Alterations in the Level of Ergosterol in Candida albicans’ Plasma Membrane Correspond with Changes in Virulence and Result in Triggering Diversed Inflammatory Response
Abstract
:1. Introduction
2. Results
2.1. C. albicans Mutants with Altered Ergosterol Content Display Elevated Cell Surface Hydrophobicity (CSH) and Changed Ability of Biofilm Formation
2.2. C. albicans erg11∆/∆ Has an Impaired Ability of Hyphae Formation
2.3. Alterations in PM and CW of C. albicans Ergosterol Mutants Correlates with Different Patterns of Inflammatory Response and Cytokines Genes Expression of Host Cell Lines
2.4. C. albicans erg11∆/∆ and ERG11K143R/K143R Strains Display a Different Expression Pattern of Genes Encoding Crucial Adhesins
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. Strains, Cell Lines and Culture Condition
4.3. Cell Surface Hydrophobicity (CSH)
4.4. C. albicans Filamentation Assay
4.5. Biofilm Formation Assay
4.6. Determination of Inflammatory Response of Human Cell Lines in Response to Infection with C. albicans Mutants
4.7. Real-Time qPCR (RT-qPCR) Analysis of Adhesins and Cytokines Genes Expression
4.8. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pérez, J.C. The interplay between gut bacteria and the yeast Candida albicans. Gut Microbes 2021, 13, 1979877. [Google Scholar] [CrossRef]
- Pappas, P.G.; Lionakis, M.S.; Arendrup, M.C.; Ostrosky-Zeichner, L.; Kullberg, B.J. Invasive candidiasis. Nat. Rev. Dis. Prim. 2018, 11, 18026. [Google Scholar] [CrossRef] [PubMed]
- Kullberg, B.J.; Arendrup, M.C. Invasive Candidiasis. N. Engl. J. Med. 2015, 373, 1445–1456. [Google Scholar] [CrossRef] [Green Version]
- Ghrenassia, E.; Mokart, D.; Mayaux, J.; Demoule, A.; Rezine, I.; Kerhuel, L.; Calvet, L.; De Jong, A.; Azoulay, E.; Darmon, M. Candidemia in critically ill immunocompromised patients: Report of a retrospective multicenter cohort study. Ann. Intensive Care 2019, 9, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirano, R.; Sakamoto, Y.; Kudo, K.; Ohnishi, M. Retrospective analysis of mortality and Candida isolates of 75 patients with candidemia: A single hospital experience. Infect. Drug Resist. 2015, 8, 199–205. [Google Scholar] [CrossRef] [Green Version]
- Talapko, J.; Juzbašić, M.; Matijević, T.; Pustijanac, E.; Bekić, S.; Kotris, I.; Škrlec, I. Candida albicans-The Virulence Factors and Clinical Manifestations of Infection. J. Fungi 2021, 7, 79. [Google Scholar] [CrossRef] [PubMed]
- Moyes, D.L.; Wilson, D.; Richardson, J.P.; Mogavero, S.; Tang, S.X.; Wernecke, J.; Höfs, S.; Gratacap, R.L.; Robbins, J.; Runglall, M.; et al. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature 2016, 532, 64–68. [Google Scholar] [CrossRef] [Green Version]
- Hanaoka, M.; Domae, E. IL-1α released from oral epithelial cells upon candidalysin exposure initiates an early innate epithelial response. Int. Immunol. 2021, 33, 161–170. [Google Scholar] [CrossRef]
- Mayer, F.L.; Wilson, D.; Hube, B. Candida albicans pathogenicity mechanisms. Virulence 2013, 4, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Murciano, C.; Moyes, D.L.; Runglall, M.; Tobouti, P.; Islam, A.; Hoyer, L.L.; Naglik, J.R. Evaluation of the role of Candida albicans agglutinin-like sequence (Als) proteins in human oral epithelial cell interactions. PLoS ONE 2012, 7, 33362. [Google Scholar] [CrossRef] [Green Version]
- Nobile, C.J.; Nett, J.E.; Andes, D.R.; Mitchell, A.P. Function of Candida albicans adhesin Hwp1 in biofilm formation. Eukaryot. Cell 2006, 5, 1604–1610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Si, H.; Hernday, A.D.; Hirakawa, M.P.; Johnson, A.D.; Bennett, R.J. Candida albicans white and opaque cells undergo distinct programs of filamentous growth. PLoS Pathog. 2013, 9, e1003210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krasowska, A.; Sigler, K. How microorganisms use hydrophobicity and what does this mean for human needs? Front. Cell. Infect. Microbiol. 2014, 4, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gow, N.A.; Hube, B. Importance of the Candida albicans cell wall during commensalism and infection. Curr. Opin. Microbiol. 2012, 15, 406–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Rubio, R.; de Oliveira, H.C.; Rivera, J.; Trevijano-Contador, N. The Fungal Cell Wall: Candida, Cryptococcus, and Aspergillus Species. Front. Microbiol. 2020, 10, 2993. [Google Scholar] [CrossRef]
- Netea, M.G.; Joosten, L.A.; van der Meer, J.W.; Kullberg, B.J.; van de Veerdonk, F.L. Immune defence against Candida fungal infections. Nat. Rev. Immunol. 2015, 15, 630–642. [Google Scholar] [CrossRef]
- Sherrington, S.L.; Sorsby, E.; Mahtey, N.; Kumwenda, P.; Lenardon, M.D.; Brown, I.; Ballou, E.R.; MacCallum, D.M.; Hall, R.A. Adaptation of Candida albicans to environmental pH induces cell wall remodelling and enhances innate immune recognition. PLoS Pathog. 2017, 13, e1006403. [Google Scholar] [CrossRef] [Green Version]
- Sem, X.; Le, G.T.; Tan, A.S.; Tso, G.; Yurieva, M.; Liao, W.W.; Lum, J.; Srinivasan, K.G.; Poidinger, M.; Zolezzi, F.; et al. β-glucan Exposure on the Fungal Cell Wall Tightly Correlates with Competitive Fitness of Candida Species in the Mouse Gastrointestinal Tract. Front. Cell. Infect. Microbiol. 2016, 6, 186. [Google Scholar] [CrossRef] [Green Version]
- Granger, B.L. Accessibility and contribution to glucan masking of natural and genetically tagged versions of yeast wall protein 1 of Candida albicans. PLoS ONE 2018, 13, e0191194. [Google Scholar] [CrossRef] [Green Version]
- Saijo, S.; Ikeda, S.; Yamabe, K.; Kakuta, S.; Ishigame, H.; Akitsu, A.; Fujikado, N.; Kusaka, T.; Kubo, S.; Chung, S.H.; et al. Dectin-2 recognition of alpha-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. Immunity 2010, 32, 681–691. [Google Scholar] [CrossRef] [Green Version]
- Steele, C.; Fidel, P.L., Jr. Cytokine and chemokine production by human oral and vaginal epithelial cells in response to Candida albicans. Infect. Immun. 2002, 70, 577–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dongari-Bagtzoglou, A.; Kashleva, H. Candida albicans triggers interleukin-8 secretion by oral epithelial cells. Microb. Pathog. 2003, 34, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Rautemaa, R.; Hietanen, J.; Järvensivu, A.; Richardson, M.; Konttinen, Y.T. Expression of interleukin-8 and its receptor IL-8RA in chronic hyperplastic candidosis. Oral. Microbiol. Immunol. 2006, 21, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.J.; Kernien, J.F.; Hoyer, A.R.; Nett, J.E. Mechanisms involved in the triggering of neutrophil extracellular traps (NETs) by Candida glabrata during planktonic and biofilm growth. Sci. Rep. 2017, 7, 13065. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.J.; Davis, J.M.; Huttenlocher, A.; Kernien, J.F.; Nett, J.E. Emerging Fungal Pathogen Candida auris Evades Neutrophil Attack. mBio 2018, 9, 01403-18. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Sheng, F.; Zhao, J.; Chen, L.; Li, C. ERG11 mutations and expression of resistance genes in fluconazole-resistant Candida albicans isolates. Arch. Microbiol. 2015, 197, 1087–1093. [Google Scholar] [CrossRef]
- Xisto, M.I.; Caramalho, R.D.; Rocha, D.A.; Ferreira-Pereira, A.; Sartori, B.; Barreto-Bergter, E.; Junqueira, M.L.; Lass-Flörl, C.; Lackner, M. Pan-azole-resistant Candida tropicalis carrying homozygous erg11 mutations at position K143R: A new emerging superbug? J. Antimicrob. Chemother. 2017, 72, 988–992. [Google Scholar]
- Derkacz, D.; Bernat, P.; Krasowska, A. K143R Amino Acid Substitution in 14-α-Demethylase (Erg11p) Changes Plasma Membrane and Cell Wall Structure of Candida albicans. Int. J. Mol. Sci. 2022, 23, 1631. [Google Scholar] [CrossRef]
- Xiao, Z.; Wang, Q.; Zhu, F.; An, Y. Epidemiology, species distribution, antifungal susceptibility and mortality risk factors of candidemia among critically ill patients: A retrospective study from 2011 to 2017 in a teaching hospital in China. Antimicrob. Resist. Infect. Control 2019, 8, 89. [Google Scholar] [CrossRef]
- Mazi, P.B.; Olsen, M.A.; Stwalley, D.; Rauseo, A.M.; Ayres, C.; Powderly, W.G.; Spec, A. Attributable Mortality of Candida Bloodstream Infections in the Modern Era: A Propensity Score Analysis. Clin. Infect. Dis. 2022, 75, 1031–1036. [Google Scholar] [CrossRef]
- Logan, A.; Wolfe, A.; Williamson, J.C. Antifungal Resistance and the Role of New Therapeutic Agents. Curr. Infect. Dis. Rep. 2022, 24, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Suchodolski, J.; Derkacz, D.; Muraszko, J.; Panek, J.J.; Jezierska, A.; Łukaszewicz, M.; Krasowska, A. Fluconazole and Lipopeptide Surfactin Interplay during Candida albicans Plasma Membrane and Cell Wall Remodeling Increases Fungal Immune System Exposure. Pharmaceutics 2020, 12, 314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masuoka, J.; Hazen, K.C. Cell wall mannan and cell surface hydrophobicity in Candida albicans serotype A and B strains. Infect. Immun. 2004, 72, 6230–6236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suchodolski, J.; Muraszko, J.; Korba, A.; Bernat, P.; Krasowska, A. Lipid composition and cell surface hydrophobicity of Candida albicans influence the efficacy of fluconazole-gentamicin treatment. Yeast 2020, 37, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Hazen, K.C.; Lay, J.G.; Hazen, B.W.; Fu, R.C.; Murthy, S. Partial biochemical characterization of cell surface hydrophobicity and hydrophilicity of Candida albicans. Infect. Immun. 1990, 58, 3469–3476. [Google Scholar] [CrossRef] [Green Version]
- Danchik, C.; Casadevall, A. Role of Cell Surface Hydrophobicity in the Pathogenesis of Medically-Significant Fungi. Front. Cell. Infect. Microbiol. 2021, 10, 594973. [Google Scholar] [CrossRef]
- Pokhrel, S.; Boonmee, N.; Tulyaprawat, O.; Pharkjaksu, S.; Thaipisutikul, I.; Chairatana, P.; Ngamskulrungroj, P.; Mitrpant, C. Assessment of Biofilm Formation by Candida albicans Strains Isolated from Hemocultures and Their Role in Pathogenesis in the Zebrafish Model. J. Fungi 2022, 8, 1014. [Google Scholar] [CrossRef]
- Jung, P.; Mischo, C.E.; Gunaratnam, G.; Spengler, C.; Becker, S.L.; Hube, B.; Jacobs, K.; Bischoff, M. Candida albicans adhesion to central venous catheters: Impact of blood plasma-driven germ tube formation and pathogen-derived adhesins. Virulence 2020, 11, 1453–1465. [Google Scholar] [CrossRef]
- Biniarz, P.; Baranowska, G.; Feder-Kubis, J.; Krasowska, A. The lipopeptides pseudofactin II and surfactin effectively decrease Candida albicans adhesion and hydrophobicity. Antonie Van Leeuwenhoek 2015, 108, 343–353. [Google Scholar] [CrossRef] [Green Version]
- Lv, Q.Z.; Yan, L.; Jiang, Y.Y. The synthesis, regulation, and functions of sterols in Candida albicans: Well-known but still lots to learn. Virulence 2016, 7, 649–659. [Google Scholar] [CrossRef] [Green Version]
- Klis, F.M.; Sosinska, G.J.; de Groot, P.W.; Brul, S. Covalently linked cell wall proteins of Candida albicans and their role in fitness and virulence. FEMS Yeast Res. 2009, 9, 1013–1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maras, B.; Maggiore, A.; Mignogna, G.; D’Erme, M.; Angiolella, L. Hyperexpression of CDRs and HWP1 genes negatively impacts on Candida albicans virulence. PLoS ONE 2021, 16, e0252555. [Google Scholar] [CrossRef] [PubMed]
- Bernhard, S.; Hug, S.; Stratmann, A.E.P.; Erber, M.; Vidoni, L.; Knapp, C.L.; Thomaß, B.D.; Fauler, M.; Nilsson, B.; Nilsson Ekdahl, K.; et al. Interleukin 8 Elicits Rapid Physiological Changes in Neutrophils That Are Altered by Inflammatory Conditions. J. Innate Immun. 2021, 13, 225–241. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, J.S.; Camilli, G.; Kotowicz, N.K.; Ho, J.; Richardson, J.P.; Naglik, J.R. Role for IL-1 Family Cytokines in Fungal Infections. Front. Microbiol. 2021, 10, 633047. [Google Scholar] [CrossRef]
- Werman, A.; Werman-Venkert, R.; White, R.; Lee, J.K.; Werman, B.; Krelin, Y.; Voronov, E.; Dinarello, C.A.; Apte, R.N. The precursor form of IL-1alpha is an intracrine proinflammatory activator of transcription. Proc. Natl. Acad. Sci. USA 2004, 101, 2434–2439. [Google Scholar] [CrossRef] [Green Version]
- Fonzi, W.A.; Irwin, M.Y. Isogenic strain construction and gene mapping in Candida albicans. Genetics 1993, 134, 717–728. [Google Scholar] [CrossRef]
- Suchodolski, J.; Muraszko, J.; Bernat, P.; Krasowska, A. A Crucial Role for Ergosterol in Plasma Membrane Composition, Localisation, and Activity of Cdr1p and H+-ATPase in Candida albicans. Microorganisms 2019, 7, 378. [Google Scholar] [CrossRef] [Green Version]
- Flowers, S.A.; Colón, B.; Whaley, S.G.; Schuler, M.A.; Rogers, P.D. Contribution of Clinically Derived Mutations inERG11to Azole Resistance in Candida albicans. Antimicrob. Agents Chemother. 2014, 59, 450–460. [Google Scholar] [CrossRef] [Green Version]
- Lohse, M.B.; Gulati, M.; Valle Arevalo, A.; Fishburn, A.; Johnson, A.D.; Nobile, C.J. Assessment and optimization of Candida albicans in vitro biofilm assays. Antymicrob. Agents Chemother. 2017, 61, 2749. [Google Scholar] [CrossRef] [Green Version]
Time of Culture (h) | Percent of Hyphae (%) | |
---|---|---|
WT | 10C1B1I1 | |
0 | 0.00 ± 0.00 | 0.00 ± 0.00 |
1 | 62.73 ± 4.65 | 52.29 ± 5.81 |
2 | 64.82 ± 3.01 | 72.29 ± 3.18 * |
4 | 56.68 ± 1.81 | 51.73 ± 1.58 * |
6 | 36.70 ± 3.19 | 27.04 ± 0.47 * |
8 | 25.61 ± 3.07 | 25.22 ± 0.94 |
24 | 9.18 ± 1.01 | 5.42 ± 0.64 ** |
Cell Line | Time of co-culture (h) | C. albicans Strain | IL-1α [pg/mL] | IL-6 [pg/mL] | IL-8 [pg/mL] | IL-10 [pg/mL] | MCP-1 [pg/mL] |
---|---|---|---|---|---|---|---|
NHDF | 8 | Control | ND | 1.48 ± 0.74 | 0.15 ± 0.09 | 0.37 ± 0.28 | 4.50 ± 2.58 |
WT | ND | 20.45 ± 1.96 *** | 3.16 ± 0.23 *** | 0.21 ± 0.21 | 13.98 ± 0.78 *** | ||
KS058 | ND | 2.60 ± 0.32 * | 0.39 ± 0.05 ** | 0.01 ±0.02 | 6.00 ± 0.77 | ||
10C1B1I1 | ND | 24.14 ± 1.65 *** | 8.69 ± 0.35 *** | 0.40 ± 0.24 | 18.04 ± 0.55 *** | ||
24 | Control | ND | 10.55 ± 3.8 | 0.61 ± 0.12 | 0.30 ± 0.20 | 277.38 ± 96.11 | |
WT | 1.83 ± 0.11 *** | 214.83 ± 64.57 ** | 39.52 ± 10.67 ** | 0.19 ± 0.26 | 476.25 ± 24.30 * | ||
KS058 | ND | 14.19 ± 6.76 | 3.26 ± 1.28 * | 0.25 ± 0.11 | 314.52 ± 16.90 | ||
10C1B1I1 | 2.88 ± 0.42 *** | 242.84 ± 88.39 * | 52.34 ± 13.96 ** | 0.58 ± 0.12 | 405.78 ± 20.10 | ||
VK2 E6/E7 | 8 | Control | 5.80 ± 0.65 | 0.69 ± 0.11 | 2.60 ± 0.60 | 0.13 ± 0.23 | 5.24 ± 0.13 |
WT | 1612.60 ± 442.55 ** | 13.13 ± 0.74 *** | 31.56 ± 6.00 *** | 0.74 ± 0.32 * | 3.24 ± 0.35 *** | ||
KS058 | 5.66 ± 0.89 | 1.38 ± 0.36 * | 3.78 ± 0.04 * | 0.01 ± 0.02 | 4.90 ± 0.16 ** | ||
10C1B1I1 | 1530.79 ± 529.76 * | 16.66 ± 1.61 *** | 39.60 ± 6.98 *** | 0.37 ± 0.22 | 2.60 ± 0.72 ** | ||
24 | Control | 12.57 ± 2.79 | 1.47 ± 0.42 | 5.37 ± 0.79 | 0.15 ± 0.22 | 3.56 ± 0.43 | |
WT | 1713.36 ± 793.24 | 12.26 ± 0.25 *** | 205.47 ± 22.74 *** | 0.36 ± 0.14 | 2.62 ± 0.19 ** | ||
KS058 | 59.18 ± 29.43 * | 6.64 ± 0.68 *** | 24.71 ± 9.99 * | 0.16 ± 0.21 | 3.31 ± 1.03 | ||
10C1B1I1 | 2476.71 ± 863.84 * | 15.10 ± 1.12 ** | 230.04 ± 27.49 *** | 0.42 ± 0.31 | 1.60 ± 0.18 *** |
Primer Name | Sequence (5′ → 3′) |
---|---|
ACT1_F | TCC AGC TTT CTA CGT TTC CA |
ACT1_R | GTC AAG TCT CTA CCA GCC AA |
ALS1_F | TGT TGG TGT GAC TAC TTC CT |
ALS1_R | TGT ACC ACC ACT GTG TCA AT |
ALS5_F | GTT CAG ACA TGC CAT CAT CG |
ALS5_R | CTC CAA GTG ATC AGA GTG GA |
HWP1_F | ACC ACT ACT ACT GAA GCC AAA |
HWP1_R | CTG GAG CAG TAG AAA CTG GA |
GAPDH_F | TGA ACG GGA AGC TCA CTG G |
GAPDH_R | TCC ACC ACC CTG TTG CTG TA |
IL-1α_F | GTC TCA CTT GTC TCA CTT GTG |
IL-1α_R | GGT AGC CAT AGT CAG TAG CTC |
IL6_F | AAA GAG GCA CTG GCA GAA AA |
IL6_R | TTT CAC CAG GCA AGT CTC CT |
IL8_F | TGG CTC TCT TGG CAG CCT TC |
IL8_R | TGC ACC CAG TTT TCC TTG GG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Derkacz, D.; Krasowska, A. Alterations in the Level of Ergosterol in Candida albicans’ Plasma Membrane Correspond with Changes in Virulence and Result in Triggering Diversed Inflammatory Response. Int. J. Mol. Sci. 2023, 24, 3966. https://doi.org/10.3390/ijms24043966
Derkacz D, Krasowska A. Alterations in the Level of Ergosterol in Candida albicans’ Plasma Membrane Correspond with Changes in Virulence and Result in Triggering Diversed Inflammatory Response. International Journal of Molecular Sciences. 2023; 24(4):3966. https://doi.org/10.3390/ijms24043966
Chicago/Turabian StyleDerkacz, Daria, and Anna Krasowska. 2023. "Alterations in the Level of Ergosterol in Candida albicans’ Plasma Membrane Correspond with Changes in Virulence and Result in Triggering Diversed Inflammatory Response" International Journal of Molecular Sciences 24, no. 4: 3966. https://doi.org/10.3390/ijms24043966
APA StyleDerkacz, D., & Krasowska, A. (2023). Alterations in the Level of Ergosterol in Candida albicans’ Plasma Membrane Correspond with Changes in Virulence and Result in Triggering Diversed Inflammatory Response. International Journal of Molecular Sciences, 24(4), 3966. https://doi.org/10.3390/ijms24043966