Plasma IAPP-Autoantibody Levels in Alzheimer’s Disease Patients Are Affected by APOE4 Status
Abstract
:1. Introduction
2. Results
2.1. Plasma IAPP-Autoantibody Levels in Relation to AD Pathology
2.2. Plasma IAPP-Autoantibody Levels in Relation to APOE4 Status
2.3. Plasma IAPP Levels in Cohort I and II
2.4. Brain IAPP Levels in Cohort II
2.5. Correlations with Plasma IAPP-Autoantibody Levels
3. Discussion
4. Materials and Methods
4.1. Individuals Included in the Study
4.2. Stratification of Cohorts
4.3. IAPP Preparation
4.4. Analysis of Plasma IAPP
4.5. Analysis of Plasma IAPP-Autoantibodies
4.6. Brain Homogenization and Protein Level Determination
4.7. Dot-Blot
4.8. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grundke-Iqbal, I.; Iqbal, K.; Tung, Y.C.; Quinlan, M.; Wisniewski, H.M.; Binder, L.I. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc. Natl. Acad. Sci. USA 1986, 83, 4913–4917. [Google Scholar] [CrossRef] [PubMed]
- Masters, C.L.; Multhaup, G.; Simms, G.; Pottgiesser, J.; Martins, R.N.; Beyreuther, K. Neuronal origin of a cerebral amyloid: Neurofibrillary tangles of Alzheimer’s disease contain the same protein as the amyloid of plaque cores and blood vessels. Embo. J. 1985, 4, 2757–2763. [Google Scholar] [CrossRef] [PubMed]
- Bekris, L.M.; Yu, C.E.; Bird, T.D.; Tsuang, D.W. Genetics of Alzheimer disease. J. Geriatr. Psychiatry Neurol. 2010, 23, 213–227. [Google Scholar] [CrossRef] [PubMed]
- Mielke, M.M. Sex and Gender Differences in Alzheimer’s Disease Dementia. Psychiatr. Times 2018, 35, 14–17. [Google Scholar]
- Silva, M.V.F.; Loures, C.M.G.; Alves, L.C.V.; de Souza, L.C.; Borges, K.B.G.; Carvalho, M.D.G. Alzheimer’s disease: Risk factors and potentially protective measures. J. Biomed. Sci. 2019, 26, 33. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Mahley, R.W. Apolipoprotein E: Structure and function in lipid metabolism, neurobiology, and Alzheimer’s diseases. Neurobiol. Dis. 2014, 72, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Corder, E.H.; Saunders, A.M.; Risch, N.J.; Strittmatter, W.J.; Schmechel, D.E.; Gaskell, P.C., Jr.; Rimmler, J.B.; Locke, P.A.; Conneally, P.M.; Schmader, K.E.; et al. Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat. Genet. 1994, 7, 180–184. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Shue, F.; Zhao, N.; Shinohara, M.; Bu, G. APOE2: Protective mechanism and therapeutic implications for Alzheimer’s disease. Mol. Neurodegener. 2020, 15, 63. [Google Scholar] [CrossRef]
- Corder, E.H.; Saunders, A.M.; Strittmatter, W.J.; Schmechel, D.E.; Gaskell, P.C.; Small, G.W.; Roses, A.D.; Haines, J.L.; Pericak-Vance, M.A. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993, 261, 921–923. [Google Scholar] [CrossRef] [PubMed]
- Parhizkar, S.; Holtzman, D.M. APOE mediated neuroinflammation and neurodegeneration in Alzheimer’s disease. Semin. Immunol. 2022, 59, 101594. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Huang, C.; Deng, H.; Wang, H. Diabetes as a risk factor for dementia and mild cognitive impairment: A meta-analysis of longitudinal studies. Intern. Med. J. 2012, 42, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Exalto, L.G.; Biessels, G.J.; Karter, A.J.; Huang, E.S.; Katon, W.J.; Minkoff, J.R.; Whitmer, R.A. Risk score for prediction of 10 year dementia risk in individuals with type 2 diabetes: A cohort study. Lancet. Diabetes. Endocrinol. 2013, 1, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Despa, F.; Decarli, C. Amylin: What might be its role in Alzheimer’s disease and how could this affect therapy? Expert. Rev. Proteom. 2013, 10, 403–405. [Google Scholar] [CrossRef] [PubMed]
- Jackson, K.; Barisone, G.A.; Diaz, E.; Jin, L.W.; DeCarli, C.; Despa, F. Amylin deposition in the brain: A second amyloid in Alzheimer disease? Ann. Neurol. 2013, 74, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Ono, K.; Takahashi, R.; Ikeda, T.; Mizuguchi, M.; Hamaguchi, T.; Yamada, M. Exogenous amyloidogenic proteins function as seeds in amyloid β-protein aggregation. Biochim. Biophys. Acta 2014, 1842, 646–653. [Google Scholar] [CrossRef]
- Ly, H.; Verma, N.; Wu, F.; Liu, M.; Saatman, K.E.; Nelson, P.T.; Slevin, J.T.; Goldstein, L.B.; Biessels, G.J.; Despa, F. Brain microvascular injury and white matter disease provoked by diabetes-associated hyperamylinemia. Ann. Neurol. 2017, 82, 208–222. [Google Scholar] [CrossRef]
- Schultz, N.; Byman, E.; Fex, M.; Wennström, M. Amylin alters human brain pericyte viability and NG2 expression. J. Cereb. Blood Flow Metab. 2016, 37, 1470–1482. [Google Scholar] [CrossRef]
- Verma, N.; Velmurugan, G.V.; Winford, E.; Coburn, H.; Kotiya, D.; Leibold, N.; Radulescu, L.; Despa, S.; Chen, K.C.; Van Eldik, L.J.; et al. Aβ efflux impairment and inflammation linked to cerebrovascular accumulation of amyloid-forming amylin secreted from pancreas. Commun. Biol. 2023, 6, 2. [Google Scholar] [CrossRef]
- Mohamed, L.A.; Zhu, H.; Mousa, Y.M.; Wang, E.; Qiu, W.Q.; Kaddoumi, A. Amylin Enhances Amyloid-β Peptide Brain to Blood Efflux Across the Blood-Brain Barrier. J. Alzheimers Dis. 2017, 56, 1087–1099. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, X.; Wallack, M.; Li, H.; Carreras, I.; Dedeoglu, A.; Hur, J.Y.; Zheng, H.; Li, H.; Fine, R.; et al. Intraperitoneal injection of the pancreatic peptide amylin potently reduces behavioral impairment and brain amyloid pathology in murine models of Alzheimer’s disease. Mol. Psychiatry 2015, 20, 252–262. [Google Scholar] [CrossRef]
- Qiu, W.Q.; Wallack, M.; Dean, M.; Liebson, E.; Mwamburi, M.; Zhu, H. Association between amylin and amyloid-β peptides in plasma in the context of apolipoprotein E4 allele. PLoS ONE 2014, 9, e88063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gharibyan, A.L.; Islam, T.; Pettersson, N.; Golchin, S.A.; Lundgren, J.; Johansson, G.; Genot, M.; Schultz, N.; Wennström, M.; Olofsson, A. Apolipoprotein E Interferes with IAPP Aggregation and Protects Pericytes from IAPP-Induced Toxicity. Biomolecules 2020, 10, 134. [Google Scholar] [CrossRef] [PubMed]
- Schultz, N.; Janelidze, S.; Byman, E.; Minthon, L.; Nägga, K.; Hansson, O.; Wennström, M. Levels of islet amyloid polypeptide in cerebrospinal fluid and plasma from patients with Alzheimer’s disease. PLoS ONE 2019, 14, e0218561. [Google Scholar] [CrossRef] [PubMed]
- Roesti, E.S.; Boyle, C.N.; Zeman, D.T.; Sande-Melon, M.; Storni, F.; Cabral-Miranda, G.; Knuth, A.; Lutz, T.A.; Vogel, M.; Bachmann, M.F. Vaccination Against Amyloidogenic Aggregates in Pancreatic Islets Prevents Development of Type 2 Diabetes Mellitus. Vaccines 2020, 8, 116. [Google Scholar] [CrossRef]
- Clark, A.; Yon, S.M.; de Koning, E.J.; Holman, R.R. Autoantibodies to islet amyloid polypeptide in diabetes. Diabet. Med. 1991, 8, 668–673. [Google Scholar] [CrossRef]
- Bram, Y.; Frydman-Marom, A.; Yanai, I.; Gilead, S.; Shaltiel-Karyo, R.; Amdursky, N.; Gazit, E. Apoptosis induced by islet amyloid polypeptide soluble oligomers is neutralized by diabetes-associated specific antibodies. Sci. Rep. 2014, 4, 4267. [Google Scholar] [CrossRef]
- Leong, K.W.; Ding, J.L. The unexplored roles of human serum IgA. DNA Cell Biol. 2014, 33, 823–829. [Google Scholar] [CrossRef]
- Wu, J.; Li, L. Autoantibodies in Alzheimer’s disease: Potential biomarkers, pathogenic roles, and therapeutic implications. J. Biomed. Res. 2016, 30, 361–372. [Google Scholar] [CrossRef]
- Pocevičiūtė, D.; Nuñez-Diaz, C.; Roth, B.; Janelidze, S.; Giannisis, A.; Hansson, O.; Wennström, M.; The Netherlands Brain, B. Increased plasma and brain immunoglobulin A in Alzheimer’s disease is lost in apolipoprotein E ε4 carriers. Alzheimer Res. Ther. 2022, 14, 117. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, J.; Gao, J.; Chen, P.; Yin, M.; Zhao, W. Decreased immunoglobulin G in brain regions of elder female APOE4-TR mice accompany with Aβ accumulation. Immun. Ageing 2019, 16, 2. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhao, W.; Al-Muhtasib, N.; Rebeck, G.W. APOE Genotype Alters Immunoglobulin Subtypes in Knock-In Mice. J. Alzheimers Dis. 2015, 46, 365–374. [Google Scholar] [CrossRef] [Green Version]
- Mhatre-Winters, I.; Eid, A.; Han, Y.; Tieu, K.; Richardson, J.R. Sex and APOE Genotype Alter the Basal and Induced Inflammatory States of Primary Microglia from APOE Targeted Replacement Mice. Int. J. Mol. Sci. 2022, 23, 9829. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, L.M.; Wu, J. Cross-talk between apolipoprotein E and cytokines. Mediat. Inflamm. 2011, 2011, 949072. [Google Scholar] [CrossRef] [PubMed]
- Brännström, K.; Lindhagen-Persson, M.; Gharibyan, A.L.; Iakovleva, I.; Vestling, M.; Sellin, M.E.; Brännström, T.; Morozova-Roche, L.; Forsgren, L.; Olofsson, A. A generic method for design of oligomer-specific antibodies. PLoS ONE 2014, 9, e90857. [Google Scholar] [CrossRef] [PubMed]
- Rannikmäe, K.; Kalaria, R.N.; Greenberg, S.M.; Chui, H.C.; Schmitt, F.A.; Samarasekera, N.; Al-Shahi Salman, R.; Sudlow, C.L. APOE associations with severe CAA-associated vasculopathic changes: Collaborative meta-analysis. J. Neurol. Neurosurg Psychiatry 2014, 85, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Raulin, A.C.; Doss, S.V.; Trottier, Z.A.; Ikezu, T.C.; Bu, G.; Liu, C.C. ApoE in Alzheimer’s disease: Pathophysiology and therapeutic strategies. Mol. Neurodegener 2022, 17, 72. [Google Scholar] [CrossRef]
- Ghosh, S.; Sil, T.B.; Dolai, S.; Garai, K. High-affinity multivalent interactions between apolipoprotein E and the oligomers of amyloid-β. FEBS J. 2019, 286, 4737–4753. [Google Scholar] [CrossRef]
- Brettschneider, S.; Morgenthaler, N.G.; Teipel, S.J.; Fischer-Schulz, C.; Bürger, K.; Dodel, R.; Du, Y.; Möller, H.J.; Bergmann, A.; Hampel, H. Decreased serum amyloid beta(1-42) autoantibody levels in Alzheimer’s disease, determined by a newly developed immuno-precipitation assay with radiolabeled amyloid beta(1-42) peptide. Biol. Psychiatry 2005, 57, 813–816. [Google Scholar] [CrossRef]
- Oskarsson, M.E.; Paulsson, J.F.; Schultz, S.W.; Ingelsson, M.; Westermark, P.; Westermark, G.T. In Vivo Seeding and Cross-Seeding of Localized Amyloidosis: A Molecular Link between Type 2 Diabetes and Alzheimer Disease. Am. J. Pathol. 2015, 185, 834–846. [Google Scholar] [CrossRef]
- Braak, H.; Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991, 82, 239–259. [Google Scholar] [CrossRef]
IAPPM-IgA (RU) | IAPPO-IgA (RU) | |||||
---|---|---|---|---|---|---|
All Groups | −APOE4 | +APOE4 | All Groups | −APOE4 | +APOE4 | |
Cohort I: | ||||||
Total IgA (mg/mL) | 0.658 *** | 0.813 *** | 0.450 ** | 0.589 *** | 0.845 *** | 0.350 * |
MMSE (score) | ns | ns | ns | ns | −0.388 * | ns |
CRP (mg/mL) | ns | 0.532 ** | ns | ns | 0.561 *** | ns |
CSF Aβ40 (pg/mL) | ns | ns | ns | ns | −0.387 * | ns |
CSF Aβ42 (pg/mL) | ns | −0.510 ** | ns | ns | −0.665 *** | ns |
CSF Aβ42/40 | ns | −0.479 ** | ns | ns | −0.575 *** | 0.378 * |
Cohort II: | ||||||
Total IgA (mg/mL) | 0.750 *** | 0.846 *** | 0.556 * | 0.802 *** | 0.850 *** | 0.634 * |
Brain NFT (score) | ns | 0.555 * | −0.550 * | 0.387 * | ns | ns |
Plasma IAPP (pM) | 0.576 *** | 0.769 *** | ns | 0.521 ** | 0.747 *** | ns |
Brain IAPP-SF (RU) | ns | −0.692 ** | ns | −0.404 * | −0.629 * | ns |
IAPPM-IgG | IAPPO-IgG | |||||
---|---|---|---|---|---|---|
All Groups | −APOE4 | +APOE4 | All Groups | −APOE4 | +APOE4 | |
Cohort I: | ||||||
AQT (score) | 0.261 * | ns | 0.382 * | 0.267 * | ns | 0.428 * |
Plasma IAPP (pM) | 0.288 * | 0.356 * | ns | 0.436 *** | 0.501 ** | 0.431 ** |
CSF Aβ42 (pg/mL) | ns | −0.395 * | ns | ns | ns | ns |
CSF Aβ42/40 | ns | −0.415 * | ns | ns | −0.419 * | ns |
Cohort II: | ||||||
Plasma IAPP (pM) | 0.617 *** | 0.729 ** | ns | ns | ns | ns |
Brain Aβ (score) | ns | ns | −0.541 * | ns | ns | ns |
Brain IAPP-SF (RU) | ns | −0.546 * | ns | ns | ns | ns |
Brain IAPP-IF (RU) | ns | ns | ns | ns | ns | −0.556 * |
IAPPM-IgM | IAPPO-IgM | |||||
---|---|---|---|---|---|---|
All Groups | −APOE4 | +APOE4 | All Groups | −APOE4 | +APOE4 | |
Cohort I: | ||||||
MMSE (score) | ns | ns | ns | ns | −0.459 ** | ns |
ADAS-Cog (score) | ns | ns | ns | ns | 0.480 ** | ns |
CSF p-tau (pg/mL) | ns | 0.363 * | ns | ns | 0.448 ** | ns |
CSF Aβ42 (pg/mL) | ns | ns | ns | −0.242 * | −0.430 * | ns |
CSF Aβ42/40 | ns | ns | ns | −0.285 * | −0.524 *** | ns |
Cohort II: | ||||||
Plasma IAPP (pM) | 0.511 ** | 0.843 *** | ns | ns | ns | ns |
Brain IAPP-SF (RU) | −0.420 * | −0.543 * | ns | ns | ns | ns |
Brain IAPP-IF (RU) | −0.424 * | ns | ns | ns | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pocevičiūtė, D.; Roth, B.; Schultz, N.; Nuñez-Diaz, C.; Janelidze, S.; The Netherlands Brain Bank; Olofsson, A.; Hansson, O.; Wennström, M. Plasma IAPP-Autoantibody Levels in Alzheimer’s Disease Patients Are Affected by APOE4 Status. Int. J. Mol. Sci. 2023, 24, 3776. https://doi.org/10.3390/ijms24043776
Pocevičiūtė D, Roth B, Schultz N, Nuñez-Diaz C, Janelidze S, The Netherlands Brain Bank, Olofsson A, Hansson O, Wennström M. Plasma IAPP-Autoantibody Levels in Alzheimer’s Disease Patients Are Affected by APOE4 Status. International Journal of Molecular Sciences. 2023; 24(4):3776. https://doi.org/10.3390/ijms24043776
Chicago/Turabian StylePocevičiūtė, Dovilė, Bodil Roth, Nina Schultz, Cristina Nuñez-Diaz, Shorena Janelidze, The Netherlands Brain Bank, Anders Olofsson, Oskar Hansson, and Malin Wennström. 2023. "Plasma IAPP-Autoantibody Levels in Alzheimer’s Disease Patients Are Affected by APOE4 Status" International Journal of Molecular Sciences 24, no. 4: 3776. https://doi.org/10.3390/ijms24043776
APA StylePocevičiūtė, D., Roth, B., Schultz, N., Nuñez-Diaz, C., Janelidze, S., The Netherlands Brain Bank, Olofsson, A., Hansson, O., & Wennström, M. (2023). Plasma IAPP-Autoantibody Levels in Alzheimer’s Disease Patients Are Affected by APOE4 Status. International Journal of Molecular Sciences, 24(4), 3776. https://doi.org/10.3390/ijms24043776