Lipidation of Naturally Occurring α-Helical Antimicrobial Peptides as a Promising Strategy for Drug Design
Abstract
:1. Introduction
2. Results and Discussions
2.1. Antimicrobial Activity Assays
2.2. Evaluation of Cytotoxicity
2.3. Characterization of Peptide Assemblies
2.4. Conformational Analysis
2.5. Effect of Lipopeptides on the Phase Transition Temperature of DPPC and DPPG Lipids
2.6. The Thermodynamic Parameters of Lipopeptide Binding to the Lipid Bilayer
2.7. Transmission Electron Microscopy Imaging
2.8. Self-Assembly via Molecular Dynamics Simulations
2.9. Peptide-Membrane via Coarse-Grained Molecular Dynamics Simulations
3. Materials and Methods
3.1. Reagents
3.2. Peptide Synthesis
3.3. Antimicrobial Activity Assays
3.4. MTT Assays
3.5. Liposomes Preparation
3.6. Circular Dichroism (CD)
3.7. Isothermal Titration Calorimetry (ITC)
3.8. FTIR Measurements
3.9. Dynamic Light Scattering (DLS)
3.10. Transmission Electron Microscopy (TEM)
3.11. The Self-Assembly Simulations
3.12. CG MD Simulations of Spontaneous Peptide-Membrane Interactions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
C16 | Palmitic acid |
C14 | Myristic acid |
C12 | Lauric acid |
C10 | Capric acid |
C8 | Caprylic acid |
CDL2 | Cardiolipin 2 |
CG MD | Coarse-grained molecular dynamics |
DPPC | 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine |
DPPG | 1,2-Dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] |
LUV | Large unilamellar vesicle |
LysPG | Lysyl-phosphatidylglycerol |
MLV | Multilayer vesicle |
POPC | 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine |
POPE | 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine |
POPG | 1-Palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] |
References
- World Health Organization (WHO). Antimicrobial Resistance, 17 November 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 13 October 2022).
- Ventola, C.L. The Antibiotic Resistance Crisis: Part 1—Causes and threats. Pharm. Ther. 2015, 40, 277–283. [Google Scholar]
- Reygaert, W.C. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018, 4, 482–501. [Google Scholar] [CrossRef] [PubMed]
- Rima, M.; Rima, M.; Fajloun, Z.; Sabatier, J.M.; Bechinger, B.; Naas, T. Antimicrobial peptides: A potent alternative to antiviotics. Antibiotics 2021, 10, 1095. [Google Scholar] [CrossRef] [PubMed]
- Haney, E.F.; Straus, S.K.; Hancock, R.E.W. Reassessing the Host Defense Peptide Landscape. Front. Chem. 2019, 7, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersson, D.I.; Hughes, D.; Kubicek-Sutherland, J.Z. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist. Updat. 2016, 26, 43–57. [Google Scholar] [CrossRef]
- Kumar, P.; Kizhakkedathu, J.N.; Straus, S.K. Antimicrobial Peptides: Diversity, Mechanism of Action and Strategies to Improve the Activity and Biocompatibility In Vivo. Biomolecules 2018, 8, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mookherjee, N.; Anderson, M.A.; Haagsman, H.P.; Davidson, D.J. Antimicrobial host defence peptides: Functions and clinical potential. Nat. Rev. Drug Discov. 2020, 19, 311–332. [Google Scholar] [CrossRef]
- Gagnon, M.C.; Strandberg, E.; Grau-Campistany, A.; Wadhwani, P.; Reichert, J.; Brück, J.; Rabanal, F.; Auger, M.; Paquin, J.F.; Urlich, A.S. Influence of the length and charge on the activity of α-helical amphipatic antimicrobial peptides. Biochemistry 2017, 56, 1680–1695. [Google Scholar] [CrossRef]
- Tossi, A.; Sandri, L.; Giangaspero, A. Amphipathic, α-helical antimicrobial peptides. Biopolymers 2000, 55, 4–30. [Google Scholar] [CrossRef]
- Kosikowska, P.; Pikula, M.; Langa, P.; Trzonkowski, P.; Obuchowski, M.; Lesner, A. Synthesis and Evaluation of Biological Activity of Antimicrobial—Pro-Proliferative Peptide Conjugates. PLoS ONE 2015, 10, e0140377. [Google Scholar] [CrossRef]
- Kang, S.-J.; Nam, S.H.; Lee, B.-J. Engineering Approaches for the Development of Antimicrobial Peptide-Based Antibiotics. Antibiotics 2022, 11, 1338. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Sani, M.A.; Hu, X.; Fa, K.; Hart, J.W.; Liao, M.; Hollowell, P.; Carter, J.; Clifton, L.A.; Campana, M.; et al. How do self-assembling antimicrobial lipopeptides kill bacteria? ACS Appl. Mater. Interfaces 2020, 50, 55675–55687. [Google Scholar] [CrossRef] [PubMed]
- Boman, H.G.; Agerberth, B.; Boman, A. Mechanism of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect. Immun. 1993, 61, 2978–2984. [Google Scholar] [CrossRef] [Green Version]
- Chileveru, H.R.; Lim, S.A.; Chairatana, P.; Wommack, A.J.; Chiang, I.-L.; Nolan, E.M. Visualizing Attack of Escherichia coli by the Antimicrobial Peptide Human Defensin. Biochemistry 2015, 54, 1767–1777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishikata, M.; Kanehira, T.; Oh, H.; Tani, H.; Tazaki, M.; Kuboki, Y. Salivary histatin ad an inhibitor of a protease produced by the oral bacterium Bacteroides gingivalis. Biochem. Biophys. Res. Commun. 1992, 174, 625–630. [Google Scholar] [CrossRef]
- Lai, Y.; Gallo, R.L. AMPed up immunity: How antimicrobial peptides have multiple roles in immune defense. Trends Immunol. 2009, 30, 131–141. [Google Scholar] [CrossRef] [Green Version]
- Amerikova, M.; El-Tibi, I.P.; Maslarska, V.; Bozhanov, S.; Tachkov, K. Antimicrobial activity, mechanism of action and methods for stabilisation of defensins as new therapeutic agents. Biotechnol. Biotechnol. Equip. 2019, 33, 671–682. [Google Scholar] [CrossRef]
- Zhang, L.; Bulaj, G. Converting peptides into drug leads by lipidation. Curr. Med. Chem. 2012, 19, 1602–1618. [Google Scholar] [CrossRef]
- Kowalczyk, R.; Harris, P.W.R.; Williams, G.M.; Yang, S.H.; Brimble, M.A. Peptide Lipidation—A Synthetic Strategy to Afford Peptide Based Therapeutics. In: Sunna, A., Care, A., Bergquist, P. (eds) Peptides and Peptide-based Biomaterials and their Biomedical Applications. Adv. Exp. Med. Biol. 2017, 1030, 185–227. [Google Scholar]
- Drayton, M.; Kizhakkedathu, J.N.; Straus, S.K. Towards Robust Delivery of Antimicrobial Peptides to Combat Bacterial Resistance. Molecules 2020, 25, 3048. [Google Scholar] [CrossRef]
- Chen, B.; Sun, Y.; Niu, J.; Jarugumilli, G.K.; Wu, X. Protein lipidation in cell signalling and diseases: Function, regulation, and therapeutic opportunities. Cell Chem. Biol. 2018, 25, 817–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaezi, Z.; Bortolotti, A.; Luca, V.; Perilli, G.; Mangoni, M.L.; Khosravi-Far, R.; Bobone, S.; Stella, L. Aggregation determines the selectivity of membrane-active anticancer and sntimicrobial peptides: The case of killerFLIP. Biochim. Biophys. Acta Biomembr. 2020, 1862, 183107. [Google Scholar] [CrossRef] [Green Version]
- Kamysz, E.; Sikorska, E.; Jaśkiewicz, M.; Bauer, M.; Neubauer, D.; Bartoszewska, S.; Barańska-Rybak, W.; Kamysz, W. Lipidated analogs of the LL-37-derived peptide fragment KR-12—Structural analysis, surface-active properties and antimicrobial activity. Int. J. Mol. Sci. 2020, 21, 887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Čeřovský, V.; Buděšínský, M.; Hovorka, O.; Cvačka, J.; Voburka, Z.; Slaninová, J.; Borovičková, L.; Fučík, V.; Bednárová, L.; Votruba, I.; et al. Lasioglossins: Three Novel Antimicrobial Peptides from the Venom of the Eusocial BeeLasioglossum laticeps(Hymenoptera: Halictidae). Chembiochem 2009, 10, 2089–2099. [Google Scholar] [CrossRef] [PubMed]
- Oliva, R.; Mukherjee, S.K.; Fetahaj, Z.; Moebitz, S.; Winter, R.; Oliva, R. Perturbation of liquid droplets of P-granule protein LAF-1 by the antimicrobial peptide LL-III. Chem. Commun. 2020, 56, 11577–11580. [Google Scholar] [CrossRef]
- Shang, D.; Li, X.; Sun, Y.; Wang, C.; Sun, L.; Wei, S.; Gou, M. Design of Potent, Non-Toxic Antimicrobial Agents Based upon the Structure of the Frog Skin Peptide, Temporin-1CEb from Chinese Brown Frog, Rana chensinensis. Chem. Biol. Drug Des. 2012, 79, 653–662. [Google Scholar] [CrossRef]
- de Latour, F.A.; Amer, L.S.; Papanstasiou, E.A.; Bishop, B.M.; van Hoek, M.L. Antimicrobial activity of the Naja atra cathelicidin and related small peptides. Biochem. Biophys. Res. Commun. 2010, 396, 825–830. [Google Scholar] [CrossRef]
- Meena, K.R.; Kanwar, S.S. Lipopeptides as the Antifungal and Antibacterial Agents: Applications in Food Safety and Therapeutics. BioMed. Res. Int. 2015, 2015, 473050. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Kullberg, B.J.; Van Der Lee, H.; Vasil, A.I.; Hale, J.D.; Mant, C.T.; Hancock, R.E.W.; Vasil, M.L.; Netea, M.G.; Hodges, R.S. Effects of Hydrophobicity on the Antifungal Activity of α-Helical Antimicrobial Peptides. Chem. Biol. Drug Des. 2008, 72, 483–495. [Google Scholar] [CrossRef] [Green Version]
- Vieira, D.B.; Carmona-Ribeiro, A.M. Cationic lipids and surfactants as antifungal agents: Mode of action. J. Antimicrob. Chemother. 2006, 58, 760–767. [Google Scholar] [CrossRef]
- Zai, Y.; Xi, X.; Ye, Z.; Ma, C.; Zhou, M.; Chen, X.; Siu, S.; Chen, T.; Wang, L.; Kwok, H. Aggregation and Its Influence on the Bioactivities of a Novel Antimicrobial Peptide, Temporin-PF, and Its Analogues. Int. J. Mol. Sci. 2021, 22, 4509. [Google Scholar] [CrossRef] [PubMed]
- Manzo, G.; Scorciapino, M.A.; Wadhwani, P.; Bürck, J.; Montaldo, N.P.; Pintus, M.; Sanna, R.; Casu, M.; Giuliani, A.; Pirri, G.; et al. Enhanced Amphiphilic Profile of a Short β-Stranded Peptide Improves Its Antimicrobial Activity. PLoS ONE 2015, 10, e0116379. [Google Scholar] [CrossRef] [PubMed]
- Zhou, N.E.; Kay, C.M.; Hodges, R.S. Synthetic model proteins. Positional effects of interchain hydrophobic interactions on stability of two-stranded alpha-helical coiled-coils. J. Biol. Chem. 1992, 267, 2664–2670. [Google Scholar] [CrossRef] [PubMed]
- Malik, L.; Nygaard, J.; Christensen, N.J.; Straicher, W.W.; Thulstrup, P.W.; Arleth, L.; Jensen, K.J. Self-assembly of designed coiled coil peptides studied by small-angle X-ray scattering and analytical ultracentrifugation. J. Pept. Sci. 2013, 19, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Crooks, P.O.; Rao, T.; Mason, J.M. Truncation, randomization, and selection: Generation of a reduced length c-Jun antagonist that retains high interaction stability. J. Biol. Chem. 2011, 286, 29470–29479. [Google Scholar] [CrossRef] [Green Version]
- Hoernke, M.; Schwieger, C.; Kerth, A.; Blume, M. Binding of cationic pentapeptides with modified side chain lengths to negatively charged lipid membranes: Complex interplay of electrostatic and hydrophobic interactions. Biochim. Biophys. Acta (BBA)—Biomembr. 2012, 1818, 1663–1672. [Google Scholar] [CrossRef] [Green Version]
- Kodati, V.R.; El-Jastimi, R.; Lafleur, M. Contribution of the Intermolecular Coupling and Librotorsional Mobility in the Methylene Stretching Modes in the Infrared Spectra of Acyl Chains. J. Phys. Chem. 1994, 98, 12191–12197. [Google Scholar] [CrossRef]
- Arias, J.M.; Picot, R.A.C.; Tuttolomondo, M.E.; Ben Altabef, A.; Díaz, S.B. Interaction of N-acetylcysteine with DPPC liposomes at different pH: A physicochemical study. New J. Chem. 2020, 44, 14837–14848. [Google Scholar] [CrossRef]
- Crowe, L.M.; Crowe, J.H. Solution effects on the thermotropic phase transition of unilamellar liposomes. Biochim. Biophys. Acta (BBA)—Biomembr. 1991, 1064, 267–274. [Google Scholar] [CrossRef]
- Chen, C.; Tripp, C.P. A comparison of the behavior of cholesterol, 7-dehydrocholesterol and ergosterol in phospholipid membranes. Biochim. Biophys. Acta (BBA)—Biomembr. 2012, 1818, 1673–1681. [Google Scholar] [CrossRef] [Green Version]
- Małuch, I.; Stachurski, O.; Kosikowska-Adamus, P.; Makowska, M.; Bauer, M.; Wyrzykowski, D.; Hać, A.; Kamysz, W.; Deptuła, M.; Pikuła, M.; et al. Double-Headed Cationic Lipopeptides: An Emerging Class of Antimicrobials. Int. J. Mol. Sci. 2020, 21, 8944. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.; Gazit, E. The Self-Assembly of Helical Peptide Building Blocks. Chemnanomat 2016, 2, 323–332. [Google Scholar] [CrossRef]
- Mendes, A.C.; Baran, E.T.; Reis, R.L.; Azevedo, H.S. Self-assembly in nature: Using the principles of nature to create complex nanobiomaterials. WIREs Nanomed. Nanobiotechnol. 2013, 5, 582–612. [Google Scholar] [CrossRef] [PubMed]
- DeGrado, W.F.; Gratkowski, H.; Lear, J.D. How do helix-helix interactions help determine the folds of membrane proteins? Perspectives from the study of homo-oligomeric helical bundles. Protein Sci. 2003, 12, 647–665. [Google Scholar] [CrossRef]
- Heifetz, A.; Morao, I.; Babu, M.M.; James, T.; Southey, M.W.Y.; Fedorov, D.G.; Aldeghi, M.; Bodkin, M.J.; Townsend-Nicholson, A. Characterizing Interhelical Interactions of G-Protein Coupled Receptors with the Fragment Molecular Orbital Method. J. Chem. Theory Comput. 2020, 16, 2814–2824. [Google Scholar] [CrossRef]
- Marchesan, S.; Vargiu, A.V.; Styan, K.E. The Phe-Phe Motif for Peptide Self-Assembly in Nanomedicine. Molecules 2015, 20, 19775–19788. [Google Scholar] [CrossRef] [Green Version]
- Wayne, P.A. CLSI. Methods for Dilution Antimicrobial Susceptibility Test for Bacteria that Grow Aerobically, 11th ed.; CLSI Standard M07. 2008; Clinical and Laboratory Standard Institute: Malvern, PA, USA, 2008. [Google Scholar]
- Wayne, P.A. CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeast , 3rd ed.; CLSI document M27-A3. 2008; Clinical and Laboratory Standards Institute: Malvern, PA, USA, 2008. [Google Scholar]
- Kamysz, E.; Smolarczyk, R.; Cichoń, T.; Jarosz-Biej, M.; Sikorska, E.; Sobocińska, M.; Jaśkiewicz, M.; Kamysz, W. Antitumor activity of opiorphin, sialorphin and their conjugated with a peptide klaklakklaklak. J. Pept. Sci. 2016, 22, 723–730. [Google Scholar] [CrossRef]
- Sikorska, E.; Dawgul, M.; Greber, K.; Iłowska, E.; Pogorzelska, A.; Kamysz, W. Self-assembly and interactions of short antimicrobial cationic lipopeptides with membrane lipids: ITC, FTIR and molecular dynamics studies. Biochim. Biophys. Acta (BBA)—Biomembr. 2014, 1838, 2625–2634. [Google Scholar] [CrossRef] [Green Version]
- Neubauer, D.; Jaśkiewicz, M.; Sikorska, E.; Bauer, S.B.M.; Kapusta, M.; Narajczyk, M.; Kamysz, W. Effect of Disulfide Cyclization of Ultrashort Cationic Lipopeptides on Antimicrobial Activity and Cytotoxicity. Int. J. Mol. Sci. 2020, 21, 7208. [Google Scholar] [CrossRef]
- Case, D.A.; Ben-Shalom, I.Y.; Brozell, S.R.; Cerutti, D.S.; Cheatham, T.E., III; Cruzeiro, V.W.D.; Darden, T.A.; Duke, R.E.; Ghoreishi, D.; Gilson, M.K.; et al. Amber 18. 2008; University of California: San Francisco, CA, USA, 2018. [Google Scholar]
- Schmidt, M.W.; Baldridge, K.K.; Boatz, J.A.; Elbert, S.T.; Gordon, M.S.; Jensen, J.H.; Koseki, S.; Matsunaga, N.; Nguyen, K.A.; Su, S.; et al. General atomic and molecular electronic structure system. J. Comput. Chem. 1993, 14, 1347–1363. [Google Scholar] [CrossRef]
- Bayly, C.I.; Cieplak, P.; Cornell, W.D.; Kollman, P.A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. J. Phys. Chem. 1993, 97, 10269–10280. [Google Scholar] [CrossRef]
- Martínez, L.; Andrade, R.; Birgin, E.G.; Martínez, J.M. PACKMOL: A package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 2009, 30, 2157–2164. [Google Scholar] [CrossRef] [PubMed]
- Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J. Chem. Theory Comput. 2008, 4, 435–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Periole, X.; Marrink, S.J. The Martini coarse-grained force field. Methods Mol. Biol. 2013, 924, 533–565. [Google Scholar]
- Marrink, S.J.; Risselada, H.J.; Yefimov, S.; Tieleman, D.P.; de Vries, A.H. The martini Force Field: Coarse Grained Model for Biomolecular Simulations. J. Phys. Chem. B 2007, 111, 7812–7824. [Google Scholar] [CrossRef] [Green Version]
- Piggot, T.J.; Holdbrook, D.A.; Khalid, S. Electroporation of the E. coli and S. Aureus Membranes: Molecular Dynamics Simulations of Complex Bacterial Membranes. J. Phys. Chem. B 2011, 115, 13381–13388. [Google Scholar] [CrossRef]
- Winger, M.; Trzesniak, D.; Baron, R.; van Gunsteren, W.F. On using a too large integration time step in molecular dynamics simulations of coarse-grained molecular models. Phys. Chem. Chem. Phys. 2009, 11, 1934–1941. [Google Scholar] [CrossRef] [Green Version]
- Gapsys, V.; De Groot, B.L.; Briones, R. Computational analysis of local membrane properties. J. Comput. Aided Mol. Des. 2013, 27, 845–858. [Google Scholar] [CrossRef] [Green Version]
- Thota, C.K.; Mikolajczak, D.J.; Roth, C.; Koksch, B. Enhancing Antimicrobial Peptide Potency through Multivalent Presentation on Coiled-Coil Nanofibrils. ACS Med. Chem. Lett. 2021, 12, 67–73. [Google Scholar] [CrossRef]
- Eisenberg, D. Three-dimensional structure of membrane and surface proteins. Ann. Rev. Biochem. 1984, 53, 595–623. [Google Scholar] [CrossRef] [PubMed]
Compounds | Gram(+) | Gram(-) | Fungi | ||||||
---|---|---|---|---|---|---|---|---|---|
S. aureus PCM1650 | S. aureus PCM2054 | S. epidermidis PCM521 | S. epidermidis PCM2118 | E. coli PCM2057 | C. albicans PCM2566 | C. glabrata CCM8270 | C. krusei CCM8271 | C. parapsilosis CCM 8260 | |
LL-I | 25 | >50 | 12.5 | 6.25 | 12.5 | >50 | >50 | 50 | 50 |
C8-LL-I | 12.5 | 12.5 | 6.25 | 6.25 | 25 | 25 | 12.5 | 12.5 | |
C10-LL-I | 12.5 | 12.5 | 12.5 | 6.25 | 25 | 25 | 12.5 | 6.25 | |
C12-LL-I | 12.5 | 12.5 | 12.5 | 6.25 | >50 | 12.5 | 12.5 | 3.13 | |
C14-LL-I | >50 | >50 | 12.5 | 12.5 | >50 | 12.5 | 12.5 | 3.13 | |
C16-LL-I | >50 | >50 | 25 | 25 | >50 | >50 | >50 | 12.5 | |
LK6 | 50 | >50 | 6.25 | 6.25 | >50 | 50 | 31.25 | 12.5 | 12.5 |
C8-LK6 | 12.5 | 12.5 | 6.25 | 6.25 | >50 | 12.5 | 25 | 6.25 | 6.25 |
C10-LK6 | >50 | 50 | 6.25 | 6.25 | >50 | 6.25 | 6.25 | 6.25 | 6.25 |
C12-LK6 | 25 | 50 | 25 | 6.25 | >50 | 6.25 | 3.13 | 6.25 | 6.25 |
C14-LK6 | 50 | 50 | 25 | 25 | >50 | 6.25 | 12.5 | 6.25 | 6.25 |
C16-LK6 | >50 | >50 | 50 | 50 | >50 | 6.25 | >50 | 25 | 50 |
ATRA-1 | >50 | >50 | 25 | 50 | >50 | >50 | >50 | 50 | 50 |
C8-ATRA-1 | 6.25 | 7.8 | 3.13 | 3.13 | >50 | >50 | >50 | 12.5 | 50 |
C10-ATRA-1 | 6.25 | 3.9 | 3.13 | 3.13 | 31.25 | 50 | >50 | 12.5 | 25 |
C12-ATRA-1 | 6.25 | 3.9 | 3.13 | 3.13 | 31.25 | 2.5 | 6.25 | 2.5 | 12.5 |
C14-ATRA-1 | 12.5 | 3.9 | 25 | 6.25 | >50 | 2.5 | 3.13 | 2.5 | 3.13 |
C16-ATRA-1 | >50 | >50 | 25 | 12.5 | >50 | 2.5 | 3.13 | 2.5 | 3.13 |
Compounds | IC50 (µg/mL) | SI 1 | |||
---|---|---|---|---|---|
MCF-7 | PC3 | HaCaT | MCF-7 | PC3 | |
C8-LL-I | 5.69 | 10.55 | 8.07 | 1.42 | 0.76 |
C10-LL-I | 7.54 | 11.97 | 10.10 | 1.34 | 0.84 |
C8-LK6 | 8.71 | 20.04 | 29.97 | 3.44 | 1.50 |
C8-ATRA-1 | 11.52 | 43.04 | 98.51 | 8.55 | 2.29 |
C10-ATRA-1 | 14.99 | 36.26 | 142.00 | 9.47 | 3.92 |
Compounds | POPC | θ222/θ208 | POPG | θ222/θ208 |
---|---|---|---|---|
LL-I | 20 | 0.33 | 37 | 1.00 |
C8-LL-I | 48 | 0.85 | 27 | 0.90 |
C10-LL-I | 40 | 0.88 | 19 | 0.98 |
LK6 | 15 | 0.41 | 23 | 1.17 |
C8-LK6 | 46 | 0.82 | 24 | 1.00 |
ATRA-1 | - | - | 10 | 2.27 |
C8-ATRA-1 | 11 | 0.38 | 20 | 1.23 |
C10-ATRA-1 | 14 | 0.65 | 17 | 1.28 |
Staphylococcus aureus | θ222/θ208 | |||
C8-LK6, OD0.1 | 22 | 1.26 | ||
C8-LK6, OD0.2 | 17 | 0.89 | ||
C8-LK6, OD0.5 | 18 | 0.88 |
Compounds | N | pKITC | ΔH (kcal mol−1) | TΔS (kcal mol−1) | ΔG (kcal mol−1) |
---|---|---|---|---|---|
POPG | |||||
C8-LL-I | 2.05 ± 0.18 | 3.98 ± 0.06 | −10.9 ± 1.36 | −3.10 ± 1.36 | −7.80 ± 0.09 |
C10-LL-I | 1.31 ± 0.58 | 6.02 ± 1.09 | −0.01 ± 0.03 | 10.60 ± 1.49 | −10.60 ± 1.49 |
0.13 ± 1.53 | 4.69 ± 0.54 | −3.11 ± 38.3 | 5.66 ± 38.3 | −8.77 ± 0.73 | |
C8-LK6 | 1.02 ± 0.05 | 6.31 ± 0.34 | 0.97 ± 0.05 | 12.00 ± 0.46 | −11.00 ± 0.46 |
C8-ATRA-1 | 2.84 ± 0.08 | 5.78 ± 0.27 | 0.27 ± 0.01 | 10.5 ± 0.36 | −10.30 ± 0.36 |
C10-ATRA-1 | 3.16 ± 0.05 | 7.06 ± 0.61 | 0.22 ± 0.01 | 12.20 ± 0.83 | −10.20 ± 0.83 |
POPC | |||||
C10-LL-I | 0.52 ± 0.34 | 4.42 ± 0.24 | −1.16 ± 0.85 | 7.24 ± 0.91 | −8.4 ± 0.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makowska, M.; Kosikowska-Adamus, P.; Zdrowowicz, M.; Wyrzykowski, D.; Prahl, A.; Sikorska, E. Lipidation of Naturally Occurring α-Helical Antimicrobial Peptides as a Promising Strategy for Drug Design. Int. J. Mol. Sci. 2023, 24, 3951. https://doi.org/10.3390/ijms24043951
Makowska M, Kosikowska-Adamus P, Zdrowowicz M, Wyrzykowski D, Prahl A, Sikorska E. Lipidation of Naturally Occurring α-Helical Antimicrobial Peptides as a Promising Strategy for Drug Design. International Journal of Molecular Sciences. 2023; 24(4):3951. https://doi.org/10.3390/ijms24043951
Chicago/Turabian StyleMakowska, Marta, Paulina Kosikowska-Adamus, Magdalena Zdrowowicz, Dariusz Wyrzykowski, Adam Prahl, and Emilia Sikorska. 2023. "Lipidation of Naturally Occurring α-Helical Antimicrobial Peptides as a Promising Strategy for Drug Design" International Journal of Molecular Sciences 24, no. 4: 3951. https://doi.org/10.3390/ijms24043951
APA StyleMakowska, M., Kosikowska-Adamus, P., Zdrowowicz, M., Wyrzykowski, D., Prahl, A., & Sikorska, E. (2023). Lipidation of Naturally Occurring α-Helical Antimicrobial Peptides as a Promising Strategy for Drug Design. International Journal of Molecular Sciences, 24(4), 3951. https://doi.org/10.3390/ijms24043951