Emerging Role of Cancer-Associated Fibroblasts in Progression and Treatment of Hepatocellular Carcinoma
Abstract
:1. Introduction
2. What Is a Fibroblast?
3. Origin and Activation Mechanisms of CAFs
4. Cellular Origin of CAFs in HCC
5. Impact of CAFs on HCC Progression
Authors | Type of Trial | Signaling Pathways, Mediators and Key Findings | Reference |
---|---|---|---|
Mazzocca et al., 2011 | Clinical/Experimental |
| [70] |
Lau et al., 2016 | Clinical/Experimental |
| [30] |
Rhee et al., 2018 | Experimental |
| [72] |
Zhang et al., 2017 | Experimental |
| [74] |
Affo et al., 2017 | Clinical/Experimental |
| [76] |
Xu et al., 2022 | Clinical/Experimental |
| [16] |
Yang et al., 2020 | Experimental |
| [82] |
Cheng et al., 2018 | Experimental |
| [83] |
Song et al., 2021 | Clinical/Experimental |
| [69] |
Qi et al., 2022 | Experimental |
| [63] |
6. Targeting CAFs for Clinical Benefits
7. Present Challenges and Future Direction
Funding
Conflicts of Interest
Declarations
Abbreviations
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Wang, B.; Liu, W.; Wang, S.; Chen, R.; Chen, M. Declining disese burden of hepatocellular carcinomain the United States, 1992–2017: Apopulation-based analysis. Hepatology 2022, 76, 576–578. [Google Scholar] [CrossRef]
- Rumgay, H.; Arnold, M.; Ferlay, J.; Lesi, O.; Cabasag, C.J.; Vignat, J.; Laversanne, M.; McGlynn, K.A.; Soerjomatoram, I. Global burden of primary liver cancer in 2020 and predictions to 2040. J. Hepatol. 2022, 77, 1598–1606. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Klein, C.; Caruso, S.; Maiuri, M.C.; Lomenie, N.; Calderano, J. HCC surveillance improves early detection, curative treatment, and survival in patients with cirrhisis. J. Hepatol. 2022, 77, 116–127. [Google Scholar] [CrossRef]
- Allen, A.M.; Themean, T.M.; Ahmed, O.T.; Canning, R.E.; Benson, J.T.; Kamatth, P.S.; Gidener, T.; Larson, J.J.; Canning, R.E. Clinical course of non-alcoholic fatty liver disease and the implications for clinical trial design. J. Hepatol. 2022, 77, 1246–1255. [Google Scholar] [CrossRef] [PubMed]
- Khaderi, S.; Kanwal, F. Changing epidemiology of hepatocellular carcinoma in the United States: Winning the Battle but it is not over yet. Hepatology 2022, 76, 3. [Google Scholar] [CrossRef] [PubMed]
- Peiseler, M.; Schwabe, R.F.; Hampe, J.; Kubes, P.; Heikenwalder, M.; Tacke, F. Immune mechanisms linking metabolic injury to inflammation and fibrosis-novel insights into cellular communication circuits. J. Hepatol. 2022, 77, 1136–1160. [Google Scholar] [CrossRef] [PubMed]
- Liovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R. Hepatocellular Carcinoma. Nat. Rev. 2021, 6, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Binnewies, M.; Roberts, E.W.; Kersten, K.; Chan, V.; Fearon, D.F.; Merad, M.; Coussense, L.M.; Gabrilovic, D.L.; Ostrand-Rosenberg, S.; Hedrick, C.C.; et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 2018, 24, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Zhu, E.; Zhang, Y. Advances of cancer-associated fibroblasts in liver cancer. Biomark. Res. 2022, 10, 59. [Google Scholar] [CrossRef] [PubMed]
- Rix, L.L.R.; Sumi, N.J.; Hu, Q.; Deasi, B.; Bryant, A.T.; Li, X.; Welsh, E.A.; Fang, B.; Kinose, F.; Rix, U.; et al. IGF-binding proteins secreted by cancer-associated fibroblasts induce context-dependent drug sensitization of lung cancer cells. Sci. Signal 2022, 15, eabj5879. [Google Scholar]
- Foerster, F.; Gairing, S.J.; Ilyas, S.I.; Galle, P.R. Emerging immunotherapy for HCC: A guide for hepatologists. Hepatology 2022, 75, 1604–1626. [Google Scholar] [CrossRef] [PubMed]
- Tran, N.H.; Munoz, S.; Thompson, S.; Hellemier, C.; Bruix, J. Hepatocellular carcinoma downstaging for liver transplantation in the era of systemic combined therapy with anti-VEGF/TKI and immunotherapy. Hepatology 2022, 76, 1203–1218. [Google Scholar] [CrossRef]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.-Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N. Eng. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Xu, J.; Wang, W.; Liang, C.; Hua, J.; Liu, J.; Zhang, B. Crosstalk between cancer-associated fibroblats and immune cells in the tumor microenvironment: New findings and future perspectives. Mol. Cancer 2021, 20, 131. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zhao, J.; Li, J.; Zhu, Z.; Cui, Z.; Liu, R.; Lu, R.; Yao, Z.; Xu, Q. Cancer-associated fibroblast-derived CCL5 promotes hepatocellular carcinoma metastasis through activating HIF1α/ZEB1 axis. Nature 2022, 13, 478. [Google Scholar] [CrossRef]
- Sahai, E.; Astsaturov, I.; Cukierman, E.; DeNardo, D.G.; Egeblad, M.; Evans, R.M.; Fearon, D.; Greeten, F.R.; Hingorani, S.R.; Hunter, T.; et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nature 2020, 20, 174–186. [Google Scholar] [CrossRef] [Green Version]
- Biffi, G.; Tuvesan, D.A. Diversity and Biology of Cancer-Associated Fibroblasts. Physiol. Rev. 2021, 101, 147–176. [Google Scholar] [CrossRef]
- Baglieri, J.; Brenner, D.A.; Kisseleva, T. The role of Fibrosis and Liver-Associated Fibroblasts in the Pathogenesis of Hepatocellular Carcinoma. Int. J. Mol. Sci. 2019, 20, 1723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, F.; Yang, J.; Liu, J.; Wang, Y.; Mu, J.; Zeng, Q.; Deng, S.; Zhou, H. Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal Transduct. Target. Ther. 2021, 6, 218. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Li, J.; Fu, M.; Zhao, X.; Wang, W. The JAK/STAT signaling pathway: From bench to clinic. Signal Transduct. Target. Ther. 2021, 6, 402. [Google Scholar] [CrossRef]
- Chung, J.Y.-F.; Chan, M.K.-K.; Li, J.S.-F.; Chan, A.S.-W.; Tang, P.C.-T.; To, K.-F.; Lan, H.-Y.; Tang, P.M.-K. TGF-β Signaling: From Tissue Fibrosis to Tumor microenvironment. Int. J. Mol. Sci. 2021, 22, 7575. [Google Scholar] [CrossRef]
- Liu, J.; Chen, S.; Wang, W.; Ning, B.F.; Chen, F.; Shen, W.; Xie, W.-F.; Zhang, X. Cancer-associated fibroblasts promote hepatocellular metastasis through chemokine-activated hedgehog and TGFβ pathways. Cancer Let. 2016, 379, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Brizzi, M.F.; Tarone, G.; Deflippi, F. Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche. Curr. Opin. Cell Biol. 2012, 24, 645–651. [Google Scholar] [CrossRef]
- Le Guen, L.; Marchal, S.; Faure, S.; de Santa Barbara, P. Mesenchymal-epithelial interactions during digestive tract development and epithelial stem cell regeneration. Cell Mol. Life Sci. 2015, 72, 3883–3896. [Google Scholar] [CrossRef] [Green Version]
- Fukumura, D.; Xavier, R.; Suguira, T.; Chen, Y.; Park, E.C.; Lu, N.; Seling, M.; Nielsen, G.; Taksir, T.; Join, R.K.; et al. Tumor induction of VEGF promoter activity in stromal cells. Cells 1998, 94, 715–725. [Google Scholar] [CrossRef] [Green Version]
- Brown, F.D.; Turley, S.J. Fibroblastic reticular cells: Organization and regulation of the T lymphocyte life cycle. J. Immunol. 2015, 194, 1389–1394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fletcher, A.L.; Malhotra, D.; Turley, S.J. Lymph node stroma broaden the peripheral tolerance paradigm. Trends Immunol. 2011, 32, 12–18. [Google Scholar] [CrossRef] [Green Version]
- Sherman, M.H.; Yu, R.T.; Engle, D.D.; Ding, N.; Atkins, A.R.; Triac, H.; Collisson, E.A.; Connar, F.; Dyke, T.V.; Kozlov, S.; et al. Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell 2014, 159, 80–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lau, E.Y.T.; Lo, J.; Cheng, B.Y.L.; Ma, M.K.F.; Lee, J.M.F.; Ng, J.K.Y.; Chai, S.; Lin, C.H.; Tsang, S.Y.; Ma, S.; et al. Cancer-Associated Fibroblasts Regulate Tumor-Initiating Cell Plasticity in Hepatocellular Carcinoma through c-Met/FRA1/HEY1 Signaling. Cell Rep. 2016, 15, 1175–1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, X.; Huang, H.; Wang, Y.; Pan, C.; Yin, S.; Zhou, L.; Zheng, S. Tumor Immune Microenvironment Characterization in Hepatocellular Carcinoma Identifies Four Prognostic and Immunothreapeuutically Relevant Subclasses. Front. Oncol. 2021, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Wang, D.; Han, Y.; Huang, T.; He, X.; Wang, J.; Ou, C. Emerging Role of Cancer-Associated Fibroblasts-Derived Exosomes in Tumorigenesis. Front. Immunol. 2022, 12, 5661. [Google Scholar] [CrossRef]
- Sanz-Moreno, V.; Gaggiolic, C.; Yeo, M.; Albrengues, J.; Walberg, F.; Viros, A.; Hooper, S.; Mitter, R.; Feral, C.C.; Cook, M.; et al. ROCK and JAK1 signaling cooperate to control actomyosin contractility in tumor cells and stroma. Cancer Cell 2011, 20, 229–245. [Google Scholar] [CrossRef] [Green Version]
- Albrengues, J.; Bertero, C.; Grasset, E.; Bonan, S.; Mail, M.; Bourget, I.; Phillippe, C.; Serrona, C.H.; Benamars, S.; Crace, O.; et al. Epigenetic switch drives the conversion of fibroblast into proinvasive cancer-associated fibroblasts. Nat. Commun. 2015, 6, 1024. [Google Scholar] [CrossRef] [Green Version]
- Calvo, F.; Hooper, R.; Ronfti, R.; Forruga, A.J.; Moeeudorbary, E.; Bruckbauer, A.; Batista, F.; Charras, G.; Sahai, E. Cdr42EP3BORG2 and septin network enables mechano-transduction and the emergence of cancer-associated fibroblasts. Cell Rep. 2015, 13, 2699–2714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foster, C.T.; Gualdrini, F.; Treisman, R. Mutual dependence of the MRTF-SRF and YAP-TEAD pathways in cancer-associated fibroblasts is indirect and mediated by cytoskeletal dynamics. Genes. Dev. 2017, 31, 2361–2375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Yang, Q.; Tan, Y.; Ye, J.; Yuan, B.; Yu, W. Cancer-associated Fibroblasts Suppress Cancer Development: The Other side of the Coin. Front. Cell Dev. Biol. 2021, 9, 613534. [Google Scholar] [CrossRef]
- Nielsen, S.R. Macrophage-secreted granulin supports pancreatic cancer metastasis by inducing liver fibrosis. Nat. Cell. Biol. 2016, 18, 549–560. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Compisi, J.; Higono, C.; Beer, T.M.; Porter, P.; Coleman, I.; True, L.; Nelson, P.S. Treatment-induced damage to the tumor microenvironment promote prostate cancer therapy resistance through WNT16B. Nat. Med. 2012, 18, 1359–1368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Shang, C.; Gai, X.; Song, T.; Han, S.; Liu, Q.; Zheng, X. Sulfatase 2-induced Cancer-Associated Fibroblasts Promote Hepatocellular Carcinoma Progression via Inhibition of Apoptosis and Induction of Epithelial-to-Mesenchymal Transition. Front. Cell Dev. Biol. 2021, 9, 631931. [Google Scholar] [CrossRef] [PubMed]
- Song, T.; Dou, C.; Jia, Y.; Tu, K.; Zheng, X. TIMP-1 activated carcinoma-associated fibroblasts inhibit tumor apoptosis by activating SDF1/CXCR4 signaling in hepatocellular carcinoma. Oncotarget 2015, 6, 12061. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Gu, C.; Song, Q.; Zhu, M.; Xu, Y.; Xiao, M.; Zheng, W. Identifying cancer-associated fibroblasts as emerging targets for hepatocellular carcinoma. Cell Biosci. 2020, 10, 127. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-S.; Tang, X.T.; Lin, M.; Yuan, J.; Peng, Y.J.; Yin, X.; Sheng, G.G.; Ge, G.; Ren, Z.; Zhou, B.O. Perivenous Stellate Cells Are the Main Source of Myelofibroblasts Formed after Chronic liver injuries. Hepatology 2021, 74, 1578–1594. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, S.; Hamberger, F.; Ravichandra, A.; Miller, M.; Nair, A.; Affo, S.; Filliol, A.; Chin, L.; Savage, T.M.; Yin, D.; et al. Tumor restriction by type 1 collegene opposes tumor-promoting effects of cancer-associated fibroblasts. J. Clin. Investig. 2021, 131, e146987. [Google Scholar] [CrossRef]
- Ding, D.C.; Shyu, W.C.; Lin, S.Z. Mesenchymal stem cells. Cell Transpl. 2011, 20, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Yin, Z.; Jiang, K.; Li, R.; Dong, C.; Wang, L. Multipotent mesenchymal stromal cells play critical roles in hepatocellular carcinoma initiation, progression and therapy. Mol. Cancer 2018, 17, 178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prockop, D.J. Inflammation, fibrosis, and modulation of the process by mesenchymal stem/stromal cells. Matrix Biol. 2016, 51, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Salah, R.A.; Nası, M.A.; El-Derby, A.M.; Elkodous, M.A.; Mohamed, R.H.; El-Ekiaby, N.; Osama, A.; Elshenawy, S.E.; Hamad, M.H.M.; Magdeldin, S.; et al. Hepatocellular carcinoma cell line-microenvironment induced cancer-associated phenotype, genotype and functionality im mesenchymal stem cells. Life Sci. 2022, 288, 120168. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, M.Z.; Kim, V.M.; Guo, H.; Talbot, L.J.; Kuo, P.J. Osteopontin promotes CCL5-mesenchymal stromal cell-mediated breast cancer metastasis. Carcinogenesis 2011, 32, 477–487. [Google Scholar]
- Yeon, J.H.; Jeong, H.E.; Seo, H.; Cho, H.; Kim, K.; Na, D.; Chung, S.; Park, J.; Choi, N.; Kang, J.Y. Cancer-derived exosomes trigger endothelial to mesenchymal transition followed by induction of cancer-associated fibroblasts. Acta Biomater. 2018, 76, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Greening, D.W.; Gopal, S.K.; Mathias, R.A.; Liu, L.; Sheng, J.; Zu, H.-J.; Simpson, R.J. Emerging roles of exosomes during epithelial-mesenchymal transition and cancer progression. Semin. Cell. Dev. Biol. 2015, 40, 6071. [Google Scholar]
- Zeisberg, M.; Yang, C.; Martino, M.; Duncan, M.; Rieder, F.; Tanjore, H.; Kalluri, R. Fibroblasts Derive from Hepatocytes in Liver Fibrosis via Epithelial to Mesenchymal Transition. J. Biol. Chem. 2007, 282, 23337–23347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taura, K.; Miura, K.; Osterreicher, C.H.; Kodama, Y.; Penz-Osterreicher, M.; Brenned, D.A. Hepatocytes do not undergo epithelial-mesenchymal transition in liver fibrosis in mice. Hepatology 2010, 51, 1027–1036. [Google Scholar] [CrossRef]
- Zou, B.; Liu, X.; Zhang, B.; Gong, Y.; Cai, C.; Li, P.; Chen, J.; Xing, S.; Chen, J.; Peng, S.; et al. The expression of FAP in hepatocellular carcinoma cells is induced by hypoxia and correlates with poor clinical outcomes. J. Cancer 2018, 9, 3278–3286. [Google Scholar] [CrossRef]
- Cathy, J.M.; Gamarouidi, F.S.; Lio, Z.; McManus, B.M. Wnt3a induces myofibroblasts differentiation by upregulating TGF-β signaling through SMAD2 in a β-catenin-dependent manner. PLoS ONE 2011, 6, 19809. [Google Scholar]
- Jakobson, T.; Treuter, E.; Gustafsson, J.A.; Steffensen, K.R. Liver X receptor biology and pharmacology: New pathways, challenges and opportunities. Trend. Pharmacol. Sci. 2012, 33, 394–404. [Google Scholar] [CrossRef] [PubMed]
- Calkin, A.C.; Tontonoz, P. Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat. Rev. Mol. Cell. Biol. 2012, 13, 213–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moren, A.; Bellomo, C.; Tsubakihara, Y.; Kardasis, D.; Mikulits, W.; Heldin, C.-H.; Moustakas, A. LXRα limits TGFβ-dependent hepatocellular carcinoma associated fibroblast differentiation. Oncogenesis 2019, 36, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Feng, L.; Lu, M.; Zhang, B.; Xu, Y.; Zeng, Q.; Xi, J.; Zhou, J.; Ying, X.; Zhang, J.; et al. Integrative single-cell transcriptome analysis reveals a subpopulation of fibroblasts associated with favorable prognosis of liver cancer patients. Transl. Oncol. 2021, 14, 100981. [Google Scholar] [CrossRef] [PubMed]
- Bhowmick, E.G.; Neilson, E.G.; Moses, H.L. Stromal fibroblasts in cancer initiation and progression. Nature 2004, 432, 332–337. [Google Scholar] [CrossRef] [Green Version]
- Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 2016, 16, 582–598. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Shen, N.; Shi, Y.; Shi, X.; Fu, X.; Li, S.; Zhu, B.; Yu, W.; Zhang, Y. Characterization of cancer-related fibroblasts (CAFs) in hepatocellular carcinoma and construction of CAF-based risk signature based on single-cell RNA-seq and bulk RNA-seq data. Front. Immunol. 2022, 13, 1009789. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Wang, H.; Zhang, Q.; Liu, Z.; Wang, T.; Wu, Z.; Wu, W. CAF-Released Exosomal miR-20-a-5p Facilities HCC Progression via the LIMA-1Mediated β-Catenin Pathway. Cells 2022, 11, 3857. [Google Scholar] [CrossRef]
- Jangwirth, U.; van Wevarjik, A.; Evans, R.J.; Jenkins, L.; Vicente, D.; Alexander, J.; Gao, Q. Impairment of a distinct cancer-associated fibroblast population limits tumor growth and metastasis. Nat. Commun. 2021, 12, 3536. [Google Scholar]
- Ohlund, D.; Elyada, E.; Tuveson, D. Fibroblast heterogeneity in the cancer wound. J. Exp. Med. 2014, 211, 1503–1523. [Google Scholar] [CrossRef] [PubMed]
- Ohlund, D.; Handly-Santana, G.; Biffi, G.; Elyada, E.; Almeida, A.S.; Ponz-Sarvisa, M.; Corbo, V.; Oni, T.A.; Hearn, S.A.; Lee, E.J. distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J. Exp. Med. 2017, 214, 579–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambrechts, D.; Wauters, F.; Boeckx, B.; Albar, S.; Nittner, D.; Burton, O.; Bassez, A.; Decaluwe, H.; Pircher, A.; van den Eynde, K.; et al. Phenotype molding of stromal cells in the lung tumor microenvironment. Nat. Med. 2018, 24, 1277–1289. [Google Scholar] [CrossRef] [PubMed]
- Chiavarina, B.; Ronca, R.; Otaka, Y.; Sutton, R.B.; Rezzola, S.; Yokobori, T.; Chiodelli, P.; Souche, R.; Pourquier, D.; Yokobori, T.; et al. Fibroblast-derived prolargin is a tumor suppressor in hepatocellular carcinoma. Oncogene 2022, 41, 1410–1420. [Google Scholar] [CrossRef]
- Song, M.; He, J.; Pan, Q.-Z.; Yang, J.; Zhao, J.; Zhang, Y.-J.; Huang, Y.; Tang, Y.; Wang, Q.; He, J.; et al. Cancer-Associated Fibroblasts-Mediated Cellular Crosstalk Supports Hepatocellular Carcinoma Progression. Hepatology 2021, 73, 1717–1735. [Google Scholar] [CrossRef]
- Mazzocca, A.; Dituri, F.; Lupo, L.; Quaranta, M.; Antonaci, S.; Giannelli, G. Tumor-secreted Lysophostatidic Acid Accelerates Hepatocellular Carcinoma Progression by Promoting Differentiation of Peritumoral Fibroblasts in Myofibrolbasts. Hepatology 2011, 54, 920–930. [Google Scholar] [CrossRef] [Green Version]
- Lei, M.M.L.; Lee, T.K.W. Cancer-Associated Fibroblasts: Orchestrating the Crosstalk Between Liver Cancer Cells and Neutrophils Through the Cardiotrophin-Like Cytokine Factor1-Mediated Chemokine (C-X-C motif) Ligand 6/TGF-β Axis. Hepatology 2021, 5, 1631–1633. [Google Scholar] [CrossRef]
- Rhee, H.; Kim, H.-Y.; Choi, J.-H.; Woo, H.G.; Yoo, J.E.; Nahm, J.H.; Choi, J.-S.; Park, Y.N. Keratin 19 Expression in Hepatocellular Carcinoma Is Regulated by Fibroblast-Derived HGF via a MET-ERK1/2-AP1 and SP1 Axis. Cancer Res. 2018, 78, 1619–1631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, Z.; Dong, C.; Jiang, K.; Xu, Z.; Li, R.; Guo, K.; Shao, S.; Wang, L. Heterogeneity of cancer-associated fibroblasts and roles in the progression, prognosis, and therapy of hepatocellular carcinoma. J. Hematol. Oncol. 2019, 12, 101–122. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, X.; Sun, W.; Yue, S.; Yang, J.; Li, J.; Ma, B.; Wang, J.; Yang, X.; Pu, M.; et al. Loss of exosomal miR-320a from cancer-associated fibroblasts contributes to HCC proliferation and metastasis. Cancer Lett. 2017, 397, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Gascard, P.; Tisty, T.D. Carcinoma-associated fibroblasts: Orchestrating the composition of malignancy. Genes Dev. 2016, 30, 1002–1019. [Google Scholar] [CrossRef] [PubMed]
- Affo, S.; Yu, L.X.; Schwabe, R.F. The Role of Cancer-Associated Fibroblasts and Fibrosisin liver Cancer. Annu. Rev. Pathol. 2017, 12, 153–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boissonnas, A.; Combadiere, C. Modulating the tumor-associated macropahge landscape. Nat. Cancer Immunol. 2022, 23, 472–482. [Google Scholar]
- Lin, Z.Y.; Chuang, H.Y.; Chuang, W.L. Cancer-associated fibroblasts up-regulate CCL2, CCL26, IL6 and LOXL2 genes related promotion of cancer progression in hepatocellular carcinoma cells. Biomed. Pharmacother. 2012, 66, 525–529. [Google Scholar] [CrossRef]
- Kamoub, A.E.; Dash, A.B.; Vo, A.P.; Sulluvian, A.; Brooks, M.W.; Bell, G.W. Mesenchymal stem cells within tumor stroma promote breast cancer metastasis. Nature 2007, 449, 557–563. [Google Scholar]
- Liu, T.; Han, C.; Wang, S.; Fang, P.; Ma, Z.; Xu, L.; Yin, R. Cancer-associated fibroblasts: An emerging target of anti-cancer immunotherapy. J. Hemotol. Oncol. 2019, 12, 86. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Morine, Y.; Tokuda, K.; Yamada, S.; Saito, Y.; Nishi, M.; Ikemoto, T.; Shimada, M. Cancer-associated fibroblast-induced M2-polarized macrophages promote hepatocellular carcinoma progression via the plasminogen activator inhibitör-1 pathway. Int. J. Oncol. 2021, 59, 1–12. [Google Scholar] [CrossRef]
- Yang, F.; Wei, Y.; Han, D.; Li, Y.; Shi, S.; Jiao, D.; Wu, J.; Zhang, Q.; Shi, C.; Song, W.; et al. Interaction with CD68 and regulation of GAS6 Expression by Endosialin in Fibroblasts Drives Recruitment and Polarization of Macrophages in Hepatocellular Carcinoma. Cancer Res. 2020, 80, 3892–3905. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Li, H.; Deng, Y.; Tai, Y.; Zeng, K.; Zhang, Y.; Liu, W.; Zhang, Q.; Yang, Y. Cancer-associated fibroblasts induce PDL1+ neutrophils through the IL-6/STAT3 pathway that foster immune suppression in hepatocellular carcinoma. Cell Death Dis. 2018, 9, 422–434. [Google Scholar] [CrossRef] [PubMed]
- Ringelhan, M.; Pfister, D.; O’Connor, T.; Pikarsky, E.; Heikenwalder, M. The immunology of hepatocellular carcinoma. Nat. Immunol. 2018, 19, 222–232. [Google Scholar] [CrossRef]
- Rizvi, S.; Wang, J.; El- Khoueiry, A.B. Liver Cancer Immunity. Hepatology 2021, 73, 86–103. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Liu, S.; Zeng, S.; Shen, H. From bench to bed: The tumor immune microenvironment and current immunotherapeutic strategies fro hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 2019, 38, 396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sangro, B.; Sarobe, P.; Hervas-Stubbs, S.; Melero, I. Advances in immunotherapy for hepatocellular carcinoma. Nat. Rev. Gastronterol. Hepatol. 2021, 18, 525–543. [Google Scholar] [CrossRef] [PubMed]
- Miranda, A.; Hamilton, P.T.; Zhang, A.W.; Pattnaik, S.; Becht, E.; Mezheyeuski, A.; Bruun, J.; Micke, P.; de Reynies, A.; Nelson, B.H. Cancer stemness, intratumoral heterogeneity, and immune response across cancers. Proc. Natl. Acad. Sci. USA 2019, 116, 9020–9030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arvanitakis, K.; Mitroulis, I.; Germanidis, G. Tumor-associated neutrophils in hepatocellular carcinoma pathogenesis, prognosis, and therapy. Cancers 2021, 13, 2899. [Google Scholar] [CrossRef] [PubMed]
- He, G.; Zhang, H.; Zhou, J.; Wang, B.; Chen, Y.; Kong, Y.; Xie, X.; Wang, X.; Fei, R.; Wei, L.; et al. Peritumoral neutrophils negatively regulate adaptive immunity via the PD-L1/PD-1 signaling pathway in hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 2015, 34, 141–152. [Google Scholar] [CrossRef] [Green Version]
- Jakobetz, M.A.; Chan, D.S.; Neese, A.; Bapiro, T.E.; Cook, N.; Freese, K.K.; Feig, C.; Nakagawa, T.; Caldwell, M.E.; Zecchini, H.I.; et al. Hyaluronan impairs vascular function and drug delivery in a Mouse model of pancreatic cancer. Gut 2013, 62, 112–120. [Google Scholar]
- Lee, J.I.; Perera, R.M.; Wang, H.; Wu, D.C.; Liu, X.S.; Han, S.; Fitamant, J.; Jones, P.D.; Ghanta, K.S.; Kawano, S.; et al. Stromal response to Hedgehog signaling restrains pancreatic cancer progression. Proc. Natl. Acad. Sci. USA 2014, 111, E309I–E3100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olive, K.; Jacobetz, M.A.; Davidson, C.J.; Gapinathan, A.; Mcintyre, D.; Honess, D.; Madhu, B.; Goldgraben, M.A.; Caldwell, M.E.; Allard, D.; et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a Mouse model of pancreatic cancer. Science 2009, 324, 1457–1461. [Google Scholar] [CrossRef] [Green Version]
- Rhim, A.D.; Oberstein, P.E.; Thomas, D.H.; Mirek, E.T.; Palermo, C.F.; Sastra, S.A.; Dekleva, E.N.; Saunders, T.; Becerra, C.P.; Tattersall, I.W.; et al. stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 2014, 25, 735–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mariathasan, S.; Turley, S.J.; Nickles, D.; Castiglioni, A.; Yuen, K.; Wang, Y.; Kadel, E.E., III; Koeppen, H.; Astarita, J.L.; Cubas, R.; et al. TGFβ attenuates tumor response to PD-L1 blockade by contributing to exclusion of T cells. Nature 2018, 554, 544–548. [Google Scholar] [CrossRef]
- Tauriello, D.V.F.; Palomo-Ponce, S.; Storck, D.; Beranguer-Liergo, A.; Badia-Romentol, J.; Iglesias, M.; Sevillano, M.; Ibiza, S.; Cañellas, A.; Hernando-Momblona, X.; et al. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 2018, 554, 538–548. [Google Scholar] [CrossRef] [Green Version]
- Feig, C.; Jones, J.O.; Kraman, M.; Wells, R.J.; Deonarine, A.; Chan, D.S.; Connel, C.M.; Roberts, E.W.; Zhao, Q.; Caballero, O.L.; et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc. Natl. Acad. Sci. USA 2013, 110, 20212–20217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hingorani, S.R.; Zheng, L.; Bullock, A.J.; Seery, T.E.; Harris, W.P.; Sigal, D.S.; Braiteh, F.; Ritch, P.S.; Zalupski, M.M.; Bahary, N.; et al. HALO 202: Randomised phase II study of PEGPH20 plus Nab-Paclitaxel /Gemcitabine in patients with untreated, metastatic, pancreatic ductal adenocarcinoma. J. Clin. Oncol. 2018, 36, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Tempero, M.A.; Cutsem, E.V.; Sigal, D.; Oh, D.-Y.; Fazio, N.; Macorulla, T.; Hitre, E.; Hammel, P.; Hendifar, A.E.; Bates, S.E.; et al. HALO 301: A randomized, double-blind, placebo-controlled phase 3 study of pegvorhya luronidase alpha (PEGPH20) + nab-paclitoxel/gemcitabine (AG) in patients with with previously untreated hyaluronan (HA)-high metastatic pancreatic ductal adenocarcinoma (mPDA). J. Clin. Oncol. 2020, 38, 638–649. [Google Scholar]
- US National library of Medicine. Clinical Trials gov. 2018. Available online: https://clinicaltrials.gov/ct2/show/NCT01585701 (accessed on 25 November 2022).
- US National library of Medicine. Clinical Trials gov. 2017. Available online: https://clinicaltrials.gov/ct2/Show/NCT011951690 (accessed on 25 November 2022).
- Neesse, A.; Frese, K.K.; Bapiro, T.E.; Nakagawa, T.; Stemlicht, M.D.; Seeley, T.W.; Pilarsky, C.; Jodrell, D.I. CTGF antogonism with mAb FG-3019 enhances chemotherapy response without increasing drug delivery in murin ductal pancreas cancer. Proc. Natl. Acad. Sci. USA 2013, 110, 12325–12330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- US National Library of Medicine. Clinical Trials gov. 2019. Available online: https://clinicaltrials.gov/ct2/show/NTC03386721 (accessed on 25 November 2022).
- National Library of Medicine. ClinicalTrials.gov. 2019. Available online: https://clinicaltrials.gov/ct2/show/NCT02688712 (accessed on 25 November 2022).
- US National Library of Medicine. ClinicalTrials.gov. 2019. Available online: https://clinicaltrials.gov/ct2/show/NCT03563248 (accessed on 25 November 2022).
- US National Library of Medicine. ClinicalTrials.gov. 2015. Available online: https://clinicaltrials.gov/ct2/show/NCT01472198 (accessed on 25 November 2022).
- North, B.; Kocher, H.M.; Sasieni, P. A new pragmatic design for dose escalation in phase 1 clinical trials using an adaptive continual reassessment method. BMC Cancer 2019, 19, 632. [Google Scholar] [CrossRef] [PubMed]
Target | Name | Drug and Biologic | Mechanism | Current Status | References |
---|---|---|---|---|---|
Inhibition of CAF activation | |||||
FGFR | JNJ-42756493 | Small-molecule inhibitor | Promotes ECM depletion Prevents CAF activation | Phase-I and phase-II trials ongoing | [93] |
Hedgehog signaling pathway | JPI-926 (saridegib) and vismodegib | Small-molecule inhibitor | Leads to ECM depletion via blocking the Hedgehog signaling pathway and targeting ECM-producing αSMA+ CAFs | Failed in phase-III trial | [92] |
Inhibition of CAF activation and CAF action | |||||
TGF-β | Various, including galunisertib | Both blocking Abs and small-molecule receptor inhibitors | Prevents CAF activation and immunosuppression | Phase-II and phase-III trials ongoing | [94,95] |
Anjiotensin receptor II antagonist | Losartan | Small-molecule inhibitor | Decreases TGF-β activation in αSMA+ CAFs, leading to an increase in drug delivery and immunotherapy efficacy | Phase-III trial ongoing | [99] |
Inhibition of CAF action | |||||
CXCR4 | AMD3100 | Small-molecule inhibitor | Prevents signaling from CAFs to immune cells | CTs ongoing | [96] |
ROCK | AT13148 | Small-molecule inhibitor | Reduces contractility | Phase-I trial completed | [100] |
FAK | Defactinib | Small-molecule inhibitor | Reduces downstream signaling of integrins | Clinical trials ongoing | [92] |
LOXL2 | Simtuzumab | Blocking Ab | Anticrosslinking | Preclinical and fibrosis trials ongoing | [102] |
CTGF | FG-3019 | Blocking Ab | Blocks binding to receptors, including integrins | Early-phase clinical trials ongoing | [101] |
Hyaluronic acid | PEGPH20 | Pegylated enzyme | Degrades ECM to increase access and efficacy of anticancer treatments and immunotherapies | Failed in phase-III trial | [97,98] |
FAP-express cells | Various, including PT630 and RO6874281 | Blocking Abs, molecular radiotherapy, inhibitors or an Ab-IL-2 fusion | Blocks FAB CAF function, promoting T-cell function | Phase-I and phase-II trials under way | [105] |
CAF normalization | |||||
Vitamin A metabolism | ATRA minnelide | Vitamin A metabolite | Transdifferentiates aHSCs into qHSCs | Clinical trials ongoing | [106] |
Vitamin D receptor | Calcipotriol | Small-molecule agonist | Transdifferentiates aHSCs into qHSCs | Clinical trials ongoing | [107] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akkız, H. Emerging Role of Cancer-Associated Fibroblasts in Progression and Treatment of Hepatocellular Carcinoma. Int. J. Mol. Sci. 2023, 24, 3941. https://doi.org/10.3390/ijms24043941
Akkız H. Emerging Role of Cancer-Associated Fibroblasts in Progression and Treatment of Hepatocellular Carcinoma. International Journal of Molecular Sciences. 2023; 24(4):3941. https://doi.org/10.3390/ijms24043941
Chicago/Turabian StyleAkkız, Hikmet. 2023. "Emerging Role of Cancer-Associated Fibroblasts in Progression and Treatment of Hepatocellular Carcinoma" International Journal of Molecular Sciences 24, no. 4: 3941. https://doi.org/10.3390/ijms24043941
APA StyleAkkız, H. (2023). Emerging Role of Cancer-Associated Fibroblasts in Progression and Treatment of Hepatocellular Carcinoma. International Journal of Molecular Sciences, 24(4), 3941. https://doi.org/10.3390/ijms24043941