The Titrated Mannitol Improved Central [99mTc] Tc TRODAT-1 Uptake in an Animal Model—A Clinically Feasible Application
Abstract
:1. Introduction
2. Material and Methods
2.1. Radiopharmaceutical
2.2. Animal Models
2.3. NanoSPECT/CT Image Acquisition and Data Analysis
2.3.1. Image Acquisition
2.3.2. Data Analysis
2.4. Ex Vivo Autoradiography
3. Statistical Analysis
4. Results
4.1. Small Animal NanoSPECT/CT Imaging
4.2. Ex Vivo Autoradiography
5. Discussions
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reader, T.A.; Dewar, K.M. Effects of denervation and hyperinnervation on dopamine and serotonin systems in the rat neostriatum: Implications for human Parkinson’s disease. Neurochem. Int. 1999, 34, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Eddins, D.; Petro, A.; Williams, P.; Cerutti, D.T.; Levin, E.D. Nicotine effects on learning in zebrafish: The role of dopaminergic systems. Psychopharmacology 2008, 202, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Silverman, D.H.; Delaloye, S.; Czernin, J.; Kamdar, N.; Pope, W.; Satyamurthy, N.; Schiepers, C.; Cloughesy, T. 18F-FDOPA PET imaging of brain tumors: Comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J. Nucl. Med. 2006, 47, 904–911. [Google Scholar] [PubMed]
- Koivula, T.; Marjamäki, P.; Haaparanta, M.; Fagerholm, V.; Grönroos, T.; Lipponen, T.; Perhola, O.; Vepsäläinen, J.; Solin, O. Ex vivo evaluation of N-(3-[18F]fluoropropyl)-2 beta-carbomethoxy-3 beta-(4-fluorophenyl)nortropane in rats. Nucl. Med. Biol. 2008, 35, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Kung, M.P.; Stevenson, D.A.; Plössl, K.; Meegalla, S.K.; Beckwith, A.; Essman, W.D.; Mu, M.; Lucki, I.; Kung, H.F. [99mTc]TRODAT-1: A novel technetium-99m complex as a dopamine transporter imaging agent. Eur. J. Nucl. Med. 1997, 24, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Booij, J.; de Bruin, K.; Gunning, W.B. Repeated administration of d-amphetamine induces loss of [123I]FP-CIT binding to striatal dopamine transporters in rat brain: A validation study. Nucl. Med. Biol. 2006, 33, 409–411. [Google Scholar] [CrossRef]
- Fang, P.; Wu, C.Y.; Liu, Z.G.; Wan, W.X.; Wang, T.S.; Chen, S.D.; Chen, Z.P.; Zhou, X. The preclinical pharmacologic study of do-pamine transporter imaging agent [99mTc]TRODAT-1. Nuclear Med. Biol. 2000, 27, 69–75. [Google Scholar] [CrossRef]
- Kish, S.; Shannak, K.; Hornykiewicz, O. Uneven pattern of dopamine loss in the striatum of patients with idiopathic Par-kinson’s disease. Pathophysiologic and clinical implications. N. Engl. J. Med. 1988, 318, 876–880. [Google Scholar] [CrossRef]
- Asiri, J.A.; Kulaybi, S.A.; Daghas, F.A.; Aamry, A.I. SPECT Ioflupane123I (DaTscan), 99mTc (TRODAT) and Ioflupane with Myocardial Scintigraphy 123I (MIBG) for Diagnosis of Parkinson’s Disease. Clin. Med. Res. 2022, 11, 6–12. [Google Scholar] [CrossRef]
- Langer, O.; Halldin, C.; Dollé, F.; Swahn, C.-G.; Olsson, H.; Lundkvist, P.K.H.S.; Vaufrey, F.; Loc’H, C.; Crouzel, C.; Mazière, B. Carbon-11 epidepride: A suitable radioligand for PET investigation of striatal and extrastriatal dopamine D2 receptors. Nucl. Med. Biol. 1999, 26, 509–518. [Google Scholar] [CrossRef]
- Meegalla, S.K.; Plössl, K.; Kung, M.P.; Stevenson, D.A.; Mu, M.; Kushner, S.; Liable-Sands, L.M.; Rheingold, A.L.; Kung, H.F. Specificity of diastereomers of [99mTc]TRODAT-1 as dopamine transporter imaging agents. J. Med. Chem. 1998, 41, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Yeh, S.H.; Tsai, C.J.; Yu, T.H.; Chiang, Y.H.; Lin, S.Z.; Peng, N.J.; Huang, W.S. 99mTc-TRODAT-1 SPECT Revealed That Striatal Dopamine Transport Availability Significantly Decreases in Late Mid-Aged Healthy Taiwanese and Then Remains Stable. Clin. Nucl. Med. 2022, 47, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Van Laere, K.; De Ceuninck, L.; Dom, R.; Van den Eynden, J.; Vanbilloen, H.; Cleynhens, J.; Dupont, P.; Bormans, G.; Verbruggen, A.; Mortelmans, L. Dopamine transporter SPECT using fast kinetic ligands: 123I-FP-beta-CIT versus 99mTc-TRODAT-1. Eur. J. Nucl. Med. Mol. Imaging 2004, 31, 1119–1127. [Google Scholar] [CrossRef] [PubMed]
- Pinborg, L.H.; Ziebell, M.; Frøkjaer, V.G.; de Nijs, R.; Svarer, C.; Haugbøl, S.; Yndgaard, S.; Knudsen, G.M. Quantification of 123I-PE2I binding to dopamine transporter with SPECT after bolus and bolus/infusion. J. Nucl. Med. 2005, 46, 1119–1127. [Google Scholar] [PubMed]
- Kitchen, M.J.; Buckley, G.A.; Gureyev, T.E.; Wallace, M.J.; Andres-Thio, N.; Uesugi, K.; Yagi, N.; Hooper, S.B. CT dose reduction factors in the thousands using X-ray phase contrast. Sci. Rep. 2017, 21, 15953. [Google Scholar] [CrossRef] [PubMed]
- Meyer, P.T.; Sattler, B.; Lincke, T.; Seese, A.; Sabri, O. Investigating dopaminergic neurotransmission with 123I-FP-CIT SPECT: Comparability of modern SPECT systems. J. Nucl. Med. 2003, 44, 839–845. [Google Scholar]
- Baldwin, D.L.; Ohlsén, K.A.; Miller, J.M.; Nuttall, A.L. Cochlear blood flow and microvascular resistance changes in response to hypertonic glycerol, urea, and mannitol infusions. Ann. Otol. Rhinol. Laryngol. 1992, 101, 168–175. [Google Scholar] [CrossRef]
- Neuwelt, E.; Abbott, N.J.; Abrey, L.; A Banks, W.; Blakley, B.; Davis, T.; Engelhardt, B.; Grammas, P.; Nedergaard, M.; Nutt, J.; et al. Strategies to advance translational research into brain barriers. Lancet Neurol. 2008, 7, 84–96. [Google Scholar] [CrossRef] [PubMed]
- Le, T.N.; Blakley, B.W. Mannitol and the blood-labyrinth barrier. J. Otolaryngol. Head Neck Surg. 2017, 46, 66. [Google Scholar] [CrossRef]
- Meegalla, S.K.; Plössl, K.; Kung, M.P.; Chumpradit, S.; Stevenson, D.A.; Kushner, S.A.; McElgin, W.T.; Mozley, P.D.; Kung, H.F. Synthesis and characterization of technetium-99m-labeled tropanes as dopamine transporter-imaging agents. J. Med. Chem. 1997, 40, 9–17. [Google Scholar] [CrossRef]
- Leslie, W.D.; Abrams, D.N.; Greenberg, C.R.; Hobson, D. Comparison of iodine-123-epidepride and iodine-123-IBZM for do-pamine D2 receptor imaging. J. Nucl. Med. 1996, 37, 1589–1591. [Google Scholar]
- Mozley, P.D.; Stubbs, J.B.; Plössl, K.; Dresel, S.H.; Barraclough, E.D.; Alavi, A.; IAraujo, L.; Kung, H.F. Biodistribution and dosimetry of TRODAT-1: A technetium-99m tropane for imaging dopamine transporters. J. Nucl. Med. 1998, 39. [Google Scholar]
- Wenshan, S.; Chengmo, Z.; Zhongwei, L.; Jinchang, W. Reversible opening of the blood-brain barrier by mannitol increases brain uptake of 99mTc-TRODAT-1. Nucl. Tech. 2001, 24, 337–340. [Google Scholar]
- Juhn, S.K.; Rybak, L.P.; Fowlks, W.L. Transport characteristics of the blood—Perilymph barrier. Am. J. Otolaryngol. 1982, 3, 392–396. [Google Scholar] [CrossRef]
- Juhn, S.K.; A Hunter, B.; Odland, R.M. Blood-labyrinth barrier and fluid dynamics of the inner ear. Int. Tinnitus J. 2001, 7, 72–83. [Google Scholar] [PubMed]
- Neuwelt, E.A.; Gilmer-Knight, K.; Lacy, C.; Nicholson, H.S.; Kraemer, D.F.; Doolittle, N.D.; Hornig, G.W.; Muldoon, L.L. Toxicity profile of delayed high dose sodium thiosulfate in children treated with carboplatin in conjunction with blood-brain-barrier disruption. Pediatr. Blood Cancer 2006, 47, 174–182. [Google Scholar] [CrossRef]
- Ju, F.; Ran, Y.; Zhu, L.; Cheng, X.; Gao, H.; Xi, X.; Yang, Z.; Zhang, S. Increased BBB Permeability Enhances Activation of Microglia and Exacerbates Loss of Dendritic Spines After Transient Global Cerebral Ischemia. Front. Cell. Neurosci. 2018, 12, 236. [Google Scholar] [CrossRef]
- Juhn, S.K.; Rybak, L.P.; Prado, S. Nature of Blood-Labyrinth Barrier in Experimental Conditions. Ann. Otol. Rhinol. Laryngol. 1981, 90, 135–141. [Google Scholar] [CrossRef]
- Laurell, G.; Viberg, A.; Teixeira, M.; Sterkers, O.; Ferrary, E. Blood-perilymph barrier and ototoxicity: An in vivo study in the rat. Acta Otolaryngol. 2000, 120, 796–803. [Google Scholar]
- Brown, R.C.; Egleton, R.; Davis, T. Mannitol opening of the blood-brain barrier: Regional variation in the permeability of sucrose, but not 86Rb+ or albumin. Brain Res. 2004, 1014, 221–227. [Google Scholar] [CrossRef]
- Siegal, T.; Rubinstein, R.; Bokstein, F.; Schwartz, A.; Lossos, A.; Shalom, E.; Chisin, R.; Gomori, J.M.; Furtado, D.; Björnmalm, M.; et al. In vivo assessment of the window of barrier opening after osmotic blood—brain barrier disruption in humans. J. Neurosurg. 2000, 92, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Safe Volumes for Injection. Available online: https://ratguide.com/meds/basics-meds/safe_volumes_for_injection.php (accessed on 2 December 2022).
- Jakobson Mo, S.; Axelsson, J.; Jonasson, L.; Larsson, A.; Ögren, M.J.; Ögren, M.; Varrone, A.; Eriksson, L.; Bäckström, D.; Af Bjerkén, S.; et al. Dopamine transporter imaging with [18F]FE-PE2I PET and [123I]FP-CIT SPECT—A clinical comparison. EJNMMI Res. 2018, 8, 100. [Google Scholar] [CrossRef] [PubMed]
- Sood, A.; Shukla, J.; Shree, R.; Vatsa, R.; Modi, M.; Mittal, B.R. Comparative Performance of 99mTc-TRODAT-1 SPECT/CT and 18F-FDOPA PET/CT Imaging in Patients with Parkinson’s Disease, Parkinson-Plus Syndrome, and Essential Tremor. Clin. Nucl. Med. 2021, 46, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.S.; Lin, S.Z.; Lin, J.C.; Wey, S.P.; Ting, G.; Liu, R.S. Evaluation of early-stage Parkinson’s disease with 99mTc-TRODAT-1 imaging. J. Nucl. Med. 2001, 42, 1303–1308. [Google Scholar]
- Huang, W.S.; Lee, M.S.; Lin, J.C.; Chen, C.; Yang, Y.; Lin, S.; Wey, S. Usefulness of brain 99mTc-TRODAT-1 SPET for the evaluation of Parkinson’s disease. Eur. J. Nucl. Med. Mol. Imaging 2004, 31, 155–161. [Google Scholar] [CrossRef]
- Yeh, S.H.; Chiu, C.H.; Kao, H.W.; Lin, C.P.; Lai, Y.H.; Huang, W.S. Multi-Modal Synergistic 99mTc-TRODAT-1 SPECT and MRI for Evaluation of the Efficacy of Hyperbaric Oxygen Therapy in CO-Induced Delayed Parkinsonian and Non-Parkinsonian Syndromes. Antioxidants 2022, 11, 2289. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, Z.; Liu, C.; Tang, J.; Wang, Y.; Zhang, G.; Liu, X. Phase I clinical study with different doses of 99mTc-TRODAT-1 in healthy adults. Ann. Nucl. Med. 2020, 34, 212–219. [Google Scholar] [CrossRef]
- Yan, J.; Schaefferkoetter, J.; Conti, M.; Townsend, D. A method to assess image quality for Low-dose PET: Analysis of SNR, CNR, bias and image noise. Cancer Imaging 2016, 16, 1–12. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, K.-W.; Chang, P.-L.; Tsai, C.-J.; Tsai, Y.-J.; Wu, P.-H.; Lee, H.-L.; Lai, Y.-H.; Wong, C.-Y.O.; Huang, W.-S. The Titrated Mannitol Improved Central [99mTc] Tc TRODAT-1 Uptake in an Animal Model—A Clinically Feasible Application. Int. J. Mol. Sci. 2023, 24, 3773. https://doi.org/10.3390/ijms24043773
Chang K-W, Chang P-L, Tsai C-J, Tsai Y-J, Wu P-H, Lee H-L, Lai Y-H, Wong C-YO, Huang W-S. The Titrated Mannitol Improved Central [99mTc] Tc TRODAT-1 Uptake in an Animal Model—A Clinically Feasible Application. International Journal of Molecular Sciences. 2023; 24(4):3773. https://doi.org/10.3390/ijms24043773
Chicago/Turabian StyleChang, Kang-Wei, Po-Ling Chang, Chi-Jung Tsai, Ya-Ju Tsai, Ping-Hsiu Wu, Hsin-Lun Lee, Yu-Hua Lai, Ching-Yee Oliver Wong, and Wen-Sheng Huang. 2023. "The Titrated Mannitol Improved Central [99mTc] Tc TRODAT-1 Uptake in an Animal Model—A Clinically Feasible Application" International Journal of Molecular Sciences 24, no. 4: 3773. https://doi.org/10.3390/ijms24043773
APA StyleChang, K. -W., Chang, P. -L., Tsai, C. -J., Tsai, Y. -J., Wu, P. -H., Lee, H. -L., Lai, Y. -H., Wong, C. -Y. O., & Huang, W. -S. (2023). The Titrated Mannitol Improved Central [99mTc] Tc TRODAT-1 Uptake in an Animal Model—A Clinically Feasible Application. International Journal of Molecular Sciences, 24(4), 3773. https://doi.org/10.3390/ijms24043773