Improving the Management and Treatment of Diabetic Foot Infection: Challenges and Research Opportunities
Abstract
:1. Introduction
2. Host Factor and Infections of Diabetic Foot Ulcers
3. Complications and Risks for Poor Clinical Outcomes
4. Aetiology of Diabetic Foot Infections
5. Topical Antimicrobials for Treating DFIs
6. Strategies under Investigation with Potential in DFI Management
6.1. Antibiotic Impregnated Biomaterials
6.2. Antimicrobial Peptides and Peptide-Based Polymers
6.3. Synergistic Antimicrobial Activity of Antimicrobial Peptides and Polymers with Antibiotics
6.4. Photodynamic Therapy
Chemical Structure/Name | Antimicrobial Activity a | Irradiation Wavelength b | Singlet Oxygen (ΦΔ) c | Reference |
---|---|---|---|---|
Meso-substituted tetra methyl-pyridinium porphyrin | In vitro ≥7 log killing of S. aureus (10 nM), E. coli (100 nM), C. albicans (500 nM) In vivo Mouse wound infection model 4 log killing of E. coli Recurrence prevented up to 5 days post-aPDT | 405 nm | 0.71 | [108] |
Methyl meso-(meta-pyridinium) BODIPY | In vitro 7 log killing of S. aureus (5 μM, 15 min) 6 E. coli (5 μM, 15 min) 3 log killing of C. albicans (1 μM, 15 min) In vivo Mouse wound infection model. Increased wound healing and significantly reduced viable S. aureus by day 5. | >450 nm | 0.84 | [109] |
N, N′-bis (2-aminoethyl)-2,7,12,18-tetramethyl-3,8-divinyl-21H, 23H-porphyrin13,17-bispropanamide porphyrin | In vitro 4 log killing of P. aeruginosa (50 μM, 30 min) In vivo Mouse wound infection model. 4.2 log killing of P. aeruginosa (100 mM) post-aPDT. Statistically significantly increased wound healing at day 10. | 650 nm | 0.68 | [110] |
2,7,12-Tris(r-pyridinio-p-tolyl)-17-(p-(methoxymethyl)phenyl) porphycene | In vitro 6 log killing of E. faecalis (0.5 μM) 6 log killing S. aureus (2 μM) 6 log killing of A. baumanni (8 μM) 6 log killing of E. coli (10 μM) In vivo Mouse burn infection model 2.6 log reduction in MRSA (100 μM) | 652 nm | 0.03 | [111] |
Mono-N-methylpyrrolidinium fullerene iodide | In vitro >6 log killing of S. aureus (10 μM) 3 log killing of E. coli (100 μM) 1 log killing of P. aeruginosa (100 μM) In vivo Mouse infection model. Reduction in S. aureus viability 3 days post-aPDT. Moderate wound healing effects. | 385–780 nm | 0.31 | [112] |
6.5. Combination of PDT with Antibiotics
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Diabetes Foundation (IDF). IDF Diabetes Atlas|Tenth Edition. Available online: https://diabetesatlas.org/ (accessed on 29 September 2022).
- Zhang, P.; Lu, J.; Jing, Y.; Tang, S.; Zhu, D.; Bi, Y. Global Epidemiology of Diabetic Foot Ulceration: A Systematic Review and Meta-Analysis†. Ann. Med. 2017, 49, 106–116. [Google Scholar] [CrossRef]
- Kee, K.K.; Nair, H.K.R.; Yuen, N.P. Risk Factor Analysis on the Healing Time and Infection Rate of Diabetic Foot Ulcers in a Referral Wound Care Clinic. J. Wound Care 2019, 28, S4–S13. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Parker, C.N.; Parker, T.J.; Kinnear, E.M.; Derhy, P.H.; Alvarado, A.M.; Huygens, F.; Lazzarini, P.A. Diabetic Foot Working Group, Queensland Statewide Diabetes Clinical Network (Australia) Incidence and Risk Factors for Developing Infection in Patients Presenting with Uninfected Diabetic Foot Ulcers. PLoS ONE 2017, 12, e0177916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acar, E.; Kacıra, B.K. Predictors of Lower Extremity Amputation and Reamputation Associated With the Diabetic Foot. J. Foot Ankle Surg. 2017, 56, 1218–1222. [Google Scholar] [CrossRef] [PubMed]
- Ndosi, M.; Wright-Hughes, A.; Brown, S.; Backhouse, M.; Lipsky, B.A.; Bhogal, M.; Reynolds, C.; Vowden, P.; Jude, E.B.; Nixon, J.; et al. Prognosis of the Infected Diabetic Foot Ulcer: A 12-Month Prospective Observational Study. Diabet. Med. 2018, 35, 78–88. [Google Scholar] [CrossRef]
- Apelqvist, J.; Larsson, J. What Is the Most Effective Way to Reduce Incidence of Amputation in the Diabetic Foot? Diabetes Metab. Res. Rev. 2000, 16 (Suppl. S1), S75–S83. [Google Scholar] [CrossRef]
- Fejfarová, V.; Jirkovská, A.; Dragomirecká, E.; Game, F.; Bém, R.; Dubský, M.; Wosková, V.; Křížová, M.; Skibová, J.; Wu, S. Does the Diabetic Foot Have a Significant Impact on Selected Psychological or Social Characteristics of Patients with Diabetes Mellitus? J. Diabetes Res. 2014, 2014, 371938. [Google Scholar] [CrossRef] [Green Version]
- Polikandrioti, M.; Vasilopoulos, G.; Koutelekos, I.; Panoutsopoulos, G.; Gerogianni, G.; Alikari, V.; Dousis, E.; Zartaloudi, A. Depression in Diabetic Foot Ulcer: Associated Factors and the Impact of Perceived Social Support and Anxiety on Depression. Int. Wound J. 2020, 17, 900–909. [Google Scholar] [CrossRef]
- Crocker, R.M.; Palmer, K.N.B.; Marrero, D.G.; Tan, T.-W. Patient Perspectives on the Physical, Psycho-Social, and Financial Impacts of Diabetic Foot Ulceration and Amputation. J. Diabetes Complicat. 2021, 35, 107960. [Google Scholar] [CrossRef]
- Richard, J.-L.; Sotto, A.; Lavigne, J.-P. New Insights in Diabetic Foot Infection. World J. Diabetes 2011, 2, 24–32. [Google Scholar] [CrossRef]
- Fernando, M.; Crowther, R.; Lazzarini, P.; Sangla, K.; Cunningham, M.; Buttner, P.; Golledge, J. Biomechanical Characteristics of Peripheral Diabetic Neuropathy: A Systematic Review and Meta-Analysis of Findings from the Gait Cycle, Muscle Activity and Dynamic Barefoot Plantar Pressure. Clin. Biomech. 2013, 28, 831–845. [Google Scholar] [CrossRef]
- Creager, M.A.; White, C.J.; Hiatt, W.R.; Criqui, M.H.; Josephs, S.C.; Alberts, M.J.; Pearce, W.H.; Gray, B.H.; Rocha-Singh, K.J. American Heart Association Atherosclerotic Peripheral Vascular Disease Symposium II: Executive Summary. Circulation 2008, 118, 2811–2825. [Google Scholar] [CrossRef] [Green Version]
- Newman, A.B.; Siscovick, D.S.; Manolio, T.A.; Polak, J.; Fried, L.P.; Borhani, N.O.; Wolfson, S.K. Ankle-Arm Index as a Marker of Atherosclerosis in the Cardiovascular Health Study. Cardiovascular Heart Study (CHS) Collaborative Research Group. Circulation 1993, 88, 837–845. [Google Scholar] [CrossRef] [Green Version]
- Perner, A.; Nielsen, S.E.; Rask-Madsen, J. High Glucose Impairs Superoxide Production from Isolated Blood Neutrophils. Intensive Care Med. 2003, 29, 642–645. [Google Scholar] [CrossRef]
- Daoud, A.K.; Tayyar, M.A.; Fouda, I.M.; Harfeil, N.A. Effects of Diabetes Mellitus vs. in Vitro Hyperglycemia on Select Immune Cell Functions. J. Immunotoxicol. 2009, 6, 36–41. [Google Scholar] [CrossRef] [Green Version]
- Jialal, I.; Polage, C.; Devaraj, S. Severe Hyperglycemia Down Regulates Toll-Like Receptors on Neutrophils: Implications for Propensity to Infections in Diabetics. FASEB J. 2013, 27, 648.11. [Google Scholar] [CrossRef]
- Widatalla, A.H.; Mahadi, S.E.I.; Shawer, M.A.; Elsayem, H.A.; Ahmed, M.E. Implementation of Diabetic Foot Ulcer Classification System for Research Purposes to Predict Lower Extremity Amputation. Int. J. Diabetes Dev. Ctries 2009, 29, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Schaper, N.C. Diabetic Foot Ulcer Classification System for Research Purposes: A Progress Report on Criteria for Including Patients in Research Studies. Diabetes Metab. Res. Rev. 2004, 20 (Suppl. S1), S90–S95. [Google Scholar] [CrossRef]
- Chuan, F.; Tang, K.; Jiang, P.; Zhou, B.; He, X. Reliability and Validity of the Perfusion, Extent, Depth, Infection and Sensation (PEDIS) Classification System and Score in Patients with Diabetic Foot Ulcer. PLoS ONE 2015, 10, e0124739. [Google Scholar] [CrossRef]
- Eschler, A.; Gradl, G.; Wussow, A.; Mittlmeier, T. Prediction of Complications in a High-Risk Cohort of Patients Undergoing Corrective Arthrodesis of Late Stage Charcot Deformity Based on the PEDIS Score. BMC Musculoskelet. Disord. 2015, 16, 349. [Google Scholar] [CrossRef]
- Zhan, L.X.; Branco, B.C.; Armstrong, D.G.; Mills, J.L. The Society for Vascular Surgery Lower Extremity Threatened Limb Classification System Based on Wound, Ischemia, and Foot Infection (WIfI) Correlates with Risk of Major Amputation and Time to Wound Healing. J. Vasc. Surg. 2015, 61, 939–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipsky, B.A.; Senneville, É.; Abbas, Z.G.; Aragón-Sánchez, J.; Diggle, M.; Embil, J.M.; Kono, S.; Lavery, L.A.; Malone, M.; van Asten, S.A.; et al. Guidelines on the Diagnosis and Treatment of Foot Infection in Persons with Diabetes (IWGDF 2019 Update). Diabetes Metab. Res. Rev. 2020, 36 (Suppl. S1), e3280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, D.T.; Hilton, J.R.; Harding, K.G. Diagnosing Foot Infection in Diabetes. Clin. Infect. Dis. 2004, 39 (Suppl. S2), S83–S86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skrepnek, G.H.; Mills, J.L.; Lavery, L.A.; Armstrong, D.G. Health Care Service and Outcomes Among an Estimated 6.7 Million Ambulatory Care Diabetic Foot Cases in the U.S. Diabetes Care 2017, 40, 936–942. [Google Scholar] [CrossRef] [Green Version]
- Lipsky, B.A.; Berendt, A.R.; Cornia, P.B.; Pile, J.C.; Peters, E.J.G.; Armstrong, D.G.; Deery, H.G.; Embil, J.M.; Joseph, W.S.; Karchmer, A.W.; et al. 2012 Infectious Diseases Society of America Clinical Practice Guideline for the Diagnosis and Treatment of Diabetic Foot Infections. Clin. Infect. Dis. 2012, 54, e132–e173. [Google Scholar] [CrossRef] [Green Version]
- Lebowitz, D.; Gariani, K.; Kressmann, B.; von Dach, E.; Huttner, B.; Bartolone, P.; Lê, N.; Mohamad, M.; Lipsky, B.A.; Uçkay, I. Are Antibiotic-Resistant Pathogens More Common in Subsequent Episodes of Diabetic Foot Infection? Int. J. Infect. Dis. 2017, 59, 61–64. [Google Scholar] [CrossRef] [Green Version]
- Uçkay, I.; Aragón-Sánchez, J.; Lew, D.; Lipsky, B.A. Diabetic Foot Infections: What Have We Learned in the Last 30 Years? Int. J. Infect. Dis. 2015, 40, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Breidenbach, W.C.; Trager, S. Quantitative Culture Technique and Infection in Complex Wounds of the Extremities Closed with Free Flaps. Plast. Reconstr. Surg. 1995, 95, 860–865. [Google Scholar] [CrossRef]
- Caldwell, M.D. Bacteria and Antibiotics in Wound Healing. Surg. Clin. N. Am. 2020, 100, 757–776. [Google Scholar] [CrossRef]
- Dow, G.; Browne, A.; Sibbald, R.G. Infection in Chronic Wounds: Controversies in Diagnosis and Treatment. Ostomy Wound Manag. 1999, 45, 23–27, 29–40; quiz 41–42. [Google Scholar]
- Høgsberg, T.; Bjarnsholt, T.; Thomsen, J.S.; Kirketerp-Møller, K. Success Rate of Split-Thickness Skin Grafting of Chronic Venous Leg Ulcers Depends on the Presence of Pseudomonas Aeruginosa: A Retrospective Study. PLoS ONE 2011, 6, e20492. [Google Scholar] [CrossRef]
- Xu, L.; McLennan, S.V.; Lo, L.; Natfaji, A.; Bolton, T.; Liu, Y.; Twigg, S.M.; Yue, D.K. Bacterial Load Predicts Healing Rate in Neuropathic Diabetic Foot Ulcers. Diabetes Care 2007, 30, 378–380. [Google Scholar] [CrossRef] [Green Version]
- Hurlow, J.; Blanz, E.; Gaddy, J.A. Clinical Investigation of Biofilm in Non-Healing Wounds by High Resolution Microscopy Techniques. J. Wound Care 2016, 25 (Suppl. S9), S11–S22. [Google Scholar] [CrossRef] [Green Version]
- Van Acker, H.; Van Dijck, P.; Coenye, T. Molecular Mechanisms of Antimicrobial Tolerance and Resistance in Bacterial and Fungal Biofilms. Trends Microbiol. 2014, 22, 326–333. [Google Scholar] [CrossRef]
- Flemming, H.-C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S.A.; Kjelleberg, S. Biofilms: An Emergent Form of Bacterial Life. Nat. Rev. Microbiol. 2016, 14, 563–575. [Google Scholar] [CrossRef]
- Schaper, N.C.; van Netten, J.J.; Apelqvist, J.; Bus, S.A.; Hinchliffe, R.J.; Lipsky, B.A. Practical Guidelines on the Prevention and Management of Diabetic Foot Disease (IWGDF 2019 Update). Diabetes Metab. Res. Rev. 2020, 36 (Suppl. S1), e3266. [Google Scholar] [CrossRef] [Green Version]
- Lipsky, B.A.; Uçkay, İ. Treating Diabetic Foot Osteomyelitis: A Practical State-of-the-Art Update. Medicina 2021, 57, 339. [Google Scholar] [CrossRef]
- Gottrup, F.; Apelqvist, J.; Bjarnsholt, T.; Bjansholt, T.; Cooper, R.; Moore, Z.; Peters, E.J.G.; Probst, S. EWMA Document: Antimicrobials and Non-Healing Wounds. Evidence, Controversies and Suggestions. J. Wound Care 2013, 22, S1–S89. [Google Scholar] [CrossRef]
- Lipsky, B.A.; Aragón-Sánchez, J.; Diggle, M.; Embil, J.; Kono, S.; Lavery, L.; Senneville, É.; Urbančič-Rovan, V.; Van Asten, S.; International Working Group on the Diabetic Foot; et al. IWGDF Guidance on the Diagnosis and Management of Foot Infections in Persons with Diabetes. Diabetes Metab. Res. Rev. 2016, 32 (Suppl. S1), 45–74. [Google Scholar] [CrossRef] [Green Version]
- Dumville, J.C.; Lipsky, B.A.; Hoey, C.; Cruciani, M.; Fiscon, M.; Xia, J. Topical Antimicrobial Agents for Treating Foot Ulcers in People with Diabetes. Cochrane Database Syst. Rev. 2017, 6, CD011038. [Google Scholar] [CrossRef]
- O’Meara, S.; Cullum, N.; Majid, M.; Sheldon, T. Systematic Reviews of Wound Care Management: (3) Antimicrobial Agents for Chronic Wounds; (4) Diabetic Foot Ulceration. Health Technol. Assess. 2000, 4, 1–237. [Google Scholar] [CrossRef] [PubMed]
- Marson, B.A.; Deshmukh, S.R.; Grindlay, D.J.C.; Ollivere, B.J.; Scammell, B.E. A Systematic Review of Local Antibiotic Devices Used to Improve Wound Healing Following the Surgical Management of Foot Infections in Diabetics. Bone Jt. J. 2018, 100-B, 1409–1415. [Google Scholar] [CrossRef] [PubMed]
- Peters, E.J.; Lipsky, B.A.; Aragón-Sánchez, J.; Boyko, E.J.; Diggle, M.; Embil, J.M.; Kono, S.; Lavery, L.A.; Senneville, E.; Urbančič-Rovan, V.; et al. Interventions in the Management of Infection in the Foot in Diabetes: A Systematic Review. Diabetes Metab. Res. Rev. 2016, 32 (Suppl. S1), 145–153. [Google Scholar] [CrossRef] [PubMed]
- Markakis, K.; Faris, A.R.; Sharaf, H.; Faris, B.; Rees, S.; Bowling, F.L. Local Antibiotic Delivery Systems: Current and Future Applications for Diabetic Foot Infections. Int. J. Low. Extrem Wounds 2018, 17, 14–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, S.; Andersen, C.; Black, J.; de Leon, J.; Fife, C.; Lantis Ii, J.C.; Niezgoda, J.; Snyder, R.; Sumpio, B.; Tettelbach, W.; et al. Management of Chronic Wounds: Diagnosis, Preparation, Treatment, and Follow-Up. Wounds 2017, 29, S19–S36. [Google Scholar]
- Dowd, S.E.; Wolcott, R.D.; Kennedy, J.; Jones, C.; Cox, S.B. Molecular Diagnostics and Personalised Medicine in Wound Care: Assessment of Outcomes. J. Wound Care 2011, 20, 232, 234–239. [Google Scholar] [CrossRef] [Green Version]
- Dumville, J.C.; Deshpande, S.; O’Meara, S.; Speak, K. Hydrocolloid Dressings for Healing Diabetic Foot Ulcers. Cochrane Database Syst. Rev. 2013, 8, CD009099. [Google Scholar] [CrossRef]
- Dumville, J.C.; O’Meara, S.; Deshpande, S.; Speak, K. Alginate Dressings for Healing Diabetic Foot Ulcers. Cochrane Database Syst. Rev. 2013, 6, CD009110. [Google Scholar] [CrossRef]
- Kavitha, K.V.; Tiwari, S.; Purandare, V.B.; Khedkar, S.; Bhosale, S.S.; Unnikrishnan, A.G. Choice of Wound Care in Diabetic Foot Ulcer: A Practical Approach. World J. Diabetes 2014, 5, 546–556. [Google Scholar] [CrossRef]
- Zhang, X.; Shu, W.; Yu, Q.; Qu, W.; Wang, Y.; Li, R. Functional Biomaterials for Treatment of Chronic Wound. Front. Bioeng. Biotechnol. 2020, 8, 516. [Google Scholar] [CrossRef]
- Seetharaman, S.; Natesan, S.; Stowers, R.S.; Mullens, C.; Baer, D.G.; Suggs, L.J.; Christy, R.J. A PEGylated Fibrin-Based Wound Dressing with Antimicrobial and Angiogenic Activity. Acta Biomater. 2011, 7, 2787–2796. [Google Scholar] [CrossRef]
- Gil, J.; Natesan, S.; Li, J.; Valdes, J.; Harding, A.; Solis, M.; Davis, S.C.; Christy, R.J. A PEGylated Fibrin Hydrogel-based Antimicrobial Wound Dressing Controls Infection without Impeding Wound Healing. Int. Wound J. 2017, 14, 1248–1257. [Google Scholar] [CrossRef]
- Pérez-Díaz, M.; Alvarado-Gomez, E.; Magaña-Aquino, M.; Sánchez-Sánchez, R.; Velasquillo, C.; Gonzalez, C.; Ganem-Rondero, A.; Martínez-Castañon, G.; Zavala-Alonso, N.; Martinez-Gutierrez, F. Anti-Biofilm Activity of Chitosan Gels Formulated with Silver Nanoparticles and Their Cytotoxic Effect on Human Fibroblasts. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 60, 317–323. [Google Scholar] [CrossRef]
- Salgami, E.V.; Bowling, F.L.; Whitehouse, R.W.; Boulton, A.J.M. Use of Tobramycin-Impregnated Calcium Sulphate Pellets in Addition to Oral Antibiotics: An Alternative Treatment to Minor Amputation in a Case of Diabetic Foot Osteomyelitis. Diabetes Care 2007, 30, 181–182. [Google Scholar] [CrossRef] [Green Version]
- Karr, J.C. Management in the Wound-Care Center Outpatient Setting of a Diabetic Patient with Forefoot Osteomyelitis Using Cerament Bone Void Filler Impregnated with Vancomycin: Off-Label Use. J. Am. Podiatr. Med. Assoc. 2011, 101, 259–264. [Google Scholar] [CrossRef]
- Morley, R.; Lopez, F.; Webb, F. Calcium Sulphate as a Drug Delivery System in a Deep Diabetic Foot Infection. Foot 2016, 27, 36–40. [Google Scholar] [CrossRef]
- Price, B.L.; Morley, R.; Bowling, F.L.; Lovering, A.M.; Dobson, C.B. Susceptibility of Monomicrobial or Polymicrobial Biofilms Derived from Infected Diabetic Foot Ulcers to Topical or Systemic Antibiotics in Vitro. PLoS ONE 2020, 15, e0228704. [Google Scholar] [CrossRef] [Green Version]
- Wininger, D.A.; Fass, R.J. Antibiotic-Impregnated Cement and Beads for Orthopedic Infections. Antimicrob. Agents Chemother. 1996, 40, 2675–2679. [Google Scholar] [CrossRef] [Green Version]
- Walenkamp, G.H.; Vree, T.B.; van Rens, T.J. Gentamicin-PMMA Beads. Pharmacokinetic and Nephrotoxicological Study. Clin. Orthop. Relat. Res. 1986, 205, 171–183. [Google Scholar] [CrossRef]
- da Costa, J.P.; Cova, M.; Ferreira, R.; Vitorino, R. Antimicrobial Peptides: An Alternative for Innovative Medicines? Appl. Microbiol. Biotechnol. 2015, 99, 2023–2040. [Google Scholar] [CrossRef]
- Gan, B.H.; Gaynord, J.; Rowe, S.M.; Deingruber, T.; Spring, D.R. Correction: The Multifaceted Nature of Antimicrobial Peptides: Current Synthetic Chemistry Approaches and Future Directions. Chem. Soc. Rev. 2022, 51, 792. [Google Scholar] [CrossRef]
- Thapa, R.K.; Diep, D.B.; Tønnesen, H.H. Topical Antimicrobial Peptide Formulations for Wound Healing: Current Developments and Future Prospects. Acta Biomater. 2020, 103, 52–67. [Google Scholar] [CrossRef]
- Niyonsaba, F.; Ushio, H.; Nakano, N.; Ng, W.; Sayama, K.; Hashimoto, K.; Nagaoka, I.; Okumura, K.; Ogawa, H. Antimicrobial Peptides Human Beta-Defensins Stimulate Epidermal Keratinocyte Migration, Proliferation and Production of Proinflammatory Cytokines and Chemokines. J. Investig. Dermatol. 2007, 127, 594–604. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Curiel, I.; Trujillo, V.; Montoya-Rosales, A.; Rincon, K.; Rivas-Calderon, B.; deHaro-Acosta, J.; Marin-Luevano, P.; Lozano-Lopez, D.; Enciso-Moreno, J.A.; Rivas-Santiago, B. 1,25-Dihydroxyvitamin D3 Induces LL-37 and HBD-2 Production in Keratinocytes from Diabetic Foot Ulcers Promoting Wound Healing: An in Vitro Model. PLoS ONE 2014, 9, e111355. [Google Scholar] [CrossRef]
- Yang, X.; Guo, J.-L.; Han, J.; Si, R.-J.; Liu, P.-P.; Zhang, Z.-R.; Wang, A.-M.; Zhang, J. Chitosan Hydrogel Encapsulated with LL-37 Peptide Promotes Deep Tissue Injury Healing in a Mouse Model. Mil. Med. Res. 2020, 7, 20. [Google Scholar] [CrossRef]
- Giacometti, A.; Cirioni, O.; Kamysz, W.; Silvestri, C.; Licci, A.; Riva, A.; Łukasiak, J.; Scalise, G. In Vitro Activity of Amphibian Peptides Alone and in Combination with Antimicrobial Agents against Multidrug-Resistant Pathogens Isolated from Surgical Wound Infection. Peptides 2005, 26, 2111–2116. [Google Scholar] [CrossRef]
- Liu, H.; Duan, Z.; Tang, J.; Lv, Q.; Rong, M.; Lai, R. A Short Peptide from Frog Skin Accelerates Diabetic Wound Healing. FEBS J. 2014, 281, 4633–4643. [Google Scholar] [CrossRef]
- Casciaro, B.; Lin, Q.; Afonin, S.; Loffredo, M.R.; de Turris, V.; Middel, V.; Ulrich, A.S.; Di, Y.P.; Mangoni, M.L. Inhibition of Pseudomonas Aeruginosa Biofilm Formation and Expression of Virulence Genes by Selective Epimerization in the Peptide Esculentin-1a(1–21)NH2. FEBS J. 2019, 286, 3874–3891. [Google Scholar] [CrossRef]
- Lipsky, B.A.; Holroyd, K.J.; Zasloff, M. Topical versus Systemic Antimicrobial Therapy for Treating Mildly Infected Diabetic Foot Ulcers: A Randomized, Controlled, Double-Blinded, Multicenter Trial of Pexiganan Cream. Clin. Infect. Dis. 2008, 47, 1537–1545. [Google Scholar] [CrossRef] [Green Version]
- Gottler, L.M.; Ramamoorthy, A. Structure, Membrane Orientation, Mechanism, and Function of Pexiganan—A Highly Potent Antimicrobial Peptide Designed from Magainin. Biochim. Biophys. Acta 2009, 1788, 1680–1686. [Google Scholar] [CrossRef] [Green Version]
- Lozeau, L.D.; Grosha, J.; Kole, D.; Prifti, F.; Dominko, T.; Camesano, T.A.; Rolle, M.W. Collagen Tethering of Synthetic Human Antimicrobial Peptides Cathelicidin LL37 and Its Effects on Antimicrobial Activity and Cytotoxicity. Acta Biomater. 2017, 52, 9–20. [Google Scholar] [CrossRef] [Green Version]
- Casciaro, B.; Moros, M.; Rivera-Fernández, S.; Bellelli, A.; de la Fuente, J.M.; Mangoni, M.L. Gold-Nanoparticles Coated with the Antimicrobial Peptide Esculentin-1a(1–21)NH2 as a Reliable Strategy for Antipseudomonal Drugs. Acta Biomater. 2017, 47, 170–181. [Google Scholar] [CrossRef]
- Shih, I.-L.; Shen, M.-H.; Van, Y.-T. Microbial Synthesis of Poly(Epsilon-Lysine) and Its Various Applications. Bioresour. Technol. 2006, 97, 1148–1159. [Google Scholar] [CrossRef]
- Mayandi, V.; Wen Choong, A.C.; Dhand, C.; Lim, F.P.; Aung, T.T.; Sriram, H.; Dwivedi, N.; Periayah, M.H.; Sridhar, S.; Fazil, M.H.U.T.; et al. Multifunctional Antimicrobial Nanofiber Dressings Containing ε-Polylysine for the Eradication of Bacterial Bioburden and Promotion of Wound Healing in Critically Colonized Wounds. ACS Appl. Mater. Interfaces 2020, 12, 15989–16005. [Google Scholar] [CrossRef]
- Li, W.; Hadjigol, S.; Mazo, A.R.; Holden, J.; Lenzo, J.; Shirbin, S.J.; Barlow, A.; Shabani, S.; Huang, T.; Reynolds, E.C.; et al. Star-Peptide Polymers Are Multi-Drug-Resistant Gram-Positive Bacteria Killers. ACS Appl. Mater. Interfaces 2022, 14, 25025–25041. [Google Scholar] [CrossRef]
- Lam, S.J.; O’Brien-Simpson, N.M.; Pantarat, N.; Sulistio, A.; Wong, E.H.H.; Chen, Y.-Y.; Lenzo, J.C.; Holden, J.A.; Blencowe, A.; Reynolds, E.C.; et al. Combating Multidrug-Resistant Gram-Negative Bacteria with Structurally Nanoengineered Antimicrobial Peptide Polymers. Nat. Microbiol. 2016, 1, 16162. [Google Scholar] [CrossRef]
- Shirbin, S.J.; Insua, I.; Holden, J.A.; Lenzo, J.C.; Reynolds, E.C.; O’Brien-Simpson, N.M.; Qiao, G.G. Architectural Effects of Star-Shaped “Structurally Nanoengineered Antimicrobial Peptide Polymers” (SNAPPs) on Their Biological Activity. Adv. Healthc. Mater. 2018, 7, e1800627. [Google Scholar] [CrossRef]
- Grace, A.; Murphy, R.; Dillon, A.; Smith, D.; Cryan, S.-A.; Heise, A.; Fitzgerald-Hughes, D. Modified Poly(L-Lysine)-Based Structures as Novel Antimicrobials for Diabetic Foot Infections, an in-Vitro Study. HRB Open Res. 2022, 5, 4. [Google Scholar] [CrossRef]
- Afacan, N.J.; Yeung, A.T.Y.; Pena, O.M.; Hancock, R.E.W. Therapeutic Potential of Host Defense Peptides in Antibiotic-Resistant Infections. Curr. Pharm. Des. 2012, 18, 807–819. [Google Scholar] [CrossRef] [Green Version]
- Dong, W.; Zhu, X.; Zhou, X.; Yang, Y.; Yan, X.; Sun, L.; Shang, D. Potential Role of a Series of Lysine-/Leucine-Rich Antimicrobial Peptide in Inhibiting Lipopolysaccharide-Induced Inflammation. Biochem. J. 2018, 475, 3687–3706. [Google Scholar] [CrossRef]
- de Gier, M.G.; Albada, H.B.; Josten, M.; Willems, R.; Leavis, H.; van Mansveld, R.; Paganelli, F.L.; Dekker, B.; Lammers, J.-W.J.; Sahl, H.-G.; et al. Synergistic Activity of a Short Lipidated Antimicrobial Peptide (LipoAMP) and Colistin or Tobramycin against Pseudomonas Aeruginosa from Cystic Fibrosis Patients. Med. Chem. Commun. 2016, 7, 148–156. [Google Scholar] [CrossRef] [Green Version]
- Amani, J.; Barjini, K.A.; Moghaddam, M.M.; Asadi, A. In Vitro Synergistic Effect of the CM11 Antimicrobial Peptide in Combination with Common Antibiotics against Clinical Isolates of Six Species of Multidrug-Resistant Pathogenic Bacteria. Protein Pept. Lett. 2015, 22, 940–951. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, K.; Sarig, H.; Zaknoon, F.; Epand, R.F.; Epand, R.M.; Mor, A. Sensitization of Gram-Negative Bacteria by Targeting the Membrane Potential. FASEB J. 2013, 27, 3818–3826. [Google Scholar] [CrossRef] [PubMed]
- Pushpan, S.K.; Venkatraman, S.; Anand, V.G.; Sankar, J.; Parmeswaran, D.; Ganesan, S.; Chandrashekar, T.K. Porphyrins in Photodynamic Therapy—A Search for Ideal Photosensitizers. Curr. Med. Chem. Anticancer Agents 2002, 2, 187–207. [Google Scholar] [CrossRef]
- Ablon, G. Phototherapy with Light Emitting Diodes: Treating a Broad Range of Medical and Aesthetic Conditions in Dermatology. J. Clin. Aesthet. Dermatol. 2018, 11, 21–27. [Google Scholar]
- Prażmo, E.J.; Kwaśny, M.; Łapiński, M.; Mielczarek, A. Photodynamic Therapy As a Promising Method Used in the Treatment of Oral Diseases. Adv. Clin. Exp. Med. 2016, 25, 799–807. [Google Scholar] [CrossRef] [Green Version]
- Oniszczuk, A.; Wojtunik-Kulesza, K.A.; Oniszczuk, T.; Kasprzak, K. The Potential of Photodynamic Therapy (PDT)-Experimental Investigations and Clinical Use. Biomed. Pharmacother. 2016, 83, 912–929. [Google Scholar] [CrossRef]
- Boltes Cecatto, R.; de Magalhães, L.S.; Fernanda Setúbal Destro Rodrigues, M.; Pavani, C.; Lino-Dos-Santos-Franco, A.; Teixeira Gomes, M.; Fátima Teixeira Silva, D. Methylene Blue Mediated Antimicrobial Photodynamic Therapy in Clinical Human Studies: The State of the Art. Photodiagnosis Photodyn. Ther. 2020, 31, 101828. [Google Scholar] [CrossRef]
- Valenzuela-Valderrama, M.; González, I.A.; Palavecino, C.E. Photodynamic Treatment for Multidrug-Resistant Gram-Negative Bacteria: Perspectives for the Treatment of Klebsiella Pneumoniae Infections. Photodiagnosis Photodyn. Ther. 2019, 28, 256–264. [Google Scholar] [CrossRef]
- Fu, X.-J.; Fang, Y.; Yao, M. Antimicrobial Photodynamic Therapy for Methicillin-Resistant Staphylococcus Aureus Infection. BioMed Res. Int. 2013, 2013, 159157. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Xuan, Y.; Koide, Y.; Zhiyentayev, T.; Tanaka, M.; Hamblin, M.R. Type I and Type II Mechanisms of Antimicrobial Photodynamic Therapy: An in Vitro Study on Gram-Negative and Gram-Positive Bacteria. Lasers Surg. Med. 2012, 44, 490–499. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Huang, Y.-Y.; Wang, Y.; Wang, X.; Hamblin, M.R. Antimicrobial Photodynamic Therapy to Control Clinically Relevant Biofilm Infections. Front. Microbiol. 2018, 9, 1299. [Google Scholar] [CrossRef] [Green Version]
- Morley, S.; Griffiths, J.; Philips, G.; Moseley, H.; O’Grady, C.; Mellish, K.; Lankester, C.L.; Faris, B.; Young, R.J.; Brown, S.B.; et al. Phase IIa Randomized, Placebo-Controlled Study of Antimicrobial Photodynamic Therapy in Bacterially Colonized, Chronic Leg Ulcers and Diabetic Foot Ulcers: A New Approach to Antimicrobial Therapy. Br. J. Dermatol. 2013, 168, 617–624. [Google Scholar] [CrossRef]
- de Lima Carvalho, D.P.; Guerra Pinto, J.; Di Paula Costa Sorge, C.; Rodrigues Benedito, F.R.; Khouri, S.; Ferreira Strixino, J. Study of Photodynamic Therapy in the Control of Isolated Microorganisms from Infected Wounds—An in Vitro Study. Lasers Med. Sci. 2014, 29, 113–120. [Google Scholar] [CrossRef]
- Nir, U.; Ladan, H.; Malik, Z.; Nitzan, Y. In Vivo Effects of Porphyrins on Bacterial DNA. J. Photochem. Photobiol. B 1991, 11, 295–306. [Google Scholar] [CrossRef]
- Tanaka, M.; Kinoshita, M.; Yoshihara, Y.; Shinomiya, N.; Seki, S.; Nemoto, K.; Hamblin, M.R.; Morimoto, Y. Photodynamic Therapy Using Intra-Articular Photofrin for Murine MRSA Arthritis: Biphasic Light Dose Response for Neutrophil-Mediated Antibacterial Effect. Lasers Surg. Med. 2011, 43, 221–229. [Google Scholar] [CrossRef] [Green Version]
- Zolfaghari, P.S.; Packer, S.; Singer, M.; Nair, S.P.; Bennett, J.; Street, C.; Wilson, M. In Vivo Killing of Staphylococcus Aureus Using a Light-Activated Antimicrobial Agent. BMC Microbiol. 2009, 9, 27. [Google Scholar] [CrossRef] [Green Version]
- Wilson, M.; Yianni, C. Killing of Methicillin-Resistant Staphylococcus Aureus by Low-Power Laser Light. J. Med. Microbiol. 1995, 42, 62–66. [Google Scholar] [CrossRef]
- Lambrechts, S.A.G.; Demidova, T.N.; Aalders, M.C.G.; Hasan, T.; Hamblin, M.R. Photodynamic Therapy for Staphylococcus Aureus Infected Burn Wounds in Mice. Photochem. Photobiol. Sci. 2005, 4, 503–509. [Google Scholar] [CrossRef] [Green Version]
- Akilov, O.E.; Yousaf, W.; Lukjan, S.X.; Verma, S.; Hasan, T. Optimization of Topical Photodynamic Therapy with 3,7-Bis(Di-n-Butylamino)Phenothiazin-5-Ium Bromide for Cutaneous Leishmaniasis. Lasers Surg. Med. 2009, 41, 358–365. [Google Scholar] [CrossRef]
- Tardivo, J.P.; Adami, F.; Correa, J.A.; Pinhal, M.A.S.; Baptista, M.S. A Clinical Trial Testing the Efficacy of PDT in Preventing Amputation in Diabetic Patients. Photodiagnosis Photodyn. Ther. 2014, 11, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Piskorz, J.; Porolnik, W.; Kucinska, M.; Dlugaszewska, J.; Murias, M.; Mielcarek, J. BODIPY-Based Photosensitizers as Potential Anticancer and Antibacterial Agents: Role of the Positive Charge and the Heavy Atom Effect. ChemMedChem 2021, 16, 399–411. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Ivanov, M.; Gao, Y.; Bussotti, L.; Foggi, P.; Zhang, H.; Russo, N.; Dick, B.; Zhao, J.; Di Donato, M.; et al. Spin-Orbit Charge-Transfer Intersystem Crossing (ISC) in Compact Electron Donor-Acceptor Dyads: ISC Mechanism and Application as Novel and Potent Photodynamic Therapy Reagents. Chemistry 2020, 26, 1091–1102. [Google Scholar] [CrossRef]
- Li, C.; Li, Y.; Wu, Q.; Sun, T.; Xie, Z. Multifunctional BODIPY for Effective Inactivation of Gram-Positive Bacteria and Promotion of Wound Healing. Biomater. Sci. 2021, 9, 7648–7654. [Google Scholar] [CrossRef]
- van Eps, R.G.S.; Adili, F.; Watkins, M.T.; Anderson, R.R.; LaMuraglia, G.M. Photodynamic Therapy of Extracellular Matrix Stimulates Endothelial Cell Growth by Inactivation of Matrix-Associated Transforming Growth Factor-Beta. Lab. Investig. 1997, 76, 257–266. [Google Scholar]
- Mills, S.J.; Farrar, M.D.; Ashcroft, G.S.; Griffiths, C.E.M.; Hardman, M.J.; Rhodes, L.E. Topical Photodynamic Therapy Following Excisional Wounding of Human Skin Increases Production of Transforming Growth Factor-Β3 and Matrix Metalloproteinases 1 and 9, with Associated Improvement in Dermal Matrix Organization. Br. J. Dermatol. 2014, 171, 55–62. [Google Scholar] [CrossRef]
- Xuan, W.; Huang, L.; Wang, Y.; Hu, X.; Szewczyk, G.; Huang, Y.; El-Hussein, A.; Bommer, J.C.; Nelson, M.L.; Sarna, T.; et al. Amphiphilic Tetracationic Porphyrins Are Exceptionally Active Antimicrobial Photosensitizers: In Vitro and in Vivo Studies with the Free-base and Pd-chelate. J. Biophotonics 2019, 12, e201800318. [Google Scholar] [CrossRef]
- Lin, G.; Hu, M.; Zhang, R.; Zhu, Y.; Gu, K.; Bai, J.; Li, J.; Dong, X.; Zhao, W. Discovery of Meso- (Meta-Pyridinium) BODIPY Photosensitizers: In Vitro and In Vivo Evaluations for Antimicrobial Photodynamic Therapy. J. Med. Chem. 2021, 64, 18143–18157. [Google Scholar] [CrossRef]
- Zhao, Z.-J.; Xu, Z.-P.; Ma, Y.-Y.; Ma, J.-D.; Hong, G. Photodynamic Antimicrobial Chemotherapy in Mice with Pseudomonas Aeruginosa-Infected Wounds. PLoS ONE 2020, 15, e0237851. [Google Scholar] [CrossRef]
- Ragàs, X.; Sánchez-García, D.; Ruiz-González, R.; Dai, T.; Agut, M.; Hamblin, M.R.; Nonell, S. Cationic Porphycenes as Potential Photosensitizers for Antimicrobial Photodynamic Therapy. J. Med. Chem. 2010, 53, 7796–7803. [Google Scholar] [CrossRef] [Green Version]
- Grinholc, M.; Nakonieczna, J.; Fila, G.; Taraszkiewicz, A.; Kawiak, A.; Szewczyk, G.; Sarna, T.; Lilge, L.; Bielawski, K.P. Antimicrobial Photodynamic Therapy with Fulleropyrrolidine: Photoinactivation Mechanism of Staphylococcus Aureus, in Vitro and in Vivo Studies. Appl. Microbiol. Biotechnol. 2015, 99, 4031–4043. [Google Scholar] [CrossRef] [Green Version]
- Iluz, N.; Maor, Y.; Keller, N.; Malik, Z. The Synergistic Effect of PDT and Oxacillin on Clinical Isolates of Staphylococcus Aureus. Lasers Surg. Med. 2018, 50, 535–551. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turzańska, K.; Adesanya, O.; Rajagopal, A.; Pryce, M.T.; Fitzgerald Hughes, D. Improving the Management and Treatment of Diabetic Foot Infection: Challenges and Research Opportunities. Int. J. Mol. Sci. 2023, 24, 3913. https://doi.org/10.3390/ijms24043913
Turzańska K, Adesanya O, Rajagopal A, Pryce MT, Fitzgerald Hughes D. Improving the Management and Treatment of Diabetic Foot Infection: Challenges and Research Opportunities. International Journal of Molecular Sciences. 2023; 24(4):3913. https://doi.org/10.3390/ijms24043913
Chicago/Turabian StyleTurzańska, Kaja, Oluwafolajimi Adesanya, Ashwene Rajagopal, Mary T. Pryce, and Deirdre Fitzgerald Hughes. 2023. "Improving the Management and Treatment of Diabetic Foot Infection: Challenges and Research Opportunities" International Journal of Molecular Sciences 24, no. 4: 3913. https://doi.org/10.3390/ijms24043913
APA StyleTurzańska, K., Adesanya, O., Rajagopal, A., Pryce, M. T., & Fitzgerald Hughes, D. (2023). Improving the Management and Treatment of Diabetic Foot Infection: Challenges and Research Opportunities. International Journal of Molecular Sciences, 24(4), 3913. https://doi.org/10.3390/ijms24043913