Three Starch Synthase IIa (SSIIa) Alleles Reveal the Effect of SSIIa on the Thermal and Rheological Properties, Viscoelasticity, and Eating Quality of Glutinous Rice
Abstract
:1. Introduction
2. Results
2.1. Genotype of Glutinous Rice NILs with Different SSIIa Alleles
2.2. Expression and Starch Granule Affinity Analyses of SSI, SSIIa, and GBSSI Proteins
2.3. Activities of SSIIa and Other Starch Biosynthetic Enzymes
2.4. Seed Morphology and Seed Weight
2.5. Amylose Content and Amylopectin Structure
2.6. Thermal and Pasting Properties of Endosperm Starch
2.7. Viscoelasticity of Rice Cakes
2.8. Panel Evaluation of the Eating Quality of Rice Cakes
3. Discussion
3.1. Effect of SSIIa Alleles on Starch Structure and Its Relationship to Rice Thermal Properties, Viscoelasticity, and Eating Quality
3.2. Characteristics and Applications of Rice NILs
3.3. Characteristics of NILs and Their Potential as New Rice Cultivars
4. Materials and Methods
4.1. Plant Materials
4.2. Genotyping of SSIIa and Wx
4.3. Western Blot Analysis of SSI, SSIIa, and GBSSI
4.4. Zymogram Analyses of Starch Biosynthetic Enzymes
4.5. Amylose Content and Amylopectin Structure Analyses
4.6. Thermal and Pasting Properties of Starch
4.7. Physical Properties of Rice Cakes
4.7.1. Rice Cake Preparation
4.7.2. Compression Test
4.7.3. Stretching Test
4.8. Sensory Evaluation of Rice Cakes
4.8.1. Rice Cake Preparation
4.8.2. Sensory Evaluation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Juliano, B.O.; Perez, C.M.; Blakeney, A.B.; Castillo, T.; Kongseree, N.; Laignelet, B.; Lapis, E.T.; Murty, V.V.S.; Paule, C.M.; Webb, B.D. International cooperative testing on the amylose content of milled rice. Starch 1981, 33, 157–162. [Google Scholar] [CrossRef]
- Larkin, P.D.; Park, W.D. Association of waxy gene single nucleotide polymorphism with starch characteristics in rice. Mol. Breed. 2003, 12, 335–339. [Google Scholar] [CrossRef]
- Crofts, N.; Itoh, A.; Abe, M.; Miura, S.; Oitome, N.F.; Bao, J.; Fujita, N. Three major nucleotide polymorphisms in the Waxy gene correlated with the amounts of extra-long chains of amylopectin in rice cultivars with S or L-type amylopectin. J. Appl. Glycosci. 2019, 66, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Vrinten, P.L.; Nakamura, T. Wheat granule-bound starch synthase I and II are encoded by separate genes that are expressed in different tissues. Plant Physiol. 2000, 122, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Denyer, K.; Johnson, P.; Zeeman, S.; Smith, A.M. The control of amylose synthesis. J. Plant Physiol. 2001, 158, 479–487. [Google Scholar] [CrossRef]
- Seung, D.; Soyk, S.; Coiro, M.; Maier, B.A.; Eicke, S.; Zeeman, S.C. Protein targeting to starch is required for localising Granule-Bound starch synthase to starch granules and for normal amylose synthesis in Arabidopsis. PLoS Biol. 2015, 13, e1002080. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wei, X.; Jiao, G.; Chen, W.; Wu, Y.; Sheng, Z.; Hu, S.; Xie, L.; Wang, J.; Tang, S. GBSS-BINDING PROTEIN, encoding a CBM48 domain-containing protein, affects rice quality and yield. J. Integr. Plant Biol. 2020, 62, 948–966. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Y.; Zheng, F.Q.; Shen, G.Z.; Gao, J.P.; Snustad, D.P.; Li, M.G.; Zhang, J.L.; Hong, M.M. The amylose content in rice endosperm is related to the post-transcriptional regulation of the waxy gene. Plant J. 1995, 7, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Lin, Q.; Li, X.; Wang, F.; Chen, Z.; Wang, J.; Li, W.; Fan, F.; Tao, Y.; Jiang, Y.; et al. Fine-tuning the amylose content of rice by precise base editing of the Wx gene. Plant Biotechnol. J. 2021, 9, 11–13. [Google Scholar] [CrossRef]
- Satoh, H.; Ohmura, T. New endosperm mutations induced by chemical mutagens in rice Oryza sativa L. Jap. J. Breed. 1981, 31, 316–326. [Google Scholar] [CrossRef]
- Isshiki, M.; Yamamoto, Y.; Satoh, H.; Shimamoto, K. Nonsense-mediated decay of mutant waxy mRNA in rice. Plant Physiol. 2001, 125, 1388–1395. [Google Scholar] [CrossRef]
- Suzuki, K.; Nakamura, S.; Satoh, H.; Ohtsubo, K. Relationship between chain-length distributions of waxy rice amylopectins and physical properties of rice grains. J. Appl. Glycosci. 2006, 53, 227–232. [Google Scholar] [CrossRef]
- Nakamura, Y. Towards a better understanding of the metabolic system for amylopectin biosynthesis in plants: Rice endosperm as a model tissue. Plant Cell Physiol. 2002, 43, 718–725. [Google Scholar] [CrossRef] [PubMed]
- Fujita, N. Starch biosynthesis in rice endosperm. Agri-Biosci. Monogr. 2014, 4, 1–18. [Google Scholar] [CrossRef]
- Crofts, N.; Nakamura, Y.; Fujita, N. Critical and speculative review of the roles of multi-protein complexes in starch biosynthesis in cereals. Plant Sci. 2017, 262, 1–8. [Google Scholar] [CrossRef]
- Ohdan, T.; Francisco, P.B., Jr.; Sawada, T.; Hirose, T.; Terao, T.; Satoh, H.; Nakamura, Y. Expression profiling of genes involved in starch synthesis in sink and source organs of rice. J. Exp. Bot. 2005, 56, 3229–3244. [Google Scholar] [CrossRef]
- Fujita, N.; Miura, S.; Crofts, N. Effects of various allelic combinations of starch biosynthetic genes on the properties of endosperm starch in Rice. Rice 2022, 15, 24. [Google Scholar] [CrossRef]
- Umemoto, T.; Yano, M.; Satoh, H.; Shomura, A.; Nakamura, Y. Mapping of a gene responsible for the difference in amylopectin structure between japonica-type and indica-type rice varieties. Theor. Appl. Genet. 2002, 104, 1–8. [Google Scholar] [CrossRef]
- Nakamura, Y.; Francisco, P.B., Jr.; Hosaka, Y.; Sato, A.; Sawada, T.; Kubo, A.; Fujita, N. Essential amino acids of starch synthase IIa differentiate amylopectin structure and starch quality between japonica and indica rice varieties. Plant Mol. Biol. 2005, 58, 213–227. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Lu, Y.; Feng, L.; Hao, W.; Li, C.; Yang, Y.; Fan, X.; Li, Q.; Zhang, C.; Liu, Q. Genetic dissection and functional differentiation of ALKa and ALKb, two natural alleles of the ALK/SSIIa gene, responding to low gelatinization temperature in rice. Rice 2020, 13, 39. [Google Scholar] [CrossRef]
- Miura, S.; Crofts, N.; Saito, Y.; Hosaka, Y.; Oitome, N.F.; Watanabe, T.; Kumamaru, T.; Fujita, N. Starch synthase IIa-deficient mutant rice line produces endosperm starch with lower gelatinization temperature than Japonica rice cultivars. Front. Plant Sci. 2018, 9, 645. [Google Scholar] [CrossRef]
- Yamanaka, S.; Nakamura, I.; Watanabe, K.N.; Sato, Y. Identification of SNPs in the waxy gene among glutinous rice cultivars and their evolutionary significance during the domestication process of rice. Theor. Appl. Genet. 2004, 108, 1200–1204. [Google Scholar] [CrossRef]
- Jiang, C.; Rashid, M.A.R.; Zhang, Y.; Zhao, Y.; Pan, Y. Genome wide association study on development and evolution of glutinous rice. BMC Genom. Data. 2022, 23, 33. [Google Scholar] [CrossRef]
- Chen, J.; Watanabe, M.; Nakamori, T.; Hisamatsu, M. Relationship between physical properties and amylopectin structure of waxy rice starch. J. Appl. Glycosci. 2003, 50, 133–137. [Google Scholar] [CrossRef]
- Yan, C.J.; Tian, Z.X.; Fang, Y.W.; Yang, Y.C.; Li, J.; Zeng, S.Y.; Gu, S.L.; Xu, C.W.; Tang, S.Z.; Gu, M.H. Genetic analysis of starch paste viscosity parameters in glutinous rice (Oryza sativa L.). Theor. Appl. Genet. 2011, 122, 63–76. [Google Scholar] [CrossRef]
- Zhang, O.; Liang, C.; Yang, B.; You, H.; Xu, L.; Chen, Y.; Xiang, X. Effects of starch synthesis-related genes polymorphism on quality of glutinous rice. Front. Plant Sci. 2021, 12, 707992. [Google Scholar] [CrossRef]
- Okamoto, K.; Kobayashi, K.; Hirasawa, H.; Umemoto, T. Structural differences in amylopectin affect waxy rice processing. Plant Prod. Sci. 2002, 5, 45–50. [Google Scholar] [CrossRef]
- Sasaki, T.; Kohyama, K.; Suzuki, Y.; Okamoto, K.; Noel, T.R.; Ring, S.G. Physicochemical characteristics of waxy rice starch influencing the in vitro digestibility of a starch gel. Food Chem. 2009, 116, 137–142. [Google Scholar] [CrossRef]
- Sasaki, T.; Hayakawa, F.; Suzuki, Y.; Suzuki, K.; Okamoto, K.; Kohyama, K. Characterization of waxy rice cakes (Mochi) with rapid hardening quality by instrumental and sensory methods. Cereal Chem. 2013, 90, 101–106. [Google Scholar] [CrossRef]
- Okamoto, K.; Aoki, N.; Fujii, H.; Yanagihara, T.; Nishi, A.; Satoh, H.; Umemoto, T. Characterization and utilization of spontaneous deficiency in starch branching enzyme I of rice (Oryza sativa L.). J. Appl. Glycosci. 2013, 60, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, T.; Nakamura, M.; Umemoto, T.; Ikeda, A.; Kato, T. Breeding of a low hardening speed glutinous rice variety ‘Aichimochi 126’ which lacks starch branching enzyme 1 activity. Breed. Res. 2019, 21, 28–34. (In Japanese) [Google Scholar] [CrossRef]
- Crofts, N.; Hareyama, K.; Miura, S.; Hosaka, Y.; Oitome, N.F.; Fujita, N. Effect of Heading date on the starch structure and grain yield of rice lines with low gelatinization temperature. Int. J. Mol. Sci. 2022, 23, 10783. [Google Scholar] [CrossRef]
- Chen, Y.; Bao, J. Underlying mechanisms of zymographic diversity in starch synthase I and pullulanase in rice-developing endosperm. J. Agric. Food Chem. 2016, 64, 2030–2037. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, B.; Liu, Y.; Ouyang, L.; Zhou, D.; He, H.; Liu, J.; Hu, J.; He, X. Effects of four non-synonymous SNPs of SSIIa gene on amylopectin structure and gelatinization characteristics in rice. Starch 2022, 74, 2100198. [Google Scholar] [CrossRef]
- Crofts, N.; Satoh, Y.; Miura, S.; Hosaka, Y.; Abe, M.; Fujita, N. Active-type starch synthase (SS) IIa from indica rice partially complements the sugary-1 phenotype in japonica rice endosperm. Plant Mol. Biol. 2022, 108, 325–342. [Google Scholar] [CrossRef] [PubMed]
- Crofts, N.; Domon, A.; Miura, S.; Hosaka, Y.; Oitome, N.F.; Itoh, A.; Noge, K.; Fujita, N. Starch synthases SSIIa and GBSSI control starch structure but do not determine starch granule morphology in the absence of SSIIIa and SSIVb. Plant Mol. Biol. 2022, 108, 379–398. [Google Scholar] [CrossRef]
- Makino, A.; Kaneta, Y.; Obara, M.; Ishiyama, K.; Kanno, K.; Kondo, E.; Suzuki, Y.; Mae, T. High yielding ability of a large-grain rice cultivar, Akita 63. Sci. Rep. 2020, 10, 12231. [Google Scholar] [CrossRef]
- Hiratsuka, M.; Umemoto, T.; Aoki, N.; Katsuta, M. Development of SNP markers of starch synthase IIa (alk) and haplotype distribution in Rice Core Collections. Rice Genet. Newsl. 2010, 25, 80–82. [Google Scholar]
- Miura, S.; Narita, M.; Crofts, N.; Itoh, Y.; Hosaka, Y.; Oitome, N.F.; Abe, M.; Takahashi, R.; Fujita, N. Improving agricultural traits while maintaining high resistant starch content in rice. Rice 2022, 15, 28. [Google Scholar] [CrossRef]
- Hirano, H.Y.; Eiguchi, M.; Sano, Y. A single base change altered the regulation of the Waxy gene at the posttranscriptional level during the domestication of rice. Mol. Biol. Evol. 1998, 15, 978–987. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, H.; Botella, J.R.; Zhu, J.K. Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of the Waxy gene in elite rice varieties. J. Integr. Plant Biol. 2018, 60, 369–375. [Google Scholar] [CrossRef]
- Jane, J.; Chen, Y.Y.; Lee, L.F.; Mcpherson, A.E.; Wong, K.S.; Radosavljevic, M.; Kasemsuwan, T. Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal. Chem. 1999, 76, 629–637. [Google Scholar] [CrossRef]
- Asante, M.D.; Offei, S.K.; Gracen, V.; Adu-Dapaah, H.; Danquah, E.Y.; Bryant, R.; McClung, A. Starch physicochemical properties of rice accessions and their association with molecular markers. Starch 2013, 65, 1022–1028. [Google Scholar] [CrossRef]
- Hayashi, M.; Kodama, M.; Nakamura, Y.; Fujita, N. Thermal and pasting properties, morphology of starch granules, and crystallinity of endosperm starch in the rice SSI and SSIIIa double-mutant. J. Appl. Glycosci. 2015, 62, 81–86. [Google Scholar] [CrossRef]
- Kato, R.; Hatakeyama, T.; Masaki, S.; Saito, S.; Fukuda, K.; Ono, M.; Shimada, K.; Taguchi, M.; Yamamoto, T. Breeding of new rice cultivars “Kinunohada” and “Tatsukomochi”. Bull. Akita Agric. Exp. Stn. 1995, 34, 23–48. [Google Scholar]
- Chuang, G.C.C.; Yeh, A.I. Rheological characteristics and texture attributes of glutinous rice cakes (mochi). J. Food Eng. 2006, 74, 314–323. [Google Scholar] [CrossRef]
- Nakamori, T.; Yanagihara, T.; Kato, J. Studies on opaqueness (haze) in glutinous rice. J. Appl. Glycosci. 2003, 50, 139–142. (In Japanese) [Google Scholar] [CrossRef]
- Kubo, A.; Akdogan, G.; Nakaya, M.; Shojo, A.; Suzuki, S.; Satoh, H.; Kitamura, S. Structure, physical, and digestive properties of starch from wx ae double-mutant rice. J. Agric. Food Chem. 2010, 58, 4463–4469. [Google Scholar] [CrossRef]
- Ikegaya, T.; Ashida, K. Genetic region responsible for the differences of starch properties in two glutinous rice cultivars in Hokkaido, Japan. Breed. Sci. 2021, 71, 375–383. [Google Scholar] [CrossRef]
- Igarashi, T.; Kinoshita, M.; Kanda, H.; Nakamori, T.; Kusume, T. Evaluation of hardness of waxy rice cake based on the amylopectin chain -length distribution. J. Appl. Glycosci. 2008, 55, 13–19. [Google Scholar] [CrossRef]
- Kodama, I.; Shibata, C.; Fujita, N.; Ishikawa, K.; Takahashi, T.; Nakamura, Y.; Kawamoto, T.; Kato, K.; Sato, K.; Matsunami, M.; et al. Starch properties of waxy rice cultivars influencing rice cake hardening. Japan J. Food Eng. 2011, 12, 157–162. [Google Scholar] [CrossRef]
- Roder, W.; Keoboulapha, B.; Vannalath, K.; Phouaravanh, B. Glutinous rice and its importance for hill farmers in Laos. Econ. Bot. 1996, 50, 401–408. [Google Scholar] [CrossRef]
- Okuda, M.; Hashizume, K.; Aramaki, I.; Numata, M.; Joyo, M.; Goto-Yamamoto, N.; Mikami, S. Influence of starch characteristics on digestibility of steamed rice grains under sake-making conditions, and rapid estimation methods of digestibility by physical analysis. J. Appl. Glycosci. 2009, 56, 185–192. [Google Scholar] [CrossRef]
- Yamamoto, K.; Sawada, S.; Onogaki, T. Properties of rice prepared by alkali method with various conditions. J. Jpn. Soc. Starch. Sci. 1973, 20, 99–104. [Google Scholar] [CrossRef]
- Yamamoto, K.; Sawada, S.; Onogaki, T. Effects of quality and quantity of alkaline solution on the properties of the rice starch. J. Jap. Soc. Starch Sci. 1981, 28, 241–244. [Google Scholar] [CrossRef]
- Horibata, T.; Nakamoto, M.; Fuwa, H.; Inouchi, N. Structural and physicochemical characteristics of endosperm starches of rice cultivars recently bred in Japan. J. Appl. Glycosci. 2004, 51, 303–313. [Google Scholar] [CrossRef]
- Fujita, N.; Yoshida, M.; Kondo, T.; Saito, K.; Utsumi, Y.; Tokunaga, Y.; Nishi, A.; Satoh, H.; Park, J.H.; Jane, J.L.; et al. Characterization of SSIIIa-deficient mutants of rice: The function of SSIIIa and pleiotropic effects by SSIIIa deficiency in the rice endosperm. Plant Physiol. 2007, 144, 2009–2023. [Google Scholar] [CrossRef]
- Toyosawa, Y.; Kawagoe, Y.; Matsushima, R.; Crofts, N.; Ogawa, M.; Fukuda, M.; Kumamaru, T.; Okazaki, Y.; Kusano, M.; Saito, K.; et al. Deficiency of starch synthase IIIa and IVb alters starch granule morphology from polyhedral to spherical in rice endosperm. Plant Physiol. 2016, 170, 1255–1270. [Google Scholar] [CrossRef] [PubMed]
- Fujita, N.; Hasegawa, H.; Taira, T. The isolation and characterization of waxy mutant of diploid wheat (Triticum monococcum L.). Plant Sci. 2001, 160, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Fujita, N.; Yoshida, M.; Asakura, N.; Ohdan, T.; Miyao, A.; Hirochika, H.; Nakamura, Y. Function and characterization of starch synthase I using mutants in rice. Plant Physiol. 2006, 140, 1070–1084. [Google Scholar] [CrossRef]
- Fujita, N.; Toyosawa, Y.; Utsumi, Y.; Higuchi, T.; Hanashiro, I.; Ikegami, A.; Akuzawa, S.; Yoshida, M.; Mori, A.; Inomata, K.; et al. Characterization of pullulanase (PUL)-deficient mutants of rice (Oryza sativa L.) and the function of PUL on starch biosynthesis in the developing rice endosperm. J. Exp. Bot. 2009, 60, 1009–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Rice Line | SSIIa Allele 1 | Wx Allele 2 |
---|---|---|
Akita 63 | ss2aL | Wxb |
SS2a wx | SS2a | wx |
ss2aL wx | ss2aL | wx |
ss2a wx | ss2a | wx |
IR36 | SS2a | Wxa |
EM21 | ss2aL | wx |
EM204 | ss2a | Wxb |
Kinunohada 3 | ss2aL | wx |
Rice Line | Average Seed Weight 1 (mg grain−1) | Apparent Amylose Content 2 (%) |
---|---|---|
Akita 63 | 31.7 ± 0.5a | 17.1 ± 0.5a |
SS2a wx | 27.8 ± 0.5b | 0.5 ± 0.2b |
ss2aL wx | 27.1 ± 0.4b | 1.0 ± 0.4b |
ss2a wx | 27.5 ± 0.5b | 2.1 ± 0.1b |
EM21 | 17.6 ± 0.2c | 0.5 ± 0.1b 3 |
Kinunohada | 23.6 ± 0.3d | 1.0 ± 0.1b |
Rice Line | To (°C) 1 | Tp (°C) 1 | Tc (°C) 1 | DH (J/g) 1 |
---|---|---|---|---|
Akita 63 | 56.6 ± 0.1b | 63.0 ± 0.0c | 70.6 ± 0.1c | 13.3 ± 0.6b |
SS2a wx | 67.0 ± 0.2a | 73.0 ± 0.2a | 82.9 ± 0.7a | 19.2 ± 0.4a |
ss2aL wx | 57.8 ± 0.1b | 64.7 ± 0.1b | 74.7 ± 0.1b | 17.1 ± 0.8ab |
ss2a wx | 50.0 ±0.1d | 60.7 ±0.3d | 72.0 ±0.2c | 14.1 ± 0.5b |
Kinunohada | 54.0 ± 0.2c | 61.6 ±0.1d | 70.6 ±0.1c | 15.4 ± 0.2ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakano, T.; Crofts, N.; Miura, S.; Oitome, N.F.; Hosaka, Y.; Ishikawa, K.; Fujita, N. Three Starch Synthase IIa (SSIIa) Alleles Reveal the Effect of SSIIa on the Thermal and Rheological Properties, Viscoelasticity, and Eating Quality of Glutinous Rice. Int. J. Mol. Sci. 2023, 24, 3726. https://doi.org/10.3390/ijms24043726
Nakano T, Crofts N, Miura S, Oitome NF, Hosaka Y, Ishikawa K, Fujita N. Three Starch Synthase IIa (SSIIa) Alleles Reveal the Effect of SSIIa on the Thermal and Rheological Properties, Viscoelasticity, and Eating Quality of Glutinous Rice. International Journal of Molecular Sciences. 2023; 24(4):3726. https://doi.org/10.3390/ijms24043726
Chicago/Turabian StyleNakano, Tsukine, Naoko Crofts, Satoko Miura, Naoko F. Oitome, Yuko Hosaka, Kyoko Ishikawa, and Naoko Fujita. 2023. "Three Starch Synthase IIa (SSIIa) Alleles Reveal the Effect of SSIIa on the Thermal and Rheological Properties, Viscoelasticity, and Eating Quality of Glutinous Rice" International Journal of Molecular Sciences 24, no. 4: 3726. https://doi.org/10.3390/ijms24043726
APA StyleNakano, T., Crofts, N., Miura, S., Oitome, N. F., Hosaka, Y., Ishikawa, K., & Fujita, N. (2023). Three Starch Synthase IIa (SSIIa) Alleles Reveal the Effect of SSIIa on the Thermal and Rheological Properties, Viscoelasticity, and Eating Quality of Glutinous Rice. International Journal of Molecular Sciences, 24(4), 3726. https://doi.org/10.3390/ijms24043726