Genome-Wide Analysis of microRNAs and Their Target Genes in Dongxiang Wild Rice (Oryza rufipogon Griff.) Responding to Salt Stress
Abstract
:1. Introduction
2. Results
2.1. Overview of sRNA Library Data Sets
2.2. Identification of Known and Novel miRNAs in DXWR
2.3. Differential Expression Analysis of miRNAs in DXWR under Salt Stress Condition
2.4. Prediction and Functional Annotation of the Known and Novel DEMs Targets
3. Discussion
4. Materials and Methods
4.1. Plant Materials, Culture, and Sample Collection
4.2. Small RNA Library Construction and Deep Sequencing
4.3. Sequencing Data Analysis and Identification of Known and Novel miRNAs
4.4. Verification of Sequencing Data
4.5. Prediction of Target Genes for Salt Stress-Responsive miRNAs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bandumula, N. Rice Production in Asia: Key to Global Food Security. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2018, 88, 1323–1328. [Google Scholar] [CrossRef]
- Kim, Y.; Chung, Y.S.; Lee, E.; Tripathi, P.; Heo, S.; Kim, K.-H. Root Response to Drought Stress in Rice (Oryza sativa L.). Int. J. Mol. Sci. 2020, 21, 1513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoang, T.M.L.; Tran, T.N.; Nguyen, T.K.T.; Williams, B.; Wurm, P.; Bellairs, S.; Mundree, S. Improvement of Salinity Stress Tolerance in Rice: Challenges and Opportunities. Agronomy 2016, 6, 54. [Google Scholar] [CrossRef]
- Todaka, D.; Nakashima, K.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Toward Understanding Transcriptional Regulatory Networks in Abiotic Stress Responses and Tolerance in Rice. Rice 2012, 5, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mondal, S.; Borromeo, T.H. Screening of Salinity Tolerance of Rice at Early Seedling Stage. J. Biosci. Agric. Res. 2016, 10, 843–847. [Google Scholar] [CrossRef] [Green Version]
- Zayed, B.; El-Rafaee, I.; Sedeek, S. Response of Different Rice Varieties to Phosphorous Fertilizer under Newly Reclaimed Saline Soils. J. Plant Prod. 2010, 1, 1479–1493. [Google Scholar] [CrossRef]
- Ha-Tran, D.M.; Nguyen, T.T.M.; Hung, S.-H.; Huang, E.; Huang, C.-C. Roles of Plant Growth-Promoting Rhizobacteria (PGPR) in Stimulating Salinity Stress Defense in Plants: A Review. Int. J. Mol. Sci. 2021, 22, 3154. [Google Scholar] [CrossRef] [PubMed]
- Llave, C.; Kasschau, K.D.; Rector, M.A.; Carrington, J.C. Endogenous and Silencing-Associated Small RNAs in Plants. Plant Cell 2002, 14, 1605–1619. [Google Scholar] [CrossRef] [Green Version]
- Reinhart, B.J.; Bartel, D.P. Small RNAs Correspond to Centromere Heterochromatic Repeats. Science 2002, 297, 1831. [Google Scholar] [CrossRef] [Green Version]
- Jodder, J. MiRNA-Mediated Regulation of Auxin Signaling Pathway during Plant Development and Stress Responses. J. Biosci. 2020, 45, 91. [Google Scholar] [CrossRef]
- Phillips, J.R.; Dalmay, T.; Bartels, D. The Role of Small RNAs in Abiotic Stress. FEBS Lett. 2007, 581, 3592–3597. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Yang, L.; Zeng, H.Q.; Zhou, Z.S.; Yang, Z.M.; Li, H.; Sun, D.; Xie, F.; Zhang, B. A Cotton MiRNA is Involved in Regulation of Plant Response to Salt Stress. Sci. Rep. 2016, 6, 19736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, G.; Fu, J.; Rong, L.; Zhang, P.; Guo, C.; Xiao, K. TaMIR1119, a MiRNA Family Member of Wheat (Triticum aestivum), is Essential in the Regulation of Plant Drought Tolerance. J. Integr. Agric. 2018, 17, 2369–2378. [Google Scholar] [CrossRef] [Green Version]
- Thiebaut, F.; Rojas, C.A.; Almeida, K.L.; Grativol, C.; Domiciano, G.C.; Lamb, C.R.C.; De Almeida Engler, J.; Hemerly, A.S.; Ferreira, P.C.G. Regulation of MiR319 during Cold Stress in Sugarcane. Plant Cell Environ. 2012, 35, 502–512. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Datta, S.K.; Datta, K. MiRNA Regulation of Nutrient Homeostasis in Plants. Front. Plant Sci. 2015, 6, 232. [Google Scholar] [CrossRef] [Green Version]
- Baldrich, P.; San Segundo, B. MicroRNAs in Rice Innate Immunity. Rice 2016, 9, 6. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Zhang, Y.; Yang, Z.; Yang, Q.; Zhang, Y.; Xu, P.; Li, J.; Islam, A.; Shah, L.; Zhan, X.; et al. Fine Mapping and Candidate Gene Analysis of QHD1b, a QTL That Promotes Flowering in Common Wild Rice (Oryza rufipogon) by up-Regulating Ehd1. Crop J. 2022, 10, 1083–1093. [Google Scholar] [CrossRef]
- Xie, J.; Agrama, H.A.; Kong, D.; Zhuang, J.; Hu, B.; Wan, Y.; Yan, W. Genetic Diversity Associated with Conservation of Endangered Dongxiang Wild Rice (Oryza rufipogon). Genet. Resour. Crop Evol. 2010, 57, 597–609. [Google Scholar] [CrossRef]
- Zhang, F.; Luo, X.; Zhou, Y.; Xie, J. Genome-Wide Identification of Conserved MicroRNA and Their Response to Drought Stress in Dongxiang Wild Rice (Oryza rufipogon Griff.). Biotechnol. Lett. 2016, 38, 711–721. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, P.; Cui, F.; Zhang, F.; Luo, X.; Xie, J. Transcriptome Analysis of Salt Stress Responsiveness in the Seedlings of Dongxiang Wild Rice (Oryza rufipogon Griff.). PLoS ONE 2016, 11, e0146242. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi-Nejad, G.; Singh, R.K.; Arzani, A.; Rezaie, A.M.; Sabouri, H.; Gregorio, G.B. Evaluation of Salinity Tolerance in Rice Genotypes. Int. J. Plant Prod. 2010, 4, 199–208. [Google Scholar]
- Yang, Y.; Ye, R.; Srisutham, M.; Nontasri, T.; Sritumboon, S.; Maki, M.; Yoshida, K.; Oki, K.; Homma, K. Rice Production in Farmer Fields in Soil Salinity Classified Areas in Khon Kaen, Northeast Thailand. Sustainability 2022, 14, 9873. [Google Scholar] [CrossRef]
- Tang, Y.; Bao, X.; Zhi, Y.; Wu, Q.; Guo, Y.; Yin, X.; Zeng, L.; Li, J.; Zhang, J.; He, W.; et al. Overexpression of a MYB Family Gene, OsMYB6, Increases Drought and Salinity Stress Tolerance in Transgenic Rice. Front. Plant Sci. 2019, 10, 168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, A.; Liu, Y.; Wang, F.; Li, T.; Chen, Z.; Kong, D.; Bi, J.; Zhang, F.; Luo, X.; Wang, J.; et al. Enhanced Rice Salinity Tolerance via CRISPR/Cas9-Targeted Mutagenesis of the OsRR22 Gene. Mol. Breed. 2019, 39, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakai, H.; Itoh, T. Massive Gene Losses in Asian Cultivated Rice Unveiled by Comparative Genome Analysis. BMC Genom. 2010, 11, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caicedo, A.L.; Williamson, S.H.; Hernandez, R.D.; Boyko, A.; Fledel-Alon, A.; York, T.L.; Polato, N.R.; Olsen, K.M.; Nielsen, R.; McCouch, S.R.; et al. Genome-Wide Patterns of Nucleotide Polymorphism in Domesticated Rice. PLoS Genet. 2007, 3, e163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones-Rhoades, M.W.; Bartel, D.P. Computational Identification of Plant MicroRNAs and Their Targets, Including a Stress-Induced MiRNA. Mol. Cell 2004, 14, 787–799. [Google Scholar] [CrossRef] [PubMed]
- Pagano, L.; Rossi, R.; Paesano, L.; Marmiroli, N.; Marmiroli, M. MiRNA Regulation and Stress Adaptation in Plants. Environ. Exp. Bot. 2021, 184, 104369. [Google Scholar] [CrossRef]
- Stief, A.; Altmann, S.; Hoffmann, K.; Pant, B.D.; Scheible, W.-R.; Bäurle, I. Arabidopsis MiR156 Regulates Tolerance to Recurring Environmental Stress through SPL Transcription Factors. Plant Cell 2014, 26, 1792–1807. [Google Scholar] [CrossRef] [Green Version]
- López-Galiano, M.J.; García-Robles, I.; González-Hernández, A.I.; Camañes, G.; Vicedo, B.; Real, M.D.; Rausell, C. Expression of MiR159 is Altered in Tomato Plants Undergoing Drought Stress. Plants 2019, 8, 201. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.-S.; Kuo, C.-C.; Yang, I.-C.; Tsai, W.-A.; Shen, Y.-H.; Lin, C.-C.; Liang, Y.-C.; Li, Y.-C.; Kuo, Y.-W.; King, Y.-C.; et al. MicroRNA160 Modulates Plant Development and Heat Shock Protein Gene Expression to Mediate Heat Tolerance in Arabidopsis. Front. Plant Sci. 2018, 9, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shan, T.; Fu, R.; Xie, Y.; Chen, Q.; Wang, Y.; Li, Z.; Song, X.; Li, P.; Wang, B. Regulatory Mechanism of Maize (Zea mays L.) MiR164 in Salt Stress Response. Russ. J. Genet. 2020, 56, 835–842. [Google Scholar] [CrossRef]
- Kitazumi, A.; Kawahara, Y.; Onda, T.S.; De Koeyer, D.; de los Reyes, B.G. Implications of MiR166 and MiR159 Induction to the Basal Response Mechanisms of an Andigena Potato (Solanum tuberosum Subsp. Andigena) to Salinity Stress, Predicted from Network Models in Arabidopsis. Genome 2015, 58, 13–24. [Google Scholar] [PubMed]
- Kinoshita, N.; Wang, H.; Kasahara, H.; Liu, J.; MacPherson, C.; Machida, Y.; Kamiya, Y.; Hannah, M.A.; Chua, N.-H. IAA-Ala Resistant3, an Evolutionarily Conserved Target of MiR167, Mediates Arabidopsis Root Architecture Changes during High Osmotic Stress. Plant Cell 2012, 24, 3590–3602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ni, Z.; Hu, Z.; Jiang, Q.; Zhang, H. GmNFYA3, a Target Gene of MiR169, is a Positive Regulator of Plant Tolerance to Drought Stress. Plant Mol. Biol. 2013, 82, 113–129. [Google Scholar] [CrossRef]
- Hwang, E.-W.; Shin, S.-J.; Yu, B.-K.; Byun, M.-O.; Kwon, H.-B. MiR171 Family Members Are Involved in Drought Response in Solanum Tuberosum. J. Plant Biol. 2011, 54, 43–48. [Google Scholar] [CrossRef]
- Cheng, X.; He, Q.; Tang, S.; Wang, H.; Zhang, X.; Lv, M.; Liu, H.; Gao, Q.; Zhou, Y.; Wang, Q.; et al. The MiR172/IDS1 Signaling Module Confers Salt Tolerance through Maintaining ROS Homeostasis in Cereal Crops. New Phytol. 2021, 230, 1017–1033. [Google Scholar] [CrossRef]
- Du, Q.; Wang, K.; Zou, C.; Xu, C.; Li, W.X. The PILNCR1-MiR399 Regulatory Module is Important for Low Phosphate Tolerance in Maize. Plant Physiol. 2018, 177, 1743–1753. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Guo, C.; Zhang, Y.; Zhang, F.; Du, X.; Gu, J.; Xiao, K. Wheat MicroRNA Member TaMIR444a is Nitrogen Deprivation-Responsive and Involves Plant Adaptation to the Nitrogen-Starvation Stress. Plant Mol. Biol. Report. 2016, 34, 931–946. [Google Scholar] [CrossRef]
- Ferdous, J.; Whitford, R.; Nguyen, M.; Brien, C.; Langridge, P.; Tricker, P.J. Drought-Inducible Expression of Hv-MiR827 Enhances Drought Tolerance in Transgenic Barley. Funct. Integr. Genom. 2017, 17, 279–292. [Google Scholar] [CrossRef]
- Zhang, F.; Luo, Y.; Zhang, M.; Zhou, Y.; Chen, H.; Hu, B.; Xie, J. Identification and Characterization of Drought Stress- Responsive Novel MicroRNAs in Dongxiang Wild Rice. Rice Sci. 2018, 25, 175–184. [Google Scholar]
- Reboledo, G.; Agorio, A.; De León, I.P. Moss Transcription Factors Regulating Development and Defense Responses to Stress. J. Exp. Bot. 2022, 73, 4546–4561. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Liu, X.; Chen, S.; Li, H.; Duanmu, H. Genome-Wide Identification and Salt Stress Response Analysis of the BZIP Transcription Factor Family in Sugar Beet. Int. J. Mol. Sci. 2022, 23, 11573. [Google Scholar] [CrossRef] [PubMed]
- Chai, M.; Fan, R.; Huang, Y.; Jiang, X.; Wai, M.H.; Yang, Q.; Su, H.; Liu, K.; Ma, S.; Chen, Z.; et al. GmbZIP152, a Soybean BZIP Transcription Factor, Confers Multiple Biotic and Abiotic Stress Responses in Plant. Int. J. Mol. Sci. 2022, 23, 10935. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Shi, S.; Hao, Z.; Xiong, W.; Luo, M. OsbZIP81, A Homologue of Arabidopsis VIP1, May Positively Regulate JA Levels by Directly Targetting the Genes in JA Signaling and Metabolism Pathway in Rice. Int. J. Mol. Sci. 2019, 20, 2360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raza, A.; Charagh, S.; Zahid, Z.; Mubarik, M.S.; Javed, R.; Siddiqui, M.H.; Hasanuzzaman, M. Jasmonic Acid: A Key Frontier in Conferring Abiotic Stress Tolerance in Plants. Plant Cell Rep. 2021, 40, 1513–1541. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.-G.; Wang, B.; Jin, S.-H.; Qu, X.-X.; Li, Y.-J.; Hou, B.-K. Ectopic Expression of Arabidopsis Glycosyltransferase UGT85A5 Enhances Salt Stress Tolerance in Tobacco. PLoS ONE 2013, 8, e59924. [Google Scholar] [CrossRef] [Green Version]
- Duan, Z.; Yan, Q.; Wu, F.; Wang, Y.; Wang, S.; Zong, X.; Zhou, P.; Zhang, J. Genome-Wide Analysis of the UDP-Glycosyltransferase Family Reveals Its Roles in Coumarin Biosynthesis and Abiotic Stress in Melilotus Albus. Int. J. Mol. Sci. 2021, 22, 10826. [Google Scholar] [CrossRef]
- Jin, Y.; Pan, W.; Zheng, X.; Cheng, X.; Liu, M.; Ma, H.; Ge, X. OsERF101, an ERF Family Transcription Factor, Regulates Drought Stress Response in Reproductive Tissues. Plant Mol. Biol. 2018, 98, 51–65. [Google Scholar] [CrossRef]
- Wang, C.; Huang, W.; Ying, Y.; Li, S.; Secco, D.; Tyerman, S.; Whelan, J.; Shou, H. Functional Characterization of the Rice SPX-MFS Family Reveals a Key Role of OsSPX-MFS1 in Controlling Phosphate Homeostasis in Leaves. New Phytol. 2012, 196, 139–148. [Google Scholar] [CrossRef]
- Itoh, H.; Tatsumi, T.; Sakamoto, T.; Otomo, K.; Toyomasu, T.; Kitano, H.; Ashikari, M.; Ichihara, S.; Matsuoka, M. A Rice Semi-Dwarf Gene, Tan-Ginbozu (D35), Encodes the Gibberellin Biosynthesis Enzyme, Ent-Kaurene Oxidase. Plant Mol. Biol. 2004, 54, 533–547. [Google Scholar] [CrossRef] [PubMed]
- Chowdhary, V.A.; Tank, J.G. Biomolecules Regulating Defense Mechanism in Plants. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2022, 1–9. [Google Scholar] [CrossRef]
- Matsui, H.; Miyao, A.; Takahashi, A.; Hirochika, H. Pdk1 Kinase Regulates Basal Disease Resistance Through the OsOxi1–OsPti1a Phosphorylation Cascade in Rice. Plant Cell Physiol. 2010, 51, 2082–2091. [Google Scholar] [CrossRef] [PubMed]
- RoyChoudhury, A.; Roy, C.; Sengupta, D.N. Transgenic Tobacco Plants Overexpressing the Heterologous Lea Gene Rab16A from Rice during High Salt and Water Deficit Display Enhanced Tolerance to Salinity Stress. Plant Cell Rep. 2007, 26, 1839–1859. [Google Scholar] [CrossRef]
- Ganguly, M.; Datta, K.; Roychoudhury, A.; Gayen, D.; Sengupta, D.N.; Datta, S.K. Overexpression of Rab16A Gene in Indica Rice Variety for Generating Enhanced Salt Tolerance. Plant Signal. Behav. 2012, 7, 502–509. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Wang, B.; Yuan, F. The Role of Transmembrane Proteins in Plant Growth, Development, and Stress Responses. Int. J. Mol. Sci. 2022, 23, 13627. [Google Scholar] [CrossRef]
- Waadt, R.; Seller, C.A.; Hsu, P.-K.; Takahashi, Y.; Munemasa, S.; Schroeder, J.I. Plant Hormone Regulation of Abiotic Stress Responses. Nat. Rev. Mol. Cell Biol. 2022, 23, 680–694. [Google Scholar] [CrossRef]
- Kang, T.; Yu, C.-Y.; Liu, Y.; Song, W.-M.; Bao, Y.; Guo, X.-T.; Li, B.; Zhang, H.-X. Subtly Manipulated Expression of ZmmiR156 in Tobacco Improves Drought and Salt Tolerance Without Changing the Architecture of Transgenic Plants. Front. Plant Sci. 2020, 10, 1664. [Google Scholar] [CrossRef]
- Shi, X.; Jiang, F.; Wen, J.; Wu, Z. Overexpression of Solanum habrochaites MicroRNA319d (Sha-MiR319d) Confers Chilling and Heat Stress Tolerance in Tomato (S. lycopersicum). BMC Plant Biol. 2019, 19, 214. [Google Scholar] [CrossRef]
- Ma, C.; Burd, S.; Lers, A. MiR408 is Involved in Abiotic Stress Responses in Arabidopsis. Plant J. 2015, 84, 169–187. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, C.; Liu, W.; Gao, W.; Liu, C.; Song, G.; Li, W.-X.; Mao, L.; Chen, B.; Xu, Y.; et al. An Alternative Strategy for Targeted Gene Replacement in Plants Using a Dual-SgRNA/Cas9 Design. Sci. Rep. 2016, 6, 23890. [Google Scholar] [CrossRef] [PubMed]
- Kozomara, A.; Birgaoanu, M.; Griffiths-Jones, S. MiRBase: From MicroRNA Sequences to Function. Nucleic Acids Res. 2019, 47, D155–D162. [Google Scholar] [CrossRef]
- Meyers, B.C.; Axtell, M.J.; Bartel, B.; Bartel, D.P.; Baulcombe, D.; Bowman, J.L.; Cao, X.; Carrington, J.C.; Chen, X.; Green, P.J.; et al. Criteria for Annotation of Plant MicroRNAs. Plant Cell 2008, 20, 3186–3190. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Xu, J.; Han, X.; Qiao, G.; Yang, K.; Wen, Z.; Wen, X. Comparative Transcriptome Analysis Combining SMRT- and Illumina-Based RNA-Seq Identifies Potential Candidate Genes Involved in Betalain Biosynthesis in Pitaya Fruit. Int. J. Mol. Sci. 2020, 21, 3288. [Google Scholar] [CrossRef] [PubMed]
- Tafer, H.; Hofacker, I.L. RNAplex: A Fast Tool for RNA–RNA Interaction Search. Bioinformatics 2008, 24, 2657–2663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Types | DY-CK1 | DY-CK2 | DY-CK3 | |||
Total | Unique | Total | Unique | Total | Unique | |
Raw reads | 10,618,693 | 2,604,513 | 16,460,121 | 3,672,322 | 22,194,190 | 5,038,513 |
3′adaptor & length filter | 5,585,638 | 1,009,906 | 9,545,474 | 1,324,469 | 11,078,492 | 1,954,931 |
Junk reads | 20,571 | 14,159 | 28,759 | 20,791 | 50,332 | 31,211 |
Clean reads | 5,012,484 | 995,747 | 6,885,888 | 1,303,678 | 11,065,366 | 1,923,720 |
Rfam | 637,243 | 14,603 | 859,520 | 15,142 | 1,357,192 | 24,867 |
mRNA | 590,743 | 14,426 | 667,359 | 20,178 | 1,335,628 | 35,142 |
Repeats | 9114 | 205 | 11,931 | 236 | 18,131 | 327 |
valid reads | 3,817,501 | 1,552,466 | 5,396,359 | 2,292,925 | 8,450,225 | 2,994,550 |
Types | DY-S1 | DY-S2 | DY-S3 | |||
Total | Unique | Total | Unique | Total | Unique | |
Raw reads | 13,215,515 | 2,349,112 | 15,702,355 | 2,967,602 | 18,147,568 | 3,540,661 |
3′adaptor & length filter | 7,629,958 | 1,090,528 | 8,986,925 | 1,318,486 | 9,451,562 | 1,295,788 |
Junk reads | 19,130 | 11,845 | 24,582 | 15,842 | 38,459 | 24,077 |
Clean reads | 5,566,427 | 1,078,683 | 6,690,848 | 1,302,644 | 8,657,547 | 1,271,711 |
Rfam | 1,204,287 | 19,546 | 1,339,068 | 21,195 | 1,608,522 | 23,011 |
mRNA | 436,033 | 11,146 | 579,789 | 15,631 | 763,307 | 23,762 |
Repeats | 19,530 | 245 | 25,234 | 273 | 21,092 | 273 |
valid reads | 4,012,240 | 1,218,038 | 4,863,177 | 1,598,664 | 6,395,067 | 2,176,500 |
miRNAs | Expression Trends | Target Genes | Expression Trends a | Gene Name |
---|---|---|---|---|
bdi-miR5054_1ss10TA | up | Os01g0504100 | down | OsPUP8 |
ath-miR8175_L-2 | up | Os03g0130700 | down | - |
ath-miR8175_L-2_1ss20AT | up | Os03g0130700 | down | - |
gma-miR6300_1ss18GC | up | Os03g0219100 | down | - |
gma-MIR4995-p5_1ss18GC | up | Os03g0637900 | down | - |
ptc-MIR6476a-p3_2ss6AG18AC | up | Os04g0477000 | down | - |
bdi-miR5054_1ss10TA | up | Os05g0179300 | down | - |
gma-MIR6300-p5_1ss6AG | up | Os05g0219900 | down | - |
ath-miR8175_L-2 | up | Os06g0495800 | down | - |
gma-miR6300_1ss18GC | up | Os07g0531500 | down | - |
gma-miR6300_R+1 | up | Os07g0531500 | down | - |
bdi-miR5054_1ss10TA | up | Os08g0495500 | down | - |
osa-miR5072_L-4 | up | Os10g0117000 | down | - |
ath-miR8175_L-1 | up | Os10g0477900 | down | - |
ath-miR8175_L-2 | up | Os10g0477900 | down | - |
ath-miR8175_L-2_1ss20AT | up | Os10g0477900 | down | - |
PC-5p-57749_50 | up | Os10g0532200 | down | - |
osa-MIR1846e-p5_1ss15AG | up | Os11g0107700 | down | - |
gma-MIR4995-p5_1ss20GC | up | Os11g0170000 | down | - |
osa-MIR169g-p3 | down | Os02g0596000 | up | - |
osa-MIR169h-p3 | down | Os02g0596000 | up | - |
osa-MIR169j-p3 | down | Os02g0596000 | up | - |
osa-MIR169l-p3 | down | Os02g0596000 | up | - |
osa-MIR169m-p3 | down | Os02g0596000 | up | - |
osa-MIR6251-p3 | down | Os02g0756800 | up | - |
osa-MIR159a-p5 | down | Os03g0130300 | up | DEFL8 |
osa-miR3979-5p | down | Os03g0386500 | up | - |
osa-miR172d-5p_R+1 | down | Os04g0398000 | up | OsERF101 |
osa-miR827 | down | Os04g0573000 | up | OsSPX-MFS1 |
osa-miR399j_R-1 | down | Os04g0691900 | up | - |
osa-miR5540 | down | Os05g0582600 | up | OsSCP30 |
osa-miR172d-5p_R+1 | down | Os06g0154200 | up | D3 |
osa-miR169r-3p | down | Os06g0569500 | up | OsKOS1 |
osa-MIR159a-p5 | down | Os07g0637300 | up | OsPDK1 |
vvi-MIR3638-p5_2ss17GT18CT | down | Os08g0425800 | up | - |
osa-MIR812r-p3 | down | Os10g0181200 | up | - |
osa-MIR164f-p3 | down | Os11g0454300 | up | OsRab16A |
osa-MIR164f-p3 | down | Os11g0673000 | up | - |
osa-miR444b.1 | down | Os12g0116100 | up | - |
osa-MIR1860-p5 | down | Os12g0174100 | up | - |
PC-5p-75382_31 | down | Os12g0491800 | up | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Yang, W.; Gao, R.; Chen, Y.; Zhou, Y.; Xie, J.; Zhang, F. Genome-Wide Analysis of microRNAs and Their Target Genes in Dongxiang Wild Rice (Oryza rufipogon Griff.) Responding to Salt Stress. Int. J. Mol. Sci. 2023, 24, 4069. https://doi.org/10.3390/ijms24044069
Chen Y, Yang W, Gao R, Chen Y, Zhou Y, Xie J, Zhang F. Genome-Wide Analysis of microRNAs and Their Target Genes in Dongxiang Wild Rice (Oryza rufipogon Griff.) Responding to Salt Stress. International Journal of Molecular Sciences. 2023; 24(4):4069. https://doi.org/10.3390/ijms24044069
Chicago/Turabian StyleChen, Yong, Wanling Yang, Rifang Gao, Yaling Chen, Yi Zhou, Jiankun Xie, and Fantao Zhang. 2023. "Genome-Wide Analysis of microRNAs and Their Target Genes in Dongxiang Wild Rice (Oryza rufipogon Griff.) Responding to Salt Stress" International Journal of Molecular Sciences 24, no. 4: 4069. https://doi.org/10.3390/ijms24044069
APA StyleChen, Y., Yang, W., Gao, R., Chen, Y., Zhou, Y., Xie, J., & Zhang, F. (2023). Genome-Wide Analysis of microRNAs and Their Target Genes in Dongxiang Wild Rice (Oryza rufipogon Griff.) Responding to Salt Stress. International Journal of Molecular Sciences, 24(4), 4069. https://doi.org/10.3390/ijms24044069