Genomic SELEX Reveals Pervasive Role of the Flagella Master Regulator FlhDC in Carbon Metabolism
Abstract
:1. Introduction
2. Results
2.1. Identification of FlhDC Regulation Targets per gSELEX-Chip Screening
2.2. Verification of FlhDC Consensus Recognition Sequence
2.3. FlhDC Binding In Vitro to the New Target Genes Involved in Sugar Utilization and Carbon Source Metabolism
2.4. In Vivo Transcription Regulation of the Set of FlhDC Target Genes Involved in Sugar Utilization and Carbon Source Metabolism
2.5. The Effects of FlhDC on Sugar Utilization and Cell Growth
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains and Plasmids
4.2. Purifying the FlhDC Protein
4.3. gSELEX Screening of FlhDC-Binding Sequences
4.4. Gel Shift Assay
4.5. Consensus Sequence Analysis
4.6. Northern Blotting Analysis
4.7. Measuring Glucose and Fructose Concentrations in the Culture Medium
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Macnab, R.M. Flagella and motility. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology; Neidhardt, F.C., Ed.; American Society for Microbiology: Washington, DC, USA, 1996; pp. 123–145. [Google Scholar]
- Soutourina, O.A.; Bertin, P.N. Regulation cascade of flagellar expression in Gram-negative bacteria. FEMS Microbiol. Rev. 2003, 27, 505–523. [Google Scholar] [CrossRef] [PubMed]
- Apel, D.; Surette, M.G. Bringing order to a complex molecular machine: The assembly of the bacterial flagella. Biochim. Biophys. Acta 2008, 1778, 1851–1858. [Google Scholar] [CrossRef] [PubMed]
- Komeda, Y. Transcriptional control of flagellar genes in Escherichia coli K-12. J. Bacteriol. 1986, 168, 1315–1318. [Google Scholar] [CrossRef]
- Ohnishi, I.; Kutsukake, K.; Suzuki, H.; Iino, T. Gene fliA encodes an alternative sigma factor specific for flagellar operons in Salmonella typhimurium. Mol. Gen. Genet. 1990, 221, 1139–1147. [Google Scholar] [CrossRef] [PubMed]
- Shimada, T.; Tanaka, K.; Ishihama, A. The whole set of the constitutive promoters recognized by four minor sigma subunits of Escherichia coli RNA polymerase. PLoS ONE 2017, 12, e0179181. [Google Scholar] [CrossRef] [PubMed]
- Kutsukake, K.; Iyoda, S.; Ohnishi, K.; Iino, T. Genetic and molecular analyses of the interaction between the flagellum-specific sigma and anti-sigma factors in Salmonella typhimurium. EMBO J. 1994, 13, 4568–4576. [Google Scholar] [CrossRef] [PubMed]
- Hughes, K.T.; Gillen, K.L.; Semon, M.J.; Karlinsey, J.E. Sensing structural intermediates in bacterial flagellar assembly by export of a negative regulator. Science 1993, 262, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Matsumura, P. The FlhD/FlhC complex, a transcriptional activator of the Escherichia coli flagellar class II operons. J. Bacteriol. 1994, 176, 7345–7351. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Fujita, N.; Ishihama, A.; Matsumura, P. The C-terminal region of the α subunit of Escherichia coli RNA polymerase is required for transcriptional activation of the flagellar level II operons by the FlhD/FlhC complex. J. Bacteriol. 1995, 177, 5186–5188. [Google Scholar] [CrossRef]
- Stafford, G.P.; Ogi, T.; Hughes, C. Binding and transcriptional activation of non-flagellar genes by the Escherichia coli flagellar master regulator FlhD2C2. Microbiology 2005, 151, 1779–1788. [Google Scholar] [CrossRef] [Green Version]
- Zhao, K.; Liu, M.; Burgess, R.R. Adaptation in bacterial flagellar and motility systems: From regulon members to ‘foraging’-like behavior in E. coli. Nucleic Acids Res. 2007, 35, 4441–4452. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.Y.; Barker, C.S.; Matsumura, P.; Belas, R. Refining the binding of the Escherichia coli flagellar master regulator, FlhD4C2, on a base-specific level. J. Bacteriol. 2011, 193, 4057–4068. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, D.M.; Bonocora, R.P.; Wade, J.T. Comprehensive mapping of the Escherichia coli flagellar regulatory network. PLoS Genet. 2014, 11, e1005456. [Google Scholar] [CrossRef] [PubMed]
- Ishihama, A.; Shimada, T.; Yamazaki, Y. Transcription profile of Escherichia coli: Genomic SELEX search for regulatory targets of transcription factors. Nucleic Acids Res. 2016, 44, 2058–2074. [Google Scholar] [CrossRef] [PubMed]
- Pruss, B.M.; Liu, X.; Hendrickson, W.; Matsumura, P. FlhD/FlhC-regulated promoters analyzed by gene array and lacZ gene fusions. FEMS Microbiol. Lett. 2001, 197, 91–97. [Google Scholar] [CrossRef]
- Ishihama, A. Prokaryotic genome regulation: A revolutionary paradigm. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2012, 88, 485–508. [Google Scholar] [CrossRef]
- Ishihama, A. Prokaryotic genome regulation: Multifactor promoters, multitarget regulators and hierarchic networks. FEMS Microbiol. Rev. 2010, 34, 628–645. [Google Scholar] [CrossRef]
- Shimada, T.; Fujita, N.; Maeda, M.; Ishihama, A. Systematic search for the Cra-binding promoters using genomic SELEX system. Genes Cells 2005, 10, 907–918. [Google Scholar] [CrossRef]
- Shimada, T.; Ogasawara, H.; Ishihama, A. Genomic SELEX screening of regulatory targets of Escherichia coli transcription factors. Methods Mol. Biol. 2018, 1837, 49–69. [Google Scholar]
- Shimada, T.; Ogasawara, H.; Ishihama, A. Single-target regulators form a minor group of transcription factors in Escherichia coli K-12. Nucleic Acids Res. 2018, 46, 3921–3936. [Google Scholar] [CrossRef]
- Shimada, T.; Bridier, A.; Briandet, R.; Ishihama, A. Novel roles of LeuO in transcription regulation of E. coli genome: Antagonistic interplay with the universal silencer H-NS. Mol. Microbiol. 2011, 82, 378–397. [Google Scholar] [CrossRef] [PubMed]
- Salgado, H.; Gama-Castro, S.; Martínez-Antonio, A.; Diaz-Peredo, E.; Sánchez-Solano, F.; Peralta-Gil, M.; García-Alonso, D.; Jimenez-Jacinto, V.; Sánchez-Zavaleta, A.; Bonavides-Martínez, C.; et al. RegulonDB (version 4.0): Transcriptional regulation, operon organization and growth conditions in Escherichia coli K-12. Nucleic Acids Res. 2004, 32, 303D–306D. [Google Scholar] [CrossRef] [PubMed]
- Salgado, H.; Peralta-Gil, M.; Gama-Castro, S.; Santos-Zavaleta, A.; Muñiz-Rascado, L.; García-Sotelo, J.S.; Weiss, V.; Solano-Lira, H.; Martínez-Flores, I.; Medina-Rivera, A.; et al. RegulonDB v8.0: Omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more. Nucleic Acids Res. 2013, 41, D203–D213. [Google Scholar] [CrossRef]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Res. 2009, 37, W202–W208. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, D.H.; Frantz, B.B.; Matsumura, P. Flagellar transcriptional activators FlbB and FlaI: Gene sequences and 5’ consensus sequences of operons under FlbB and FlaI control. J. Bacteriol. 1988, 170, 1575–1581. [Google Scholar] [CrossRef]
- Kotlarz, D.; Garreau, H.; Buc, H. Regulation of the amount and of the activity of phosphofructokinases and pyruvate kinases in Escherichia coli. Biochim. Biophys. Acta 1975, 381, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Berg, J.M.; Tymoczko, J.L.; Stryer, L. Biochemistry, 7th ed.; W.H.Freeman: New York, NY, USA, 2010. [Google Scholar]
- Deutscher, J. The mechanisms of carbon catabolite repression in bacteria. Curr. Opin. Microbiol. 2006, 11, 87–93. [Google Scholar] [CrossRef]
- Shimada, T.; Ishihama, A.; Busby, S.J.W.; Grainger, D.C. The Escherichia coli RutR transcription factor binds at targets within genes as well as intergenic regions. Nucleic Acids Res. 2008, 36, 3950–3955. [Google Scholar] [CrossRef] [PubMed]
- Toft, C.; Fares, M.A. The evolution of the flagellar assembly pathway in endosymbiotic bacterial genomes. Mol. Biol. Evol. 2008, 22, 2069–2076. [Google Scholar] [CrossRef] [PubMed]
- Schavemaker, P.E.; Lynch, M. Flagellar energy costs across the tree of life. eLife 2022, 11, e77266. [Google Scholar] [CrossRef]
- Jishage, M.; Ishihama, A. Variation in RNA polymerase sigma subunit composition within different stocks of Escherichia coli W3110. J. Bacteriol. 1997, 179, 959–963. [Google Scholar] [CrossRef] [Green Version]
- Datsenko, K.A.; Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 2000, 97, 6640–6645. [Google Scholar] [CrossRef]
- Baba, T.; Ara, T.; Hasegawa, M.; Takai, Y.; Okumura, Y.; Baba, M.; Datsenko, K.A.; Tomita, M.; Wanner, B.L.; Mori, H. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: The Keio collection. Mol. Syst. Biol. 2006, 2, 2006-0008. [Google Scholar] [CrossRef] [PubMed]
- Shimada, T.; Tanaka, K.; Ishihama, A. Transcription factor DecR (YbaO) controls detoxification of L-cysteine in Escherichia coli. Microbiology 2016, 162, 1698–1707. [Google Scholar] [CrossRef]
- Shimada, T.; Saito, N.; Maeda, M.; Tanaka, K.; Ishihama, A. Expanded roles of leucine-responsive regulatory protein in transcription regulation of the Escherichia coli genome: Genomic SELEX screening of the regulation targets. Microb. Genom. 2015, 1, e000001. [Google Scholar] [CrossRef] [Green Version]
Peak Position (bp) | Intensity | gSELEX Peak Type | Function | Operon | gene | D | FlhDC Site | D | gene | Operon | Function | FlhDC Box | position of FlhDC Box (bp) | Database (Known Target) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[Inside spacer regions] | |||||||||||||||
1 | 45772 | 21 | B | fixX | > | > | yaaU | yaaU | predicted transporter | TACCCGTCAGCGGGCGTTTTCC ATCAGCTTTATTGCCGCGATG | 45985.5 | ||||
2 | 331130 | 22 | B | betT | > | > | pdeL | pdeL | predicted DNA-binding transcriptional regulator | ||||||
3 | 395546 | 10 | A | beta-lactamase/D-alanine carboxypeptidase | ampH | ampH | < | > | sbmA | sbmA-yaiW | predicted transporter | TTCCGGGCAGATCCCGATTAG CGCCGCGCGTTTCTGGTCGTT | 395756 | ||
4 | 479234 | 13 | B | maltose O-acetyltransferase | maa | maa | < | < | hha | AACGCATTAAATAATCGGTTTT CGTTAAAGGTTTTTCGGACATA | 479262 | ||||
5 | 703072 | 18 | A | glucosamine-6-phosphate deaminase | nagBAC-umpH | nagB | < | > | nagE | nagE | fused N-acetyl glucosamine specific PTS enzyme: IIC, IIB, and IIA components | AACGAGCCAAATAGGGTTCTC GTAGGGGGAATAAGATGAATA | 702903 | ||
6 | 791354 | 11 | B | UDP-galactose-4-epimerase | galETKM | galE | < | < | modF | AAACAAACAACAATTGCGTT TCACCTTCGCTAATCAGCACATC | 791409 | ||||
7 | 1057170 | 12 | A | DNA-binding response regulator in two-component regulatory system with TorS | torR | torR | < | > | torC | torCAD | trimethylamine N-oxide (TMAO) reductase I, cytochrome c-type subunit | AACTCTGGAACGCGCTACGCCG ACCCAGTGCTCGTTGGTCGGTA | 1057086 | ||
8 | 1130058 | 13 | A | assembly protein for flagellar basal-body periplasmic P ring | flgAMN | flgA | < | > | flgB | flgBCDEFGHIJ | flagellar component of cell-proximal portion of basal-body rod | AACGGCATAAATAGCGACCC ATTTTGCGTTTATTCCGCCGAT | 1129912 | flgA, flgB | |
9 | 1276852 | 11 | A | sensory histidine kinase in two-component regulatory system with NarL | narXL | narX | < | > | narK | narK | nitrate/nitrite transporter | AACAACGCGGTCAACGTATTG CCAGCCGCAACCTGTGGATTT | 1277030 | ||
10 | 1297734 | 26 | A | alcohol dehydrogenase | adhE | adhE | < | > | ychE | ychE | predicted inner membrane protein | AATGCTGTCAAAAGGCGTATT GTCAGCGCGTCTTTTCAACCTTA | 1297508 | ||
11 | 1488832 | 11 | B | aldA | > | > | cybB | cybB | cytochrome b561 | TAAGGCTGAAATACCCAACCC CGCCGATTATACCTAAGCCAAA | 1488882 | ||||
12 | 1525236 | 11 | B | yncH | > | > | ydcD | rhsE-ydcD | predicted protein | ||||||
13 | 1528470 | 11 | B | ydcD | > | > | ydcC | ydcC | conserved protein | AAGATCATGAAAATTGTGATG TAAATCACGATTTTCATCTTT | 1528271 | ||||
14 | 1570272 | 10 | B | glutamate decarboxylase B, PLP-dependent | gadBC | gadB | < | < | pqqL | AACGGCAGTGTTAACATTCTCT ACCGTCATTTGTTTCAACAATT | 1570260 | ||||
15 | 1580646 | 21 | B | conserved protein | ydeNM | ydeN | < | < | ydeO | AAATAATCAAATAGCTAAAGC ATTCATCGTGTTGCCCGTATT | 1580715 | ||||
16 | 1588868 | 18 | B | predicted fimbrial-like adhesin protein | ydeTSR | ydeS | < | < | hipA | AATGTCGCGGATAAATTTTAT CGATTGCCGTTTTTTTGCCTTT | 1588853 | ||||
17 | 1744232 | 28 | A | conserved protein | ydhQ | ydhQ | < | > | valV | valVW | Val tRNA | AACGGTCGAAATAGCGCAGAA AATTACGTTTTGCCTCTTGCC | 1744138 | ||
18 | 1860030 | 38 | B | conserved protein | yeaC | yeaC | < | < | msrB | ATCGTTTTTTCAACCGTTGATT TCTTCGCCGTTTTCGCCATC | 1859802 | ||||
19 | 1986256 | 11 | A | ncRNA | isrB | isrB | < | > | yecR | yecR | predicted protein | AATATTTTAATCAGCGAGGGGAT CTTCGCTGATTAAAGAAAT | 1986340 | yecR | |
20 | 1999848 | 10 | B | RNA polymerase, sigma 28 (sigma F) factor | fliAZY | fliA | < | < | fliC | AATCGGACGATTAGTGGGTGAA ATGAGGGGTTATTTGGGGGTTA | 1999646 | fliA | |||
21 | 2011168 | 54 | A | flagellar basal-body component | fliE | fliE | < | > | fliF | fliFGHIJK | flagellar basal-body MS-ring and collar protein | AACGCCGTCCATAATCAGCCAC GAGGTGCGCGATGAATGCGACT | 2010993 | fliE, fliF | |
22 | 2017552 | 10 | B | fliK | > | > | fliL | fliLMNOPQR | flagellar biosynthesis protein | AAAGCGCAGCAACGCGTCGTGC CCTCACCGGTCTTCTACGCGCT | 2017546 | fliL | |||
23 | 2246656 | 16 | B | lysine transporter | lysP | lysP | < | < | yeiE | ||||||
24 | 2261652 | 82 | A | fructose-specific PTS enzymes: IIA component | fruBKA | fruB | < | > | setB | setB | lactose/glucose efflux system | GGCGTTTTTAATCGTTGCCTTT CTCACCGGTATTGCGGGCGCT | 2261710 | ||
25 | 2466256 | 22 | B | yfdG | > | > | yfdH | yfdGHI | CPS-53 (KpLE1) prophage; bactoprenol glucosyl transferase | ||||||
26 | 2531672 | 13 | B | cysK | > | > | ptsH | ptsHI-crr | phosphohistidinoprotein-hexose phosphotransferase component of PTS system (Hpr) | ATCTGGTTAAACTGATGGCGG AACTCGAGTAATTTCCCGGGTT | 2531784 | ||||
27 | 2627634 | 10 | B | yfgG | > | > | yfgH | yfgHI | predicted outer membrane lipoprotein | GGCGCGCTTATTGGCGCAGTC GCTGGCGGTGTTATCGGCCAC | 2627801 | ||||
28 | 2859272 | 11 | A | predicted DNA-binding transcriptional regulator | ygbI | ygbI | < | > | ygbJ | ygbJK | predicted dehydrogenase, with NAD(P)-binding Rossmann-fold domain | AATGCCTGCGCTACGTTGAAA GAGGCAGGTGCTTGCGGGGTT | 2859340 | ygbJ | |
29 | 2989270 | 11 | A | predicted protein | yqeK | yqeK | < | > | ygeG | ygeG | predicted chaperone | GGGGCTAAAAATATCGATAAC GCAATGCAATGTTTCTATCACA | 2989422 | ||
30 | 3071934 | 98 | B | D-erythrose 4-phosphate dehydrogenase | epd-pgk-fbaA | epd | < | < | yggC | CTTCGGCTACTTGCCGCGTTA ATCCTCCCGCAATTTTACGACTA | 3071883 | ||||
31 | 3086262 | 30 | B | metK | > | > | galP | galP | D-galactose transporter | TCGGGCGCAAAAAGAGCCTGAT GATCGGCGCAATTTTGTTTGTT | 3086313 | ||||
32 | 3122256 | 12 | B | conserved protein | glcDEFGBA | glcG | < | < | glcF | ATCGCCGCGAATTGCCAGTTTT TCCAGCGGTTCCTCGCGCAGA | 3122357 | ||||
33 | 3132170 | 11 | A | predicted protein with nucleoside triphosphate hydrolase domain | yghSR | yghS | < | > | yghT | yghT | predicted protein with nucleoside triphosphate hydrolase domain | CAGGCCGGAAATGTCGGTCGT GCAGTGACAAAATTACCGTTGAT | 3132054 | ||
34 | 3214830 | 74 | A | predicted siderophore interacting protein | yqjH | yqjH | < | > | yqjI | yqjI | predicted transcriptional regulator | AACGCATCAAAGCGCGTTGCGT TGGCGCGGCGCTGCGCCAGAA | 3215012 | ||
35 | 3651858 | 14 | A | IS5 transposase and trans-activator | insH11 | insH | < | > | slp | slp-dctR | outer membrane lipoprotein | ||||
36 | 3989170 | 50 | A | hydroxymethylbilane synthase | hemCDXY | hemC | < | > | cyaA | cyaA | adenylate cyclase | ||||
37 | 4213236 | 21 | B | metA | > | > | aceB | aceBAK | malate synthase A | ACAGGCAACAACAACCGATGA ACTGGCTTTCACAAGGCCGTA | 4213530 | ||||
38 | 4221834 | 873 | A | DNA-binding transcriptional repressor | iclR | iclR | < | > | metH | metH | homocysteine-N5-methyltetrahydrofolate transmethylase | CACGCCAGAGAAACCGCGCTA CGTTGCCGGTGTTCTCGGCCCG | 4221985 | ||
39 | 4240352 | 10 | B | D-xylose transporter | xylE | xylE | < | < | malG | ||||||
40 | 4281146 | 13 | B | conserved protein | yjcF | yjcF | < | < | actP | ACTGCGGTAATCAGCCCCAGCC AGCCACCCATCATCGCGCCACG | 4281280 | ||||
41 | 4414856 | 19 | A | conserved protein | bsmA | yjfO | < | > | yjfP | yjfP | predicted hydrolase | GATGATTGAAATAGAATCACGC GAGCTGGCAGATATTCCCGTT | 4414746 | ||
42 | 4425648 | 11 | B | predicted protein | yjfZ | yjfZ | < | < | ytfB | ||||||
43 | 4464250 | 42 | B | trehalose(maltose)-specific PTS enzyme: IIB component/IIC component | treBC | treB | < | < | treR | CTTGCGCCAAGTGCCAGCGTGT CGGTTGCGCACAGTAAGGCGGT | 4464299 | ||||
44 | 4638812 | 13 | B | yjjY | > | > | yjtD | yjtD | predicted rRNA methyltransferase | GTCGGGCGAAATATCATTACT ACGCCACGCCAGTTGAACTGGT | 4638978 | ||||
[Inside genes, or downstrem of both transcription unit] | |||||||||||||||
45 | 1092430 | 11 | C | predicted outer membrane protein | pgaABCD | pgaA | < | ycdT | < | insF | GATATCTGGAATGGAGTGACG GTGATTGCTTTTTGTGCCGTA | 1092524 | |||
46 | 1223252 | 14 | C | ymgJ | > | < | minE | AAGAATAGAAATATCGCCATC TTTTTGCTCAAGCTGTACGGTT | 1223316 | ||||||
47 | 1776868 | 10 | C | ydiO | > | ydiP | > | ydiQ | ydiQRST-fadK | conserved protein | CCGGCGACAAACAGCGTTTCA CTGGCGTTATCAAAACAGCGTT | 1777048 | |||
48 | 1981072 | 27 | C | trehalose-6-phosphate phosphatase, biosynthetic | otsBA | otsB | < | araH | < | araG | |||||
49 | 2043166 | 14 | C | asnT | > | yeeJ | > | shiA | shiA | shikimate transporter | ATCGGCCCAAAGCGTTGCCGA ACGTTTCGGTATTTCGGTGGCT | 2042964 | |||
50 | 2120630 | 20 | C | predicted UDP-glucose lipid carrier transferase | wcaCDEF-gmd-fcl-gmm-wcaI-cpsBG-wcaJ-wzxC | wcaJ | < | cpsG | < | cpsB | AGCAGGTTAATTTTTTCATAT CGTTACCCTTTTTCAGGCAAT | 2120756 | |||
51 | 2732852 | 13 | C | ncRNA | ryfD | ryfD | < | yfiH | < | rluD | |||||
52 | 3134160 | 16 | C | yghT | > | pitB | < | gsp | |||||||
53 | 3630156 | 11 | C | predicted HlyD family secretion protein | yhiI-rbbA-yhhJ | yhiI | < | yhiJ | > | yhiM | yhiM | conserved inner membrane protein | AATATCGGTATTATCAAGAGA GCAACCGTAATTTTTGCTATT | 3630007 | |
54 | 4236932 | 30 | C | yjbG | > | yjbH | < | yjbT | AACCGGACATCTGACCGCCT ACTGGACGCCATCTTTCGCTCA | 4237161 | |||||
55 | 4635274 | 13 | C | creB | > | creC | > | creD | creABCD | inner membrane protein | TACTGACAACATTCTGACGCA AAATGCGCGTATGCAGGCATT | 4635368 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takada, H.; Kijima, K.; Ishiguro, A.; Ishihama, A.; Shimada, T. Genomic SELEX Reveals Pervasive Role of the Flagella Master Regulator FlhDC in Carbon Metabolism. Int. J. Mol. Sci. 2023, 24, 3696. https://doi.org/10.3390/ijms24043696
Takada H, Kijima K, Ishiguro A, Ishihama A, Shimada T. Genomic SELEX Reveals Pervasive Role of the Flagella Master Regulator FlhDC in Carbon Metabolism. International Journal of Molecular Sciences. 2023; 24(4):3696. https://doi.org/10.3390/ijms24043696
Chicago/Turabian StyleTakada, Hiraku, Kaede Kijima, Akira Ishiguro, Akira Ishihama, and Tomohiro Shimada. 2023. "Genomic SELEX Reveals Pervasive Role of the Flagella Master Regulator FlhDC in Carbon Metabolism" International Journal of Molecular Sciences 24, no. 4: 3696. https://doi.org/10.3390/ijms24043696
APA StyleTakada, H., Kijima, K., Ishiguro, A., Ishihama, A., & Shimada, T. (2023). Genomic SELEX Reveals Pervasive Role of the Flagella Master Regulator FlhDC in Carbon Metabolism. International Journal of Molecular Sciences, 24(4), 3696. https://doi.org/10.3390/ijms24043696