnew Chem. Int. Ed. Engl. 2014, 53, 3631–3635. [Google Scholar] [CrossRef]
- Sakai, T.; Akagi, Y.; Suzuki, H.; Irie, M.; Nakamura, T.; Sato, H.; Kawamura, I. Structural Characterization of a Cyclodextrin/l-menthol Inclusion Complex in the Solid-state by Solid-state NMR and Vibrational Circular Dichroism. Anal. Sci. 2020, 36, 1337–1343. [Google Scholar] [CrossRef]
- Kritskiy, I.; Volkova, T.; Sapozhnikova, T.; Mazur, A.; Tolstoy, P.; Terekhova, I. Methotrexate-loaded metal-organic frameworks on the basis of γ-cyclodextrin: Design, characterization, in vitro and in vivo investigation. Materials. Sci. Eng. C 2020, 111, 110774. [Google Scholar] [CrossRef]
- Kazsoki, A.; Szabó, P.; Domján, A.; Balázs, A.; Bozó, T.; Kellermayer, M.; Farkas, A.; Balogh-Weiser, D.; Pinke, B.; Darcsi, A.; et al. Microstructural Distinction of Electrospun Nanofibrous Drug Delivery Systems Formulated with Different Excipients. Mol. Pharm. 2018, 15, 4214–4225. [Google Scholar] [CrossRef]
- Li, Q.; Wang, J.; Ye, L.; Zhang, A.; Zhang, X.; Feng, Z. Recyclable Nanoporous Materials with Ordered Tunnels Self-Assembled from α- and γ-Cyclodextrins. ChemNanoMat 2019, 5, 838–846. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Y.; Han, B. Preparation of Tris(2-aminoethyl)amine-Cross-Linked Cyclodextrin-Based Porous Nanospheres and Their Application as Drug Delivery Systems. CJC 2013, 31, 657–662. [Google Scholar] [CrossRef]
- Castiglione, F.; Crupi, V.; Majolino, D.; Mele, A.; Panzeri, W.; Rossi, B.; Trotta, F.; Venuti, V. Vibrational dynamics and hydrogen bond properties of β-CD nanosponges: An FTIR-ATR, Raman and solid-state NMR spectroscopic study. J. Incl. Phenom. Macrocycl. Chem. 2013, 75, 247–254. [Google Scholar] [CrossRef]
- He, X.; Wu, Z.; Sun, Z.; Wei, X.; Wu, Z.; Ge, X.; Cravotto, G. A novel hybrid of β-cyclodextrin grafted onto activated carbon for rapid adsorption of naphthalene from aqueous solution. J. Mol. Liq. 2018, 255, 160–167. [Google Scholar] [CrossRef]
- Shen, H.-M.; Zhu, G.-Y.; Yu, W.-B.; Wu, H.-K.; Ji, H.-B.; Shi, H.-X.; She, Y.-B.; Zheng, Y.-F. Fast adsorption of p-nitrophenol from aqueous solution using β-cyclodextrin grafted silica gel. Appl. Surf. Sci. 2015, 356, 1155–1167. [Google Scholar] [CrossRef]
- Shen, H.-M.; Zhu, G.-Y.; Yu, W.-B.; Wu, H.-K.; Ji, H.-B.; Shi, H.-X.; Zheng, Y.-F.; She, Y.-B. Surface immobilization of β-cyclodextrin on hybrid silica and its fast-adsorption performance to p-nitrophenol from aqueous phase. RSC Adv. 2015, 5, 84410–84422. [Google Scholar] [CrossRef]
- Chattah, A.K.; Mroue, K.H.; Pfund, Y.L.; Ramamoorthy, A.; Longhi, M.R.; Garnero, C. Insights into Novel Supramolecular Complexes of Two Solid Forms of Norfloxacin and β-Cyclodextrin. J. Pharm. Sci. 2013, 102, 3717–3724. [Google Scholar] [CrossRef]
- Ho, T.M.; Howes, T.; Bhandari, B.R. Characterization of crystalline and spray-dried amorphous α-cyclodextrin powders. Powder Technol. 2015, 284, 585–594. [Google Scholar] [CrossRef]
- Chontzopoulou, E.; Tzakos, A.G.; Mavromoustakos, T. On the Rational Drug Design for Hypertension through NMR Spectroscopy. Molecules 2021, 26, 12. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, P.; Pu, H.; Qian, H.; Sun, Q.; Zhao, L.; Li, M.; Li, H. Study on the synthesis and drug-loading optimization of beta-cyclodextrin polymer microspheres containing ornidazole. J. Drug Deliv. Sci. Technol. 2020, 58, 101836. [Google Scholar] [CrossRef]
- Karoyo, A.H.; Sidhu, P.; Wilson, L.D.; Hazendonk, P. Characterization and Dynamic Properties for the Solid Inclusion Complexes of β-Cyclodextrin and Perfluorobutyric Acid. J. Phys. Chem. C 2014, 118, 15460–15473. [Google Scholar] [CrossRef]
- Karoyo, A.H.; Sidhu, P.; Wilson, L.D.; Hazendonk, P. Characterization and Dynamic Properties for the Solid Inclusion Complexes of β-Cyclodextrin and Perfluorooctanoic Acid. J. Phys. Chem. B 2013, 117, 8269–8282. [Google Scholar] [CrossRef] [PubMed]
- Andreadelis, I.; Chatziathanasiadou, Μ.V.; Ntountaniotis, D.; Valsami, G.; Papaemmanouil, C.; Christodoulou, E.; Mitropoulou, G.; Kourkoutas, Y.; Tzakos, A.G.; Mavromoustakos, T. Charting the structural and thermodynamic determinants in phenolic acid natural product—Cyclodextrin encapsulations. J. Biomol. Struct. Dyn. 2021, 39, 2642–2658. [Google Scholar] [CrossRef]
- Thomas, A.; Joseph, P.; Moinuddin, K.; Zhu, H.; Tretsiakova-McNally, S. Thermal and Calorimetric Evaluations of Some Chemically Modified Carbohydrate-Based Substrates with Phosphorus-Containing Groups. Polymers 2020, 12, 588. [Google Scholar] [CrossRef] [PubMed]
- Lis-Cieplak, A.; Charuk, F.; Sobczak, M.; Zgadzaj, A.; Drobniewska, A.; Szeleszczuk, Ł.; Oledzka, E. Development and Evaluation of Matrices Composed of β-cyclodextrin and Biodegradable Polyesters in the Controlled Delivery of Pindolol. Pharmaceutics 2020, 12, 500. [Google Scholar] [CrossRef] [PubMed]
- Yamanobe, T.; Takeda, H.; Takada, Y.; Nagai, D.; Yoneyama, M.; Uehara, H.; Takahashi, K. Structure and physical properties of poly(lactic acid) and cyclodextrin composite. J. Incl. Phenom. Macrocycl. Chem. 2019, 93, 117–126. [Google Scholar] [CrossRef]
- Cina, V.; Russo, M.; Lazzara, G.; Martino, D.C. Pre- and post-modification of mixed cyclodextrin-calixarene co-polymers: A route towards tunability. Carbohydr. Polym. 2017, 157, 1393–1403. [Google Scholar] [CrossRef]
- Lu, P.; Cheng, J.; Li, Y.; Li, L.; Wang, Q.; He, C. Novel porous β-cyclodextrin/pilla[5]rarene copolymer for rapid removal of organic pollutants from water. Carbohydr. Polym. 2019, 216, 149–156. [Google Scholar] [CrossRef]
- Gou, R.; Wilson, L.D. Preparation and sorption studies of microsphere copolymers containing β-cyclodextrin and poly(acrylic acid). Appl. Polym. Sci. 2012, 125, 1841–1854. [Google Scholar] [CrossRef]
- Hasegawa, Y.; Inoue, Y.; Deguchi, K.; Ohki, S.; Tansho, M.; Shimizu, T.; Yazawa, K. Molecular dynamics of a polyaniline/β-cyclodextrin complex investigated by 13C solid-state NMR. J. Phys. Chem. B. 2012, 116, 1758–1764. [Google Scholar] [CrossRef]
- Jiang, H.-L.; Lin, J.-C.; Hai, W.; Tan, H.-W.; Luo, Y.-W.; Xie, X.-L.; Cao, Y.; He, F.-A. A novel crosslinked β-cyclodextrin-based polymer for removing methylene blue from water with high efficiency. Colloids Surf. A Physicochem. Eng. Asp. 2019, 560, 59–68. [Google Scholar] [CrossRef]
- Marreto, R.N.; Cardoso, G.; Dos Santos Souza, B.; Martin-Pastor, M.; Cunha-Filho, M.; Taveira, S.F.; Concheiro, A.; Alvarez-Lorenzo, C. Hot melt-extrusion improves the properties of cyclodextrin-based poly(pseudo)rotaxanes for transdermal formulation. Int. J. Pharm. 2020, 586, 119510. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.H.; Wilson, L.D.; Headley, J.V. Tuning the physicochemical properties of β-cyclodextrin based polyurethanes via cross-linking conditions. Microporous Mesoporous Mater. 2015, 214, 22–31. [Google Scholar] [CrossRef]
- Arrúa, E.C.; Ferreira, M.J.; Salomon, C.J.; Nunes, T.G. Elucidating the guest-host interactions and complex formation of praziquantel and cyclodextrin derivatives by (13)C and (15)N solid-state NMR spectroscopy. Int. J. Pharm. 2015, 496, 812–821. [Google Scholar] [CrossRef] [PubMed]
- Kellici, T.F.; Chatziathanasiadou, M.V.; Diamantis, D.; Chatzikonstantinou, A.V.; Andreadelis, I.; Christodoulou, E.; Valsami, G.; Mavromoustakos, T.; Tzakos, A.G. Mapping the Interactions and Bioactivity of Quercetin–(2-Hydroxypropyl)--Cyclodextrin Complex. Int. J. Pharm. 2016, 511, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Vermet, G.; Degoutin, S.; Chai, F.; Maton, M.; Bria, M.; Danel, C.; Hildebrand, H.F.; Blanchemain, N.; Martel, B. Visceral mesh modified with cyclodextrin for the local sustained delivery of ropivacaine. Int. J. Pharm. 2014, 476, 149–159. [Google Scholar] [CrossRef]
- Ogawa, N.; Hashimoto, T.; Furuishi, T.; Nagase, H.; Endo, T.; Yamamoto, H.; Kawashima, Y.; Ueda, H. Solid-state characterization of sertraline base-β-cyclodextrin inclusion complex. J. Pharm. Biomed. Anal. 2015, 107, 265–272. [Google Scholar] [CrossRef]
- Kellici, T.F.; Ntountaniotis, D.; Leonis, G.; Chatziathanasiadou, M.; Chatzikonstantinou, A.V.; Becker-Baldus, J.; Glaubitz, C.; Tzakos, A.G.; Viras, K.; Chatzigeorgiou, P.; et al. Investigation of the interactions of silibinin with 2-hydroxypropyl-β-cyclodextrin through biophysical techniques and computational methods. Mol. Pharm. 2015, 12, 954–965. [Google Scholar] [CrossRef]
- Abbate, V.; Bassindale, A.R.; Brandstadt, K.F.; Taylor, P.G. Inclusion complexes between cyclic siloxanes and cyclodextrins: Synthesis and characterization. J. Incl. Phenom. Macrocycl. Chem. 2012, 74, 223–230. [Google Scholar] [CrossRef]
- Paczkowska, M.; Mizera, M.; Sałat, K.; Furgała, A.; Popik, P.; Knapik-Kowalczuk, J.; Krause, A.; Szymanowska-Powałowska, D.; Fojud, Z.; Kozak, M.; et al. Enhanced pharmacological efficacy of sumatriptan due to modification of its physicochemical properties by inclusion in selected cyclodextrins. Sci Rep. 2018, 8, 16184. [Google Scholar] [CrossRef]
- Braga, S.S.; Marques, J.; Fernandes, J.A.; Paz, F.A.A.; Marques, M.P.M.; Santos, T.M.; Silva, A.M.S. Supramolecular adducts of native and permethylated b-cyclodextrins with (2,20-dipyridylamine)chlorido(1,4,7-trithiacyclononane)ruthenium(II) chloride: Solid-state and biological activity studies. Chem. Pap. 2017, 71, 1235–1248. [Google Scholar] [CrossRef]
- Casali, L.; Mazzei, L.; Sun, R.; Chierotti, M.R.; Gobetto, R.; Braga, D.; Grepioni, F.; Ciurli, S. Thiocarbamoyl Disulfides as Inhibitors of Urease and Ammonia Monooxygenase: Crystal Engineering for Novel Materials. Cryst. Growth Des. 2022, 22, 4528–4537. [Google Scholar] [CrossRef]
- Menuel, S.; Doumert, B.; Saitzek, S.; Ponchel, A.; Delevoye, L.; Monflier, E.; Hapiot, F. Selective Secondary Face Modification of Cyclodextrins by Mechanosynthesis. J. Org. Chem. 2015, 80, 6259–6266. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Guo, T.; Wang, C.; He, Y.; Zhang, X.; Li, G.; Chen, Y.; Li, J.; Lin, Y.; Xu, X.; et al. MOF Capacitates Cyclodextrin to Mega-Load Mode for High-Efficient Delivery of Valsartan. Pharm. Res. 2019, 36, 117. [Google Scholar] [CrossRef]
- Jablan, J.; Szalontai, G.; Jug, M. Comparative analysis of zaleplon complexation with cyclodextrins and hydrophilic polymers in solution and in solid state. J. Pharm. Biomed. Anal. 2012, 71, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Dhiman, A.; Kumar, A.R. Slow release of ciprofloxacin from β-cyclodextrin containing drug delivery system through network formation and supramolecular interactions. Int. J. Biol. Macromol. 2016, 92, 390–400. [Google Scholar] [CrossRef] [PubMed]
- Rubin Pedrazzo, A.; Smarra, A.; Caldera, F.; Musso, G.; Dhakar, N.K.; Cecone, C.; Hamedi, A.; Corsi, I.; Trotta, F. Eco-Friendly β-cyclodextrin and Linecaps Polymers for the Removal of Heavy Metals. Polymers 2019, 11, 1658. [Google Scholar] [CrossRef]
- Champagne, P.-L.; Ester, D.; Bhattacharya, A.; Hofstetter, K.; Zellman, C.; Bag, S.; Yu, H.; Trudel, S.; Michaelis, V.K.; Williams, V.E.; et al. Liquid crystalline lithium-ion electrolytes derived from biodegradable cyclodextrin. J. Mater. Chem. A 2019, 7, 12201–12213. [Google Scholar] [CrossRef]
- Lahiani-Skiba, M.; Hallouard, F.; Bounoure, F.; Milon, N.; Karrout, Y.; Skiba, M. Enhanced Dissolution and Oral Bioavailability of Cyclosporine A: Microspheres Based on αβ-Cyclodextrins Polymers. Pharmaceutics 2018, 10, 285. [Google Scholar] [CrossRef]
- Harada, A. Cyclodextrin-Based Molecular Machines. Acc. Chem. Res. 2001, 34, 456–464. [Google Scholar] [CrossRef]
- Garibyan, A.; Delyagina, E.; Agafonov, M.; Khodov, I.; Terekhova, I. Effect of pH, temperature and native cyclodextrins on aqueous solubility of baricitinib. J. Mol. Liq. 2022, 360, 119548. [Google Scholar] [CrossRef]
- Ivanova, G.I.; Vão, E.R.; Temtem, M.; Aguiar-Ricardo, A.; Casimiro, T.; Cabrita, E.J. High-pressure NMR characterization of triacetyl-β-cyclodextrin in supercritical carbon dioxide. Org. Magn. Reson. 2009, 47, 133–141. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazurek, A.H.; Szeleszczuk, Ł. A Review of Applications of Solid-State Nuclear Magnetic Resonance (ssNMR) for the Analysis of Cyclodextrin-Including Systems. Int. J. Mol. Sci. 2023, 24, 3648. https://doi.org/10.3390/ijms24043648
Mazurek AH, Szeleszczuk Ł. A Review of Applications of Solid-State Nuclear Magnetic Resonance (ssNMR) for the Analysis of Cyclodextrin-Including Systems. International Journal of Molecular Sciences. 2023; 24(4):3648. https://doi.org/10.3390/ijms24043648
Chicago/Turabian StyleMazurek, Anna Helena, and Łukasz Szeleszczuk. 2023. "A Review of Applications of Solid-State Nuclear Magnetic Resonance (ssNMR) for the Analysis of Cyclodextrin-Including Systems" International Journal of Molecular Sciences 24, no. 4: 3648. https://doi.org/10.3390/ijms24043648
APA StyleMazurek, A. H., & Szeleszczuk, Ł. (2023). A Review of Applications of Solid-State Nuclear Magnetic Resonance (ssNMR) for the Analysis of Cyclodextrin-Including Systems. International Journal of Molecular Sciences, 24(4), 3648. https://doi.org/10.3390/ijms24043648