Current Trends in Vascular Biomarkers for Systemic Sclerosis: A Narrative Review
Abstract
:1. Introduction
2. Objective and Methods
3. Cell Adhesion Molecules
3.1. Selectins
3.2. Immunoglobulin-Like Cell Adhesion Molecules
3.2.1. Intercellular Adhesion Molecules and Vascular Cell Adhesion Molecules
3.2.2. Junctional Adhesion Molecules
3.2.3. Studies Combining Different Adhesion Molecules
4. Pro-Angiogenic Molecules
4.1. Vascular Endothelial Growth Factor
4.2. Endoglin
4.3. Endothelin-1
5. Anti-Angiogenic Molecules
5.1. VEGF165b
5.2. Pentraxin 3
5.3. Endostatin
5.4. Angiostatin
6. Angiopoietins
7. Matrix Metalloproteinases and Tissue Inhibitors of Matrix Metalloproteinases
8. Neurovascular Guidance Molecules
9. Sirtuins
10. Cytokines
10.1. Interleukins
10.2. Chemokines
10.2.1. CCL2
10.2.2. CCL3 and CCL5
10.2.3. CCL13
10.2.4. CCL20, CCL21 and CCL23
10.2.5. CXCL4
10.2.6. CXCL5
10.2.7. Other CXCL Chemokines
10.2.8. CX3CL1
10.3. Adipokines
10.3.1. Adiponectin
10.3.2. Leptin
10.3.3. Resistin
10.3.4. Other Adipokines
10.4. Interferons
11. Other Molecules Markers of Vascular Damage
11.1. Soluble Thrombomodulin
11.2. Soluble CD163
11.3. Basigin
11.4. Brain Natriuretic Peptide and N-terminal pro-Brain Natriuretic Peptide
11.5. Von Willebrand Factor
11.6. Maresin 1
11.7. Soluble Urokinase Plasminogen Activator Receptor
12. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Denton, C.P.; Khanna, D. Systemic sclerosis. Lancet 2017, 390, 1685–1699. [Google Scholar] [CrossRef] [PubMed]
- Korman, B. Evolving insights into the cellular and molecular pathogenesis of fibrosis in systemic sclerosis. Transl. Res. 2019, 209, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Asano, Y. The pathogenesis of systemic sclerosis: An understanding based on a common pathologic cascade across multiple organs and additional organ-specific pathologies. J. Clin. Med. 2020, 9, 2687. [Google Scholar] [CrossRef] [PubMed]
- Matucci-Cerinic, M.; Kahaleh, B.; Wigley, F.M. Review: Evidence that systemic sclerosis is a vascular disease. Arthritis Rheum. 2013, 65, 1953–1962. [Google Scholar] [CrossRef] [PubMed]
- Romano, E.; Rosa, I.; Fioretto, B.S.; Matucci-Cerinic, M.; Manetti, M. New insights into profibrotic myofibroblast formation in systemic sclerosis: When the vascular wall becomes the enemy. Life 2021, 11, 610. [Google Scholar] [CrossRef]
- Zanin-Silva, D.C.; Santana-Gonçalves, M.; Kawashima-Vasconcelos, M.Y.; Oliveira, M.C. Management of endothelial dysfunction in systemic sclerosis: Current and developing strategies. Front. Med. 2021, 8, 788250. [Google Scholar] [CrossRef]
- Moschetti, L.; Piantoni, S.; Vizzardi, E.; Sciatti, E.; Riccardi, M.; Franceschini, F.; Cavazzana, I. Endothelial dysfunction in systemic lupus erythematosus and systemic sclerosis: A common trigger for different microvascular diseases. Front. Med. 2022, 9, 849086. [Google Scholar] [CrossRef]
- Gigante, A.; Leodori, G.; Pellicano, C.; Villa, A.; Rosato, E. Assessment of kidney involvement in systemic sclerosis: From scleroderma renal crisis to subclinical renal vasculopathy. Am. J. Med. Sci. 2022, 364, 529–537. [Google Scholar] [CrossRef]
- Cole, A.; Ong, V.H.; Denton, C.P. Renal disease and systemic sclerosis: An update on scleroderma renal crisis. Clin. Rev. Allergy Immunol. 2022. [Google Scholar] [CrossRef]
- Chora, I.; Guiducci, S.; Manetti, M.; Romano, E.; Mazzotta, C.; Bellando-Randone, S.; Ibba-Manneschi, L.; Matucci-Cerinic, M.; Soares, R. Vascular biomarkers and correlation with peripheral vasculopathy in systemic sclerosis. Autoimmun. Rev. 2015, 14, 314–322. [Google Scholar] [CrossRef]
- Manetti, M.; Romano, E.; Rosa, I.; Guiducci, S.; Bellando-Randone, S.; De Paulis, A.; Ibba-Manneschi, L.; Matucci-Cerinic, M. Endothelial-to-mesenchymal transition contributes to endothelial dysfunction and dermal fibrosis in systemic sclerosis. Ann. Rheum. Dis. 2017, 76, 924–934. [Google Scholar] [CrossRef]
- Utsunomiya, A.; Oyama, N.; Hasegawa, M. Potential biomarkers in systemic sclerosis: A literature review and update. J. Clin. Med. 2020, 9, 3388. [Google Scholar] [CrossRef]
- Hasegawa, M. Biomarkers in systemic sclerosis: Their potential to predict clinical courses. J. Dermatol. 2016, 43, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Harjunpää, H.; Llort Asens, M.; Guenther, C.; Fagerholm, S.C. Cell adhesion molecules and their roles and regulation in the immune and tumor microenvironment. Front. Immunol. 2019, 10, 1078. [Google Scholar] [CrossRef] [Green Version]
- Bruni, C.; Frech, T.; Manetti, M.; Rossi, F.W.; Furst, D.E.; De Paulis, A.; Rivellese, F.; Guiducci, S.; Matucci-Cerinic, M.; Bellando-Randone, S. Vascular leaking, a pivotal and early pathogenetic event in systemic sclerosis: Should the door be closed? Front. Immunol. 2018, 9, 2045. [Google Scholar] [CrossRef]
- McEver, R.P. Selectins: Initiators of leucocyte adhesion and signaling at the vascular wall. Cardiovasc. Res. 2015, 107, 331–339. [Google Scholar] [CrossRef] [Green Version]
- Borsig, L. Selectins in cancer immunity. Glycobiology 2018, 28, 648–655. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, M.; Asano, Y.; Endo, H.; Fujimoto, M.; Goto, D.; Ihn, H.; Inoue, K.; Ishikawa, O.; Kawaguchi, Y.; Kuwana, M.; et al. Serum adhesion molecule levels as prognostic markers in patients with early systemic sclerosis: A multicentre, prospective, observational study. PLoS ONE 2014, 9, e88150. [Google Scholar] [CrossRef]
- Blann, A.D.; Sanders, P.A.; Herrick, A.; Jayson, M.I. Soluble L-selectin in the connective tissue diseases. Br. J. Haematol. 1996, 95, 192–194. [Google Scholar] [CrossRef]
- Dunne, J.V.; Van Eeden, S.F.; Keen, K.J. L-selectin and skin damage in systemic sclerosis. PLoS ONE 2012, 7, e44814. [Google Scholar] [CrossRef] [Green Version]
- Inaoki, M.; Sato, S.; Shimada, Y.; Takehara, K. Elevated serum levels of soluble L-selectin in patients with systemic sclerosis declined after intravenous injection of lipo-prostaglandin E1. J. Dermatol. Sci. 2001, 25, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Shimada, Y.; Hasegawa, M.; Takehara, K.; Sato, S. Elevated serum L-selectin levels and decreased L-selectin expression on CD8+lymphocytes in systemic sclerosis. Clin. Exp. Immunol. 2001, 124, 474–479. [Google Scholar] [CrossRef] [PubMed]
- Yeini, E.; Satchi-Fainaro, R. The role of P-selectin in cancer-associated thrombosis and beyond. Thromb. Res. 2022, 213, S22–S28. [Google Scholar] [CrossRef]
- McLellan, K.; Papadopoulou, C. Update on biomarkers of vasculopathy in juvenile and adult myositis. Curr. Rheumatol. Rep. 2022, 24, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Valim, V.; Assis, L.S.; Simões, M.F.; Trevisani, V.F.; Pucinelli, M.L.; Andrade, L.E. Correlation between serum E-selectin levels and panoramic nailfold capillaroscopy in systemic sclerosis. Braz. J. Med. Biol. Res. 2004, 37, 1423–1427. [Google Scholar] [CrossRef] [Green Version]
- Valentini, G.; Marcoccia, A.; Cuomo, G.; Vettori, S.; Iudici, M.; Bondanini, F.; Santoriello, C.; Ciani, A.; Cozzolino, D.; De Matteis, G.M.; et al. Early systemic sclerosis: Marker autoantibodies and videocapillaroscopy patterns are each associated with distinct clinical, functional and cellular activation markers. Arthritis Res. Ther. 2013, 15, R63. [Google Scholar] [CrossRef] [Green Version]
- Wautier, J.L.; Wautier, M.P. Vascular permeability in diseases. Int. J. Mol. Sci. 2022, 23, 3645. [Google Scholar] [CrossRef]
- Ihn, H.; Sato, S.; Fujimoto, M.; Kikuchi, K.; Kadono, T.; Tamaki, K.; Takehara, K. Circulating intercellular adhesion molecule-1 in the sera of patients with systemic sclerosis: Enhancement by inflammatory cytokines. Br. J. Rheumatol. 1997, 36, 1270–1275. [Google Scholar] [CrossRef] [Green Version]
- Sfikakis, P.P.; Tesar, J.; Baraf, H.; Lipnick, R.; Klipple, G.; Tsokos, G.C. Circulating intercellular adhesionmolecule-1 in patients with systemic sclerosis. Clin. Immunol. Immunopathol. 1993, 68, 88–92. [Google Scholar] [CrossRef]
- Avouac, J.; Meune, C.; Ruiz, B.; Couraud, P.O.; Uzan, G.; Boileau, C.; Kahan, A.; Chiocchia, G.; Allanore, Y. Angiogenic biomarkers predict the occurrence of digital ulcers in systemic sclerosis. Ann. Rheum. Dis. 2012, 71, 394–399. [Google Scholar] [CrossRef]
- Avouac, J.; Vallucci, M.; Smith, V.; Senet, P.; Ruiz, B.; Sulli, A.; Pizzorni, C.; Frances, C.; Chiocchia, G.; Cutolo, M.; et al. Correlations between angiogenic factors and capillaroscopic patterns in systemic sclerosis. Arthritis Res. Ther. 2013, 15, R55. [Google Scholar] [CrossRef] [Green Version]
- Pendergrass, S.A.; Hayes, E.; Farina, G.; Lemaire, R.; Farber, H.W.; Whitfield, M.L.; Lafyatis, R. Limited systemic sclerosis patients with pulmonary arterial hypertension show biomarkers of inflammation and vascular injury. PLoS ONE 2010, 5, e12106. [Google Scholar] [CrossRef]
- Thakkar, V.; Patterson, K.A.; Stevens, W.; Wilson, M.; Roddy, J.; Sahhar, J.; Proudman, S.; Hissaria, P.; Nikpour, M. Increased serum levels of adhesion molecules ICAM-1 and VCAM-1 in systemic sclerosis are not specific for pulmonary manifestations. Clin. Rheumatol. 2018, 37, 1563–1571. [Google Scholar] [CrossRef]
- Wang, J.; Liu, H. The roles of junctional adhesion molecules (JAMs) in cell migration. Front. Cell Dev. Biol. 2022, 10, 843671. [Google Scholar] [CrossRef]
- Hartmann, C.; Schwietzer, Y.A.; Otani, T.; Furuse, M.; Ebnet, K. Physiological functions of junctional adhesion molecules (JAMs) in tight junctions. Biochim. Biophys. Acta Biomembr. 2020, 1862, 183299. [Google Scholar] [CrossRef]
- Manetti, M.; Guiducci, S.; Romano, E.; Rosa, I.; Ceccarelli, C.; Mello, T.; Milia, A.F.; Conforti, M.L.; Ibba-Manneschi, L.; Matucci-Cerinic, M. Differential expression of junctional adhesion molecules in different stages of systemic sclerosis. Arthritis Rheum. 2013, 65, 247–257. [Google Scholar] [CrossRef]
- Romano, E.; Rosa, I.; Fioretto, B.S.; Matucci-Cerinic, M.; Manetti, M. Increased circulating soluble junctional adhesion molecules in systemic sclerosis: Association with peripheral microvascular impairment. Life 2022, 12, 1790. [Google Scholar] [CrossRef]
- Rabquer, B.J.; Amin, M.A.; Teegala, N.; Shaheen, M.K.; Tsou, P.S.; Ruth, J.H.; Lesch, C.A.; Imhof, B.A.; Koch, A.E. Junctional adhesion molecule-C is a soluble mediator of angiogenesis. J. Immunol. 2010, 185, 1777–1785. [Google Scholar] [CrossRef] [Green Version]
- Stratton, R.J.; Coghlan, J.G.; Pearson, J.D.; Burns, A.; Sweny, P.; Abraham, D.J.; Black, C.M. Different patterns of endothelial cell activation in renal and pulmonary vascular disease in scleroderma. QJM 1998, 91, 561–566. [Google Scholar] [CrossRef] [Green Version]
- Mittag, M.; Beckheinrich, P.; Haustein, U.F. Systemic sclerosis-related Raynaud’s phenomenon: Effects of iloprost infusion therapy on serum cytokine, growth factor and soluble adhesion molecule levels. Acta Derm. Venereol. 2001, 81, 294–297. [Google Scholar] [CrossRef] [Green Version]
- Kuryliszyn-Moskal, A.; Klimiuk, P.A.; Sierakowski, S. Soluble adhesion molecules (sVCAM-1, sE-selectin), vascular endothelial growth factor (VEGF) and endothelin-1 in patients with systemic sclerosis: Relationship to organ systemic involvement. Clin. Rheumatol. 2005, 24, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Iannone, F.; Riccardi, M.T.; Guiducci, S.; Bizzoca, R.; Cinelli, M.; Matucci-Cerinic, M.; Lapadula, G. Bosentan regulates the expression of adhesion molecules on circulating T cells and serum soluble adhesion molecules in systemic sclerosis-associated pulmonary arterial hypertension. Ann. Rheum. Dis. 2008, 67, 1121–1126. [Google Scholar] [CrossRef] [PubMed]
- Melincovici, C.S.; Boşca, A.B.; Şuşman, S.; Mărginean, M.; Mihu, C.; Istrate, M.; Moldovan, I.M.; Roman, A.L.; Mihu, C.M. Vascular endothelial growth factor (VEGF)–Key factor in normal and pathological angiogenesis. Rom. J. Morphol. Embryol. 2018, 59, 455–467. [Google Scholar] [PubMed]
- Flower, V.A.; Barratt, S.L.; Ward, S.; Pauling, J.D. The role of vascular endothelial growth factor in systemic sclerosis. Curr. Rheumatol. Rev. 2019, 15, 99–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manetti, M.; Guiducci, S.; Ibba-Manneschi, L.; Matucci-Cerinic, M. Mechanisms in the loss of capillaries in systemic sclerosis: Angiogenesis versus vasculogenesis. J. Cell. Mol. Med. 2010, 14, 1241–1254. [Google Scholar] [CrossRef] [Green Version]
- Distler, O.; Distler, J.H.; Scheid, A.; Acker, T.; Hirth, A.; Rethage, J.; Michel, B.A.; Gay, R.E.; Muller-Ladner, U.; Matucci-Cerinic, M.; et al. Uncontrolled expression of vascular endothelial growth factor and its receptors leads to insufficient skin angiogenesis in patients with systemic sclerosis. Circ. Res. 2004, 95, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Avouac, J.; Wip, J.; Goldman, O.; Ruiz, B.; Couraud, P.O.; Chiocchia, G.; Kahan, A.; Boileau, C.; Uzan, G.; Allanore, Y. Angiogenesis in systemic sclerosis: Impaired expression of vascular endothelial growth factor receptor 1 in endothelial progenitor-derived cells under hypoxic conditions. Arthritis Rheum. 2008, 58, 3550–3561. [Google Scholar] [CrossRef]
- Hummers, L.K.; Hall, A.; Wigley, F.M.; Simons, M. Abnormalities in the regulators of angiogenesis in patients with scleroderma. J. Rheumatol. 2009, 36, 576–582. [Google Scholar] [CrossRef]
- Distler, O.; Del Rosso, A.; Giacomelli, R.; Cipriani, P.; Conforti, M.L.; Guiducci, S.; Gay, R.E.; Michel, B.A.; Brühlmann, P.; Müller-Ladner, U.; et al. Angiogenic and angiostatic factors in systemic sclerosis: Increased levels of vascular endothelial growth factor are a feature of the earliest disease stages and are associated with the absence of fingertip ulcers. Arthritis Res. 2002, 4, R11. [Google Scholar] [CrossRef] [Green Version]
- Riccieri, V.; Stefanantoni, K.; Vasile, M.; Macrì, V.; Sciarra, I.; Iannace, N.; Alessandri, C.; Valesini, G. Abnormal plasma levels of different angiogenic molecules are associated with different clinical manifestations in patients with systemic sclerosis. Clin. Exp. Rheumatol. 2011, 29, S46–S52. [Google Scholar]
- Choi, J.J.; Min, D.J.; Cho, M.L.; Min, S.Y.; Kim, S.J.; Lee, S.S.; Park, K.S.; Seo, Y.I.; Kim, W.U.; Park, S.H.; et al. Elevated vascular endothelial growth factor in systemic sclerosis. J. Rheumatol. 2003, 30, 1529–1533. [Google Scholar]
- Papaioannou, A.I.; Zakynthinos, E.; Kostikas, K.; Kiropoulos, T.; Koutsokera, A.; Ziogas, A.; Koutroumpas, A.; Sakkas, L.; Gourgoulianis, K.I.; Daniil, Z.D. Serum VEGF levels are related to the presence of pulmonary arterial hypertension in systemic sclerosis. BMC Pulm. Med. 2009, 9, 18. [Google Scholar] [CrossRef] [Green Version]
- Farouk, H.M.; Hamza, S.H.; El Bakry, S.A.; Youssef, S.S.; Aly, I.M.; Moustafa, A.A.; Assaf, N.Y.; El Dakrony, A.H. Dysregulation of angiogenic homeostasis in systemic sclerosis. Int. J. Rheum. Dis. 2013, 16, 448–454. [Google Scholar] [CrossRef]
- Silva, I.; Almeida, J.; Vasconcelos, C. A PRISMA-driven systematic review for predictive risk factors of digital ulcers in systemic sclerosis patients. Autoimmun. Rev. 2015, 14, 140–152. [Google Scholar] [CrossRef]
- Silva, I.; Teixeira, A.; Oliveira, J.; Almeida, I.; Almeida, R.; Vasconcelos, C. Predictive value of vascular disease biomarkers for digital ulcers in systemic sclerosis patients. Clin. Exp. Rheumatol. 2015, 33, S127–S130. [Google Scholar]
- Silva, I.; Almeida, C.; Teixeira, A.; Oliveira, J.; Vasconcelos, C. Impaired angiogenesis as a feature of digital ulcers in systemic sclerosis. Clin. Rheumatol. 2016, 35, 1743–1751. [Google Scholar] [CrossRef]
- Bielecki, M.; Kowal, K.; Lapinska, A.; Chwiesko-Minarowska, S.; Chyczewski, L.; Kowal-Bielecka, O. Peripheral blood mononuclear cells frompatientswith systemic sclerosis spontaneously secrete increased amounts of vascular endothelial growth factor (VEGF) already in the early stage of the disease. Adv. Med. Sci. 2011, 56, 255–263. [Google Scholar] [CrossRef]
- Solanilla, A.; Villeneuve, J.; Auguste, P.; Hugues, M.; Alioum, A.; Lepreux, S.; Ducroix, J.P.; Duhaut, P.; Conri, C.; Viallard, J.F.; et al. The transport of high amounts of vascular endothelial growth factor by blood platelets underlines their potential contribution in systemic sclerosis angiogenesis. Rheumatology 2009, 48, 1036–1044. [Google Scholar] [CrossRef] [Green Version]
- Jinnin, M.; Makino, T.; Kajihara, I.; Honda, N.; Makino, K.; Ogata, A.; Ihn, H. Serum levels of soluble vascular endothelial growth factor receptor-2 in patients with systemic sclerosis. Br. J. Dermatol. 2010, 162, 751–758. [Google Scholar] [CrossRef]
- Schoonderwoerd, M.J.A.; Goumans, M.T.H.; Hawinkels, L.J.A.C. Endoglin: Beyond the endothelium. Biomolecules 2020, 10, 289. [Google Scholar] [CrossRef] [Green Version]
- ten Dijke, P.; Goumans, M.J.; Pardali, E. Endoglin in angiogenesis and vascular diseases. Angiogenesis 2008, 11, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Wipff, J.; Avouac, J.; Borderie, D.; Zerkak, D.; Lemarechal, H.; Kahan, A.; Boileau, C.; Allanore, Y. Disturbed angiogenesis in systemic sclerosis: High levels of soluble endoglin. Rheumatology 2008, 47, 972–975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Margioula-Siarkou, G.; Margioula-Siarkou, C.; Petousis, S.; Margaritis, K.; Vavoulidis, E.; Gullo, G.; Alexandratou, M.; Dinas, K.; Sotiriadis, A.; Mavromatidis, G. The role of endoglin and its soluble form in pathogenesis of preeclampsia. Mol. Cell. Biochem. 2022, 477, 479–491. [Google Scholar] [CrossRef]
- Fujimoto, M.; Hasegawa, M.; Hamaguchi, Y.; Komura, K.; Matsushita, T.; Yanaba, K.; Kodera, M.; Takehara, K.; Sato, S. A clue for telangiectasis in systemic sclerosis: Elevated serum soluble endoglin levels in patients with the limited cutaneous form of the disease. Dermatology 2006, 213, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Coral-Alvarado, P.X.; Garces, M.F.; Caminos, J.E.; Iglesias-Gamarra, A.; Restrepo, J.F.; Quintana, G. Serum endoglin levels in patients suffering from systemic sclerosis and elevated systolic pulmonary arterial pressure. Int. J. Rheumatol. 2010, 2010, 969383. [Google Scholar] [CrossRef] [Green Version]
- Odler, B.; Foris, V.; Gungl, A.; Müller, V.; Hassoun, P.M.; Kwapiszewska, G.; Olschewski, H.; Kovacs, G. Biomarkers for pulmonary vascular remodeling in systemic sclerosis: A pathophysiological approach. Front. Physiol. 2018, 9, 587. [Google Scholar] [CrossRef]
- Cozzani, E.; Javor, S.; Laborai, E.; Drosera, M.; Parodi, A. Endothelin-1 levels in scleroderma patients: A pilot study. ISRN Dermatol. 2013, 2013, 125632. [Google Scholar] [CrossRef]
- Coral-Alvarado, P.; Quintana, G.; Garces, M.F.; Cepeda, L.A.; Caminos, J.E.; Rondon, F.; Iglesias-Gamarra, A.; Restrepo, J.F. Potential biomarkers for detecting pulmonary arterial hypertension in patients with systemic sclerosis. Rheumatol. Int. 2009, 29, 1017–1024. [Google Scholar] [CrossRef]
- Aghaei, M.; Gharibdost, F.; Zayeni, H.; Akhlaghi, M.; Sedighi, S.; Rostamian, A.R.; Aghdami, N.; Shojaa, M. Endothelin-1 in systemic sclerosis. Indian Dermatol. Online J. 2012, 3, 14–16. [Google Scholar]
- Kim, H.S.; Park, M.K.; Kim, H.Y.; Park, S.H. Capillary dimension measured by computer-based digitalized image correlated with plasma endothelin-1 levels in patients with systemic sclerosis. Clin. Rheumatol. 2010, 29, 247–254. [Google Scholar] [CrossRef]
- Stochmal, A.; Czuwara, J.; Zaremba, M.; Rudnicka, L. Metabolic mediators determine the association of antinuclear antibody subtypes with specific clinical symptoms in systemic sclerosis. Adv. Med. Sci. 2021, 66, 119–127. [Google Scholar] [CrossRef]
- Sulli, A.; Soldano, S.; Pizzorni, C.; Montagna, P.; Secchi, M.E.; Villaggio, B.; Seriolo, B.; Brizzolara, R.; Cutolo, M. Raynaud’s phenomenon and plasma endothelin: Correlations with capillaroscopic patterns in systemic sclerosis. J. Rheumatol. 2009, 36, 1235–1239. [Google Scholar] [CrossRef]
- Kawashiri, S.Y.; Ueki, Y.; Terada, K.; Yamasaki, S.; Aoyagi, K.; Kawakami, A. Improvement of plasma endothelin-1 and nitric oxide in patients with systemic sclerosis by bosentan therapy. Rheumatol. Int. 2014, 34, 221–225. [Google Scholar] [CrossRef]
- Ciurzyński, M.; Bienias, P.; Irzyk, K.; Kostrubiec, M.; Bartoszewicz, Z.; Siwicka, M.; Stelmaszczyk-Emmel, A.; Górska, E.; Demkow, U.; Pruszczyk, P. Serum endothelin-1 and NT-proBNP, but not ADMA, endoglin and TIMP-1 levels, reflect impaired right ventricular function in patients with systemic sclerosis. Clin. Rheumatol. 2014, 33, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Mouthon, L.; Mehrenberger, M.; Teixeira, L.; Fakhouri, F.; Bérezné, A.; Guillevin, L.; Noël, L.H. Endothelin-1 expression in scleroderma renal crisis. Hum. Pathol. 2011, 42, 95–102. [Google Scholar] [CrossRef]
- Dhaun, N.; MacIntyre, I.M.; Bellamy, C.O.; Kluth, D.C. Endothelin receptor antagonism and renin inhibition as treatment options for scleroderma kidney. Am. J. Kidney Dis. 2009, 54, 726–731. [Google Scholar] [CrossRef]
- Penn, H.; Quillinan, N.; Khan, K.; Chakravarty, K.; Ong, V.H.; Burns, A.; Denton, C.P. Targeting the endothelin axis in scleroderma renal crisis: Rationale and feasibility. QJM 2013, 106, 839–848. [Google Scholar] [CrossRef]
- Hajialilo, M.; Noorabadi, P.; Tahsini Tekantapeh, S.; Malek Mahdavi, A. Endothelin-1, α-Klotho, 25(OH) Vit D levels and severity of disease in scleroderma patients. Rheumatol. Int. 2017, 37, 1651–1657. [Google Scholar] [CrossRef]
- Kill, A.; Tabeling, C.; Undeutsch, R.; Kühl, A.A.; Günther, J.; Radic, M.; Becker, M.O.; Heidecke, H.; Worm, M.; Witzenrath, M.; et al. Autoantibodies to angiotensin and endothelin receptors in systemic sclerosis induce cellular and systemic events associated with disease pathogenesis. Arthritis Res. Ther. 2014, 16, R29. [Google Scholar] [CrossRef] [Green Version]
- Becker, M.O.; Kill, A.; Kutsche, M.; Guenther, J.; Rose, A.; Tabeling, C.; Witzenrath, M.; Kühl, A.A.; Heidecke, H.; Ghofrani, H.A.; et al. Vascular receptor autoantibodies in pulmonary arterial hypertension associated with systemic sclerosis. Am. J. Respir. Crit. Care Med. 2014, 190, 808–817. [Google Scholar] [CrossRef]
- Avouac, J.; Riemekasten, G.; Meune, C.; Ruiz, B.; Kahan, A.; Allanore, Y. Autoantibodies against endothelin 1 type a receptor are strong predictors of digital ulcers in systemic sclerosis. J. Rheumatol. 2015, 42, 1801–1807. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.H.; Alitalo, K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell Biol. 2007, 8, 464–478. [Google Scholar] [CrossRef] [PubMed]
- Ladomery, M.R.; Harper, S.J.; Bates, D.O. Alternative splicing in angiogenesis: The vascular endothelial growth factor paradigm. Cancer Lett. 2006, 249, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Mostmans, Y.; Cutolo, M.; Giddelo, C.; Decuman, S.; Melsens, K.; Declercq, H.; Vandecasteele, E.; De Keyser, F.; Distler, O.; Gutermuth, J.; et al. The role of endothelial cells in the vasculopathy of systemic sclerosis: A systematic review. Autoimmun. Rev. 2017, 16, 774–786. [Google Scholar] [CrossRef]
- Manetti, M.; Guiducci, S.; Romano, E.; Ceccarelli, C.; Bellando-Randone, S.; Conforti, M.L.; Ibba-Manneschi, L.; Matucci-Cerinic, M. Overexpression of VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, leads to insufficient angiogenesis in patients with systemic sclerosis. Circ. Res. 2011, 109, e14–e26. [Google Scholar] [CrossRef] [Green Version]
- Manetti, M.; Guiducci, S.; Ibba-Manneschi, L.; Matucci-Cerinic, M. Impaired angiogenesis in systemic sclerosis: The emerging role of the antiangiogenic VEGF(165)b splice variant. Trends Cardiovasc. Med. 2011, 21, 204–210. [Google Scholar] [CrossRef]
- Manetti, M.; Guiducci, S.; Romano, E.; Bellando-Randone, S.; Lepri, G.; Bruni, C.; Conforti, M.L.; Ibba-Manneschi, L.; Matucci-Cerinic, M. Increased plasma levels of the VEGF165b splice variant are associated with the severity of nailfold capillary loss in systemic sclerosis. Ann. Rheum. Dis. 2013, 72, 1425–1427. [Google Scholar] [CrossRef]
- Wu, Q.; Cao, F.; Tao, J.; Li, X.; Zheng, S.G.; Pan, H.F. Pentraxin 3: A promising therapeutic target for autoimmune diseases. Autoimmun. Rev. 2020, 19, 102584. [Google Scholar] [CrossRef]
- Iwata, Y.; Yoshizaki, A.; Ogawa, F.; Komura, K.; Hara, T.; Muroi, E.; Takenaka, M.; Shimizu, K.; Hasegawa, M.; Fujimoto, M.; et al. Increased serum pentraxin 3 in patients with systemic sclerosis. J. Rheumatol. 2009, 36, 976–983. [Google Scholar] [CrossRef]
- Shirai, Y.; Okazaki, Y.; Inoue, Y.; Tamura, Y.; Yasuoka, H.; Takeuchi, T.; Kuwana, M. Elevated levels of pentraxin 3 in systemic sclerosis: Associations with vascular manifestations and defective vasculogenesis. Arthritis Rheumatol. 2015, 67, 498–507. [Google Scholar] [CrossRef]
- Borghini, A.; Manetti, M.; Nacci, F.; Bellando-Randone, S.; Guiducci, S.; Matucci-Cerinic, M.; Ibba-Manneschi, L.; Weber, E. Systemic sclerosis sera impair angiogenic performance of dermal microvascular endothelial cells: Therapeutic implications of cyclophosphamide. PLoS ONE 2015, 10, e0130166. [Google Scholar] [CrossRef]
- Kawashiri, S.Y.; Nishino, A.; Igawa, T.; Takatani, A.; Shimizu, T.; Umeda, M.; Fukui, S.; Okada, A.; Suzuki, T.; Koga, T.; et al. Prediction of organ involvement in systemic sclerosis by serum biomarkers and peripheral endothelial function. Clin. Exp. Rheumatol. 2018, 36, 102–108. [Google Scholar]
- İlgen, U.; Yayla, M.E.; Düzgün, N. Low serum fibroblast growth factor 2 levels not accompanied by increased serum pentraxin 3 levels in patients with systemic sclerosis. Clin. Rheumatol. 2017, 36, 367–372. [Google Scholar] [CrossRef]
- Folkmann, J. Antiangiogenesis in cancer therapy—Endostatin and its mechanisms of action. Exp. Cell Res. 2006, 312, 594–607. [Google Scholar] [CrossRef]
- Hebbar, M.; Peyrat, J.P.; Hornez, L.; Hatron, P.Y.; Hachulla, E.; Devulder, B. Increased concentrations of the circulating angiogenesis inhibitor endostatin in patients with systemic sclerosis. Arthritis Rheum. 2000, 43, 889–893. [Google Scholar] [CrossRef]
- Dziankowska-Bartkowiak, B.; Waszczykowska, E.; Zalewska, A.; Sysa-Jedrzejowska, A. Correlation of endostatin and tissue inhibitor of metalloproteinases 2 (TIMP2) serum levels with cardiovascular involvement in systemic sclerosis patients. Mediat. Inflamm. 2005, 2005, 144–149. [Google Scholar] [CrossRef] [Green Version]
- Dziankowska-Bartkowiak, B.; Waszczykowska, E.; Dziankowska-Zaboroszczyk, E.; de Graft-Johnson, J.E.; Zalewska, A.; Łuczyńska, M.; Nowak, D. Decreased ratio of circulatory vascular endothelial growth factor to endostatin in patients with systemic sclerosis—Association with pulmonary involvement. Clin. Exp. Rheumatol. 2006, 24, 508–513. [Google Scholar]
- Reiseter, S.; Molberg, Ø.; Gunnarsson, R.; Lund, M.B.; Aalokken, T.M.; Aukrust, P.; Ueland, T.; Garen, T.; Brunborg, C.; Michelsen, A.; et al. Associations between circulating endostatin levels and vascular organ damage in systemic sclerosis and mixed connective tissue disease: An observational study. Arthritis Res. Ther. 2015, 17, 231. [Google Scholar] [CrossRef] [Green Version]
- Almeida, I.; Oliveira Gomes, A.; Lima, M.; Silva, I.; Vasconcelos, C. Different contributions of angiostatin and endostatin in angiogenesis impairment in systemic sclerosis: A cohort study. Clin. Exp. Rheumatol. 2016, 34, 37–42. [Google Scholar]
- Gigante, A.; Navarini, L.; Margiotta, D.; Amoroso, A.; Barbano, B.; Cianci, R.; Afeltra, A.; Rosato, E. Angiogenic and angiostatic factors in renal scleroderma-associated vasculopathy. Microvasc. Res. 2017, 114, 41–45. [Google Scholar] [CrossRef] [Green Version]
- Gigante, A.; Margiotta, D.; Navarini, L.; Barbano, B.; Gasperini, M.L.; D’Agostino, C.; Amoroso, A.; Afeltra, A.; Rosato, E. Serum level of endostatin and digital ulcers in systemic sclerosis patients. Int. Wound J. 2018, 15, 424–428. [Google Scholar] [CrossRef] [PubMed]
- Gigante, A.; Navarini, L.; Margiotta, D.; Barbano, B.; Afeltra, A.; Rosato, E. In systemic sclerosis, microvascular and hands digital arteries damage correlates with serum levels of endostatin. Microcirculation 2018, 25, e12449. [Google Scholar] [CrossRef] [PubMed]
- Bellocchi, C.; Assassi, S.; Lyons, M.; Marchini, M.; Mohan, C.; Santaniello, A.; Beretta, L. Proteomic aptamer analysis reveals serum markers that characterize preclinical systemic sclerosis (SSc) Patients at risk for progression toward definite SSc. Arthritis Res. Ther. 2023, 25, 15. [Google Scholar] [CrossRef] [PubMed]
- Kanno, Y. The role of fibrinolytic regulators in vascular dysfunction of systemic sclerosis. Int. J. Mol. Sci. 2019, 20, 619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulligan-Kehoe, M.J.; Drinane, M.C.; Mollmark, J.; Casciola-Rosen, L.; Hummers, L.K.; Hall, A.; Rosen, A.; Wigley, F.M.; Simons, M. Antiangiogenic plasma activity in patients with systemic sclerosis. Arthritis Rheum. 2007, 56, 3448–3458. [Google Scholar] [CrossRef]
- Gerlicz-Kowalczuk, Z.; Dziankowska-Zaborszczyk, E.; Dziankowska-Bartkowiak, B. Circulating angiostatin serum level in patients with systemic sclerosis. Postep. Dermatol. Alergol. 2017, 34, 543–546. [Google Scholar] [CrossRef] [Green Version]
- Michalska-Jakubus, M.; Cutolo, M.; Smith, V.; Krasowska, D. Imbalanced serum levels of Ang1, Ang2 and VEGF in systemic sclerosis: Integrated effects on microvascular reactivity. Microvasc. Res. 2019, 125, 103881. [Google Scholar] [CrossRef] [Green Version]
- Collazos-Alemán, J.D.; Gnecco-González, S.; Jaramillo-Zarama, B.; Jiménez-Mora, M.A.; Mendivil, C.O. The role of angiopoietins in neovascular diabetes-related retinal diseases. Diabetes Ther. 2022, 13, 1811–1821. [Google Scholar] [CrossRef]
- Leong, E.; Bezuhly, M.; Marshall, J.S. Distinct metalloproteinase expression and functions in systemic sclerosis and fibrosis: What we know and the potential for intervention. Front. Physiol. 2021, 12, 727451. [Google Scholar] [CrossRef]
- Peng, W.J.; Yan, J.W.; Wan, Y.N.; Wang, B.X.; Tao, J.H.; Yang, G.J.; Pan, H.F.; Wang, J. Matrix metalloproteinases: A review of their structure and role in systemic sclerosis. J. Clin. Immunol. 2012, 32, 1409–1414. [Google Scholar] [CrossRef]
- Giannelli, G.; Iannone, F.; Marinosci, F.; Lapadula, G.; Antonaci, S. The effect of bosentan on matrix metalloproteinase-9 levels in patients with systemic sclerosis-induced pulmonary hypertension. Curr. Med. Res. Opin. 2005, 21, 327–332. [Google Scholar] [CrossRef]
- Waszczykowska, A.; Podgórski, M.; Waszczykowski, M.; Gerlicz-Kowalczuk, Z.; Jurowski, P. Matrix metalloproteinases MMP-2 and MMP-9, their inhibitors TIMP-1 and TIMP-2, vascular endothelial growth factor and sVEGFR-2 as predictive markers of ischemic retinopathy in patients with systemic sclerosis—Case series report. Int. J. Mol. Sci. 2020, 21, 8703. [Google Scholar] [CrossRef]
- Manetti, M.; Guiducci, S.; Romano, E.; Bellando-Randone, S.; Conforti, M.L.; Ibba-Manneschi, L.; Matucci-Cerinic, M. Increased serum levels and tissue expression of matrix metalloproteinase-12 in patients with systemic sclerosis: Correlation with severity of skin and pulmonary fibrosis and vascular damage. Ann. Rheum. Dis. 2012, 71, 1064–1072. [Google Scholar] [CrossRef]
- Elias, G.J.; Ioannis, M.; Theodora, P.; Dimitrios, P.P.; Despoina, P.; Kostantinos, V.; Charalampos, K.; Vassilios, V.; Petros, S.P. Circulating tissue inhibitor of matrix metalloproteinase-4 (TIMP-4) in systemic sclerosis patients with elevated pulmonary arterial pressure. Mediat. Inflamm. 2008, 2008, 164134. [Google Scholar] [CrossRef] [Green Version]
- Kuźnik-Trocha, K.; Winsz-Szczotka, K.; Komosińska-Vassev, K.; Jura-Półtorak, A.; Kotulska-Kucharz, A.; Kucharz, E.J.; Kotyla, P.; Olczyk, K. Plasma glycosaminoglycan profiles in systemic sclerosis: Associations with MMP-3, MMP-10, TIMP-1, TIMP-2, and TGF-beta. Biomed. Res. Int. 2020, 2020, 6416514. [Google Scholar] [CrossRef]
- Romano, E.; Rosa, I.; Fioretto, B.S.; Guiducci, S.; Manetti, M.; Matucci-Cerinic, M. A new avenue in the pathogenesis of systemic sclerosis: The molecular interface between the endothelial and the nervous systems. Clin. Exp. Rheumatol. 2019, 37, 133–140. [Google Scholar]
- Romano, E.; Rosa, I.; Fioretto, B.S.; Matucci-Cerinic, M.; Manetti, M. Circulating neurovascular guidance molecules and their relationship with peripheral microvascular impairment in systemic sclerosis. Life 2022, 12, 1056. [Google Scholar] [CrossRef]
- Romano, E.; Chora, I.; Manetti, M.; Mazzotta, C.; Rosa, I.; Bellando-Randone, S.; Blagojevic, J.; Soares, R.; Avouac, J.; Allanore, Y.; et al. Decreased expression of neuropilin-1 as a novel key factor contributing to peripheral microvasculopathy and defective angiogenesis in systemic sclerosis. Ann. Rheum. Dis. 2016, 75, 1541–1549. [Google Scholar] [CrossRef]
- Bauer, Y.; de Bernard, S.; Hickey, P.; Ballard, K.; Cruz, J.; Cornelisse, P.; Chadha-Boreham, H.; Distler, O.; Rosenberg, D.; Doelberg, M.; et al. Identifying early pulmonary arterial hypertension biomarkers in systemic sclerosis: Machine learning on proteomics from the DETECT cohort. Eur. Respir. J. 2021, 57, 2002591. [Google Scholar] [CrossRef]
- Chora, I.; Romano, E.; Manetti, M.; Mazzotta, C.; Costa, R.; Machado, V.; Cortez, A.; Bruni, C.; Lepri, G.; Guiducci, S.; et al. Evidence for a derangement of the microvascular system in patients with a very early diagnosis of systemic sclerosis. J. Rheumatol. 2017, 44, 1190–1197. [Google Scholar] [CrossRef]
- Mazzotta, C.; Romano, E.; Bruni, C.; Manetti, M.; Lepri, G.; Bellando-Randone, S.; Blagojevic, J.; Ibba-Manneschi, L.; Matucci-Cerinic, M.; Guiducci, S. Plexin-D1/Semaphorin 3E pathway may contribute to dysregulation of vascular tone control and defective angiogenesis in systemic sclerosis. Arthritis Res. Ther. 2015, 17, 221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romano, E.; Manetti, M.; Rosa, I.; Fioretto, B.S.; Ibba-Manneschi, L.; Matucci-Cerinic, M.; Guiducci, S. Slit2/Robo4 axis may contribute to endothelial cell dysfunction and angiogenesis disturbance in systemic sclerosis. Ann. Rheum. Dis. 2018, 77, 1665–1674. [Google Scholar] [CrossRef] [PubMed]
- Iragavarapu-Charyulu, V.; Wojcikiewicz, E.; Urdaneta, A. Semaphorins in angiogenesis and autoimmune diseases: Therapeutic targets? Front. Immunol. 2020, 11, 346. [Google Scholar] [CrossRef]
- Avouac, J.; Fransen, J.; Walker, U.A.; Riccieri, V.; Smith, V.; Muller, C.; Miniati, I.; Tarner, I.H.; Randone, S.B.; Cutolo, M.; et al. Preliminary criteria for the very early diagnosis of systemic sclerosis: Results of a Delphi Consensus Study from EULAR Scleroderma Trials and Research Group. Ann. Rheum. Dis. 2011, 70, 476–481. [Google Scholar] [CrossRef]
- Shahgaldi, S.; Kahmini, F.R. A comprehensive review of sirtuins: With a major focus on redox homeostasis and metabolism. Life Sci. 2021, 282, 119803. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.N.; Dai, Y.; Zhang, C.H.; Omondi, A.M.; Ghosh, A.; Khanra, I.; Chakraborty, M.; Yu, X.B.; Liang, J. Sirtuins family as a target in endothelial cell dysfunction: Implications for vascular ageing. Biogerontology 2020, 21, 495–516. [Google Scholar] [CrossRef]
- Edatt, L.; Poyyakkara, A.; Raji, G.R.; Ramachandran, V.; Shankar, S.S.; Kumar, V.B.S. Role of sirtuins in tumor angiogenesis. Front. Oncol. 2020, 9, 1516. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Zeng, H.; Chen, J.X. Emerging role of SIRT3 in endothelial metabolism, angiogenesis, and cardiovascular disease. J. Cell. Physiol. 2019, 234, 2252–2265. [Google Scholar] [CrossRef]
- Manetti, M.; Rosa, I.; Fioretto, B.S.; Matucci-Cerinic, M.; Romano, E. Decreased serum levels of SIRT1 and SIRT3 correlate with severity of skin and lung fibrosis and peripheral microvasculopathy in systemic sclerosis. J. Clin. Med. 2022, 11, 1362. [Google Scholar] [CrossRef]
- Carbone, M.L.; Failla, C.M. Interleukin role in the regulation of endothelial cell pathological activation. Vasc. Biol. 2021, 3, R96–R105. [Google Scholar] [CrossRef]
- Xu, D.; Mu, R.; Wei, X. The role of IL-1 family cytokines in the pathogenesis of systemic sclerosis. Front. Immunol. 2019, 10, 2025. [Google Scholar] [CrossRef] [Green Version]
- Shima, Y. Cytokines involved in the pathogenesis of ssc and problems in the development of anti-cytokine therapy. Cells 2021, 10, 1104. [Google Scholar] [CrossRef]
- Hussein, M.R.; Hassan, H.I.; Hofny, E.R.; Elkholy, M.; Fatehy, N.A.; Abd Elmoniem, A.E.; Ezz El-Din, A.M.; Afifi, O.A.; Rashed, H.G. Alterations of mononuclear inflammatory cells, CD4/CD8+ T cells, interleukin 1β, and tumour necrosis factor alpha in the bronchoalveolar lavage fluid, peripheral blood, and skin of patients with systemic sclerosis. J. Clin. Pathol. 2005, 58, 178–184. [Google Scholar] [CrossRef] [Green Version]
- Lin, E.; Vincent, F.B.; Sahhar, J.; Ngian, G.S.; Kandane-Rathnayake, R.; Mende, R.; Morand, E.F.; Lang, T.; Harris, J. Analysis of serum interleukin(IL)-1α, IL-1β and IL-18 in patients with systemic sclerosis. Clin. Transl. Immunol. 2019, 8, e1045. [Google Scholar] [CrossRef] [Green Version]
- Mosaad, Y.M.; Metwally, S.S.; Auf, F.A.; AbdEL-Samee, E.R.; el-Deek, B.; Limon, N.I.; el-Chennawi, F.A. Proinflammatory cytokines (IL-12 and IL-18) in immune rheumatic diseases: Relation with disease activity and autoantibodies production. Egypt. J. Immunol. 2003, 10, 19–26. [Google Scholar]
- Nakamura, K.; Asano, Y.; Taniguchi, T.; Minatsuki, S.; Inaba, T.; Maki, H.; Hatano, M.; Yamashita, T.; Saigusa, R.; Ichimura, Y.; et al. Serum levels of interleukin-18-binding protein isoform a: Clinical association with inflammation and pulmonary hypertension in systemic sclerosis. J. Dermatol. 2016, 43, 912–918. [Google Scholar] [CrossRef]
- Manetti, M.; Guiducci, S.; Ceccarelli, C.; Romano, E.; Bellando-Randone, S.; Conforti, M.L.; Ibba-Manneschi, L.; Matucci-Cerinic, M. Increased circulating levels of interleukin 33 in systemic sclerosis correlate with early disease stage and microvascular involvement. Ann. Rheum. Dis. 2011, 70, 1876–1878. [Google Scholar] [CrossRef]
- Yanaba, K.; Yoshizaki, A.; Asano, Y.; Kadono, T.; Sato, S. Serum IL-33 levels are raised in patients with systemic sclerosis: Association with extent of skin sclerosis and severity of pulmonary fibrosis. Clin. Rheumatol. 2011, 30, 825–830. [Google Scholar] [CrossRef]
- Terras, S.; Opitz, E.; Moritz, R.K.; Hoxtermann, S.; Gambichler, T.; Kreuter, A. Increased serum IL-33 levels may indicate vascular involvement in systemic sclerosis. Ann. Rheum. Dis. 2013, 72, 144–145. [Google Scholar] [CrossRef]
- Iannazzo, F.; Pellicano, C.; Colalillo, A.; Ramaccini, C.; Romaniello, A.; Gigante, A.; Rosato, E. Interleukin-33 and soluble suppression of tumorigenicity 2 in scleroderma cardiac involvement. Clin. Exp. Med. 2022. [Google Scholar] [CrossRef]
- Pellicano, C.; Iannazzo, F.; Romaggioli, L.; Rosato, E. IL33 and sST2 serum level in systemic sclerosis microvascular involvement. Microvasc. Res. 2022, 142, 104344. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, M.; Fujimoto, M.; Kikuchi, K.; Takehara, K. Elevated serum levels of interleukin 4 (IL-4), IL-10, and IL-13 in patients with systemic sclerosis. J. Rheumatol. 1997, 24, 328–332. [Google Scholar] [PubMed]
- Iannone, F.; Praino, E.; Rotondo, C.; Natuzzi, D.; Bizzoca, R.; Lacarpia, N.; Fornaro, M.; Cacciapaglia, F. Body mass index and adipokines/cytokines dysregulation in systemic sclerosis. Clin. Exp. Immunol. 2021, 206, 153–160. [Google Scholar] [CrossRef]
- Lin, X.; Ding, M.; Chen, T.; Min, S.; Wang, D.; Jiang, G. Peripheral blood IL-6 levels in systemic sclerosis patients: Correlation between IL-6 levels and clinical phenotypes. J. Cosmet. Dermatol. 2022, 21, 6086–6091. [Google Scholar] [CrossRef] [PubMed]
- Jurisic, Z.; Martinovic-Kaliterna, D.; Marasovic-Krstulovic, D.; Perkovic, D.; Tandara, L.; Salamunic, I.; Carevic, V. Relationship between interleukin-6 and cardiac involvement in systemic sclerosis. Rheumatology 2013, 52, 1298–1302. [Google Scholar] [CrossRef] [Green Version]
- Kardum, Ž.; Milas-Ahić, J.; Šahinović, I.; Masle, A.M.; Uršić, D.; Kos, M. Serum levels of interleukin 17 and 22 in patients with systemic sclerosis: A single-center cross-sectional study. Rheumatol. Int. 2023, 43, 345–354. [Google Scholar] [CrossRef]
- Yayla, M.E.; Torgutalp, M.; Okatan, İ.E.; Yurteri, E.U.; Küçükşahin, O.; Dinçer, A.B.K.; Gülöksüz, E.G.A.; Sezer, S.; Us, E.; Turgay, T.M.; et al. Serum interleukin 35 levels in systemic sclerosis and relationship with clinical features. J. Clin. Rheumatol. 2020, 26, 83–86. [Google Scholar] [CrossRef]
- Tomcik, M.; Zerr, P.; Palumbo-Zerr, K.; Storkanova, H.; Hulejova, H.; Spiritovic, M.; Kodet, O.; Stork, J.; Becvar, R.; Vencovsky, J.; et al. Interleukin-35 is upregulated in systemic sclerosis and its serum levels are associated with early disease. Rheumatology 2015, 54, 2273–2282. [Google Scholar] [CrossRef] [Green Version]
- Christmann, R.B.; Hayes, E.; Pendergrass, S.; Padilla, C.; Farina, G.; Affandi, A.J.; Whitfield, M.L.; Farber, H.W.; Lafyatis, R. Interferon and alternative activation of monocyte/macrophages in systemic sclerosis-associated pulmonary arterial hypertension. Arthritis Rheum. 2011, 63, 1718–1728. [Google Scholar] [CrossRef]
- Bălănescu, P.; Lădaru, A.; Bălănescu, E.; Nicolau, A.; Băicuş, C.; Dan, G.A. IL-17, IL-6 and IFN-γ in systemic sclerosis patients. Rom. J. Intern. Med. 2015, 53, 44–49. [Google Scholar] [CrossRef] [Green Version]
- de Almeida, A.R.; Dantas, A.T.; Pereira, M.C.; de Melo Rêgo, M.J.B.; Guimarães Gonçalves, R.S.; Pitta, I.D.R.; Branco Pinto Duarte, A.L.; Parra Abdalla, D.S.; da Rocha Pitta, M.G. Increased levels of the soluble oncostatin M receptor (sOSMR) and glycoprotein 130 (sgp130) in systemic sclerosis patients and associations with clinical parameters. Immunobiology 2020, 225, 151964. [Google Scholar] [CrossRef]
- Robak, E.; Gerlicz-Kowalczuk, Z.; Dziankowska-Bartkowiak, B.; Wozniacka, A.; Bogaczewicz, J. Serum concentrations of IL-17A, IL-17B, IL-17E and IL-17F in patients with systemic sclerosis. Arch. Med. Sci. 2019, 15, 706–712. [Google Scholar] [CrossRef]
- Fukayama, M.; Yoshizaki, A.; Fukasawa, T.; Ebata, S.; Kuzumi, A.; Yoshizaki-Ogawa, A.; Asano, Y.; Oba, K.; Sato, S. Interleukin (IL)-17F and IL-17E are related to fibrosis and vasculopathy in systemic sclerosis. J. Dermatol. 2020, 47, 1287–1292. [Google Scholar] [CrossRef]
- Kawabata, K.; Makino, T.; Makino, K.; Kajihara, I.; Fukushima, S.; Ihn, H. IL-16 expression is increased in the skin and sera of patients with systemic sclerosis. Rheumatology 2020, 59, 519–523. [Google Scholar] [CrossRef]
- Di Benedetto, P.; Guggino, G.; Manzi, G.; Ruscitti, P.; Berardicurti, O.; Panzera, N.; Grazia, N.; Badagliacca, R.; Riccieri, V.; Vizza, C.D.; et al. Interleukin-32 in systemic sclerosis, a potential new biomarker for pulmonary arterial hypertension. Arthritis Res. Ther. 2020, 22, 127. [Google Scholar] [CrossRef]
- Stefanantoni, K.; Sciarra, I.; Vasile, M.; Badagliacca, R.; Poscia, R.; Pendolino, M.; Alessandri, C.; Vizza, C.D.; Valesini, G.; Riccieri, V. Elevated serum levels of macrophage migration inhibitory factor and stem cell growth factor β in patients with idiopathic and systemic sclerosis associated pulmonary arterial hypertension. Reumatismo 2015, 66, 270–276. [Google Scholar] [CrossRef] [Green Version]
- Kolstad, K.D.; Khatri, A.; Donato, M.; Chang, S.E.; Li, S.; Steen, V.D.; Utz, P.J.; Khatri, P.; Chung, L. Cytokine signatures differentiate systemic sclerosis patients at high versus low risk for pulmonary arterial hypertension. Arthritis Res. Ther. 2022, 24, 39. [Google Scholar] [CrossRef]
- Dimberg, A. Chemokines in angiogenesis. Chemokine Syst. Exp. Clin. Hematol. 2010, 341, 59–80. [Google Scholar]
- Miyabe, Y.; Lian, J.; Miyabe, C.; Luster, A.D. Chemokines in rheumatic diseases: Pathogenic role and therapeutic implications. Nat. Rev. Rheumatol. 2019, 15, 731–746. [Google Scholar] [CrossRef]
- Keeley, E.C.; Mehrad, B.; Strieter, R.M. Chemokines as mediators of neovascularization. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 1928–1936. [Google Scholar] [CrossRef] [Green Version]
- Stamatovic, S.M.; Keep, R.F.; Mostarica-Stojkovic, M.; Andjelkovic, A.V. CCL2 regulates angiogenesis via activation of Ets-1 transcription factor. J. Immunol. 2006, 177, 2651–2661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Low-Marchelli, J.M.; Ardi, V.C.; Vizcarra, E.A.; van Rooijen, N.; Quigley, J.P.; Yang, J. Twist1 induces CCL2 and recruits macrophages to promote angiogenesis. Cancer Res. 2013, 73, 662–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonelli, A.; Ferri, C.; Fallahi, P.; Ferrari, S.M.; Giuggioli, D.; Colaci, M.; Manfredi, A.; Frascerra, S.; Franzoni, F.; Galetta, F.; et al. CXCL10 (alpha) and CCL2 (beta) chemokines in systemic sclerosis-a longitudinal study. Rheumatology 2008, 47, 45–49. [Google Scholar] [CrossRef] [Green Version]
- Vettori, S.; Cuomo, G.; Iudici, M.; D’Abrosca, V.; Giacco, V.; Barra, G.; De Palma, R.; Valentini, G. Early systemic sclerosis: Serum profiling of factors involved in endothelial, T-cell, and fibroblast interplay is marked by elevated interleukin-33 levels. J. Clin. Immunol. 2014, 34, 663–668. [Google Scholar] [CrossRef] [PubMed]
- Bandinelli, F.; Del Rosso, A.; Gabrielli, A.; Giacomelli, R.; Bartoli, F.; Guiducci, S.; Matucci Cerinic, M. CCL2, CCL3 and CCL5 chemokines in systemic sclerosis: The correlation with SSc clinical features and the effect of prostaglandin E1 treatment. Clin. Exp. Rheumatol. 2012, 30, S44–S49. [Google Scholar]
- Carulli, M.T.; Handler, C.; Coghlan, J.G.; Black, C.M.; Denton, C.P. Can CCL2 serum levels be used in risk stratification or to monitor treatment response in systemic sclerosis? Ann. Rheum. Dis. 2008, 67, 105–109. [Google Scholar] [CrossRef]
- Wu, M.; Baron, M.; Pedroza, C.; Salazar, G.A.; Ying, J.; Charles, J.; Agarwal, S.K.; Hudson, M.; Pope, J.; Zhou, X.; et al. CCL2 in the circulation predicts long-term progression of interstitial lung disease in patients with early systemic sclerosis: Data from two independent cohorts. Arthritis Rheumatol. 2017, 69, 1871–1878. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.Y.; Tsai, H.C.; Chou, P.Y.; Wang, S.W.; Chen, H.T.; Lin, Y.M.; Chiang, I.P.; Chang, T.M.; Hsu, S.K.; Chou, M.C.; et al. CCL3 promotes angiogenesis by dysregulation of miR-374b/ VEGF-A axis in human osteosarcoma cells. Oncotarget 2016, 7, 4310–4325. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.W.; Liu, S.C.; Sun, H.L.; Huang, T.Y.; Chan, C.H.; Yang, C.Y.; Yeh, H.I.; Huang, Y.L.; Chou, W.Y.; Lin, Y.M.; et al. CCL5/CCR5 axis induces vascular endothelial growth factor-mediated tumor angiogenesis in human osteosarcoma microenvironment. Carcinogenesis 2015, 36, 104–114. [Google Scholar] [CrossRef]
- She, S.; Ren, L.; Chen, P.; Wang, M.; Chen, D.; Wang, Y.; Chen, H. Functional roles of chemokine receptor CCR2 and its ligands in liver disease. Front. Immunol. 2022, 13, 812431. [Google Scholar] [CrossRef]
- Yanaba, K.; Yoshizaki, A.; Muroi, E.; Hara, T.; Ogawa, F.; Shimizu, K.; Hasegawa, M.; Fujimoto, M.; Takehara, K.; Sato, S. CCL13 is a promising diagnostic marker for systemic sclerosis. Br. J. Dermatol. 2010, 162, 332–336. [Google Scholar] [CrossRef] [Green Version]
- Gambichler, T.; Yilmaz, E.; Höxtermann, S.; Kolios, A.; Moritz, R.; Bechara, F.G.; Kreuter, A. Serum CCL13 levels in patients with systemic sclerosis and controls. Br. J. Dermatol. 2011, 165, 216–218. [Google Scholar] [CrossRef]
- Benkheil, M.; Van Haele, M.; Roskams, T.; Laporte, M.; Noppen, S.; Abbasi, K.; Delang, L.; Neyts, J.; Liekens, S. CCL20, a direct-acting pro-angiogenic chemokine induced by hepatitis C virus (HCV): Potential role in HCV-related liver cancer. Exp. Cell Res. 2018, 372, 168–177. [Google Scholar] [CrossRef]
- Korbecki, J.; Grochans, S.; Gutowska, I.; Barczak, K.; Baranowska-Bosiacka, I. CC chemokines in a tumor: A review of pro-cancer and anti-cancer properties of receptors CCR5, CCR6, CCR7, CCR8, CCR9, and CCR10 ligands. Int. J. Mol. Sci. 2020, 21, 7619. [Google Scholar] [CrossRef]
- Ikawa, T.; Miyagawa, T.; Fukui, Y.; Minatsuki, S.; Maki, H.; Inaba, T.; Hatano, M.; Toyama, S.; Omatsu, J.; Awaji, K.; et al. Association of serum CCL20 levels with pulmonary vascular involvement and primary biliary cholangitis in patients with systemic sclerosis. Int. J. Rheum. Dis. 2021, 24, 711–718. [Google Scholar] [CrossRef]
- Xiong, Y.; Huang, F.; Li, X.; Chen, Z.; Feng, D.; Jiang, H.; Chen, W.; Zhang, X. CCL21/CCR7 interaction promotes cellular migration and invasion via modulation of the MEK/ERK1/2 signaling pathway and correlates with lymphatic metastatic spread and poor prognosis in urinary bladder cancer. Int. J. Oncol. 2017, 51, 75–90. [Google Scholar] [CrossRef] [Green Version]
- Pickens, S.R.; Chamberlain, N.D.; Volin, M.V.; Pope, R.M.; Talarico, N.E.; Mandelin, A.M., 2nd; Shahrara, S. Role of the CCL21 and CCR7 pathways in rheumatoid arthritis angiogenesis. Arthritis Rheum. 2012, 64, 2471–2481. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann-Vold, A.M.; Hesselstrand, R.; Fretheim, H.; Ueland, T.; Andreassen, A.K.; Brunborg, C.; Palchevskiy, V.; Midtvedt, Ø.; Garen, T.; Aukrust, P.; et al. CCL21 as a potential serum biomarker for pulmonary arterial hypertension in systemic sclerosis. Arthritis Rheumatol. 2018, 70, 1644–1653. [Google Scholar] [CrossRef] [Green Version]
- Didriksen, H.; Molberg, Ø.; Mehta, A.; Jordan, S.; Palchevskiy, V.; Fretheim, H.; Gude, E.; Ueland, T.; Brunborg, C.; Garen, T.; et al. Target organ expression and biomarker characterization of chemokine CCL21 in systemic sclerosis associated pulmonary arterial hypertension. Front. Immunol. 2022, 13, 991743. [Google Scholar] [CrossRef]
- Roderburg, C.; Labuhn, S.; Bednarsch, J.; Lang, S.A.; Schneider, A.T.; Hammerich, L.; Vucur, M.; Ulmer, T.F.; Neumann, U.P.; Luedde, T.; et al. Elevated serum levels of CCL23 are associated with poor outcome after resection of biliary tract cancer. Mediat. Inflamm. 2022, 2022, 6195004. [Google Scholar] [CrossRef]
- Yanaba, K.; Yoshizaki, A.; Muroi, E.; Ogawa, F.; Asano, Y.; Kadono, T.; Sato, S. Serum CCL23 levels are increased in patients with systemic sclerosis. Arch. Dermatol. Res. 2011, 303, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Jian, J.; Pang, Y.; Yan, H.H.; Min, Y.; Achyut, B.R.; Hollander, M.C.; Lin, P.C.; Liang, X.; Yang, L. Platelet factor 4 is produced by subsets of myeloid cells in premetastatic lung and inhibits tumor metastasis. Oncotarget 2017, 8, 27725–27739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Z.; Chen, C.; Yang, S.; He, H.; Zhu, X.; Liang, M. Contribution to the peripheral vasculopathy and endothelial cell dysfunction by CXCL4 in systemic sclerosis. J. Dermatol. Sci. 2021, 104, 63–73. [Google Scholar] [CrossRef] [PubMed]
- van Bon, L.; Affandi, A.J.; Broen, J.; Christmann, R.B.; Marijnissen, R.J.; Stawski, L.; Farina, G.A.; Stifano, G.; Mathes, A.L.; Cossu, M.; et al. Proteome-wide analysis and CXCL4 as a biomarker in systemic sclerosis. N. Engl. J. Med. 2014, 370, 433–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volkmann, E.R.; Tashkin, D.P.; Roth, M.D.; Clements, P.J.; Khanna, D.; Furst, D.E.; Mayes, M.; Charles, J.; Tseng, C.H.; Elashoff, R.M.; et al. Changes in plasma CXCL4 levels are associated with improvements in lung function in patients receiving immunosuppressive therapy for systemic sclerosis-related interstitial lung disease. Arthritis Res. Ther. 2016, 18, 305. [Google Scholar] [CrossRef] [Green Version]
- Haddon, D.J.; Wand, H.E.; Jarrell, J.A.; Spiera, R.F.; Utz, P.J.; Gordon, J.K.; Chung, L.S. Proteomic analysis of sera from individuals with diffuse cutaneous systemic sclerosis reveals a multianalyte signature associated with clinical improvement during imatinib mesylate treatment. J. Rheumatol. 2017, 44, 631–638. [Google Scholar] [CrossRef] [Green Version]
- Valentini, G.; Riccardi, A.; Vettori, S.; Irace, R.; Iudici, M.; Tolone, S.; Docimo, L.; Bocchino, M.; Sanduzzi, A.; Cozzolino, D. CXCL4 in undifferentiated connective tissue disease at risk for systemic sclerosis (SSc) (previously referred to as very early SSc). Clin. Exp. Med. 2017, 17, 411–414. [Google Scholar] [CrossRef] [Green Version]
- Ichimura, Y.; Asano, Y.; Akamata, K.; Takahashi, T.; Noda, S.; Taniguchi, T.; Toyama, T.; Aozasa, N.; Sumida, H.; Kuwano, Y.; et al. Fli1 deficiency contributes to the suppression of endothelial CXCL5 expression in systemic sclerosis. Arch. Dermatol. Res. 2014, 306, 331–338. [Google Scholar] [CrossRef]
- Rabquer, B.J.; Tsou, P.S.; Hou, Y.; Thirunavukkarasu, E.; Haines, G.K., 3rd; Impens, A.J.; Phillips, K.; Kahaleh, B.; Seibold, J.R.; Koch, A.E. Dysregulated expression of MIG/CXCL9, IP-10/CXCL10 and CXCL16 and their receptors in systemic sclerosis. Arthritis Res. Ther. 2011, 13, R18. [Google Scholar] [CrossRef] [Green Version]
- Cossu, M.; van Bon, L.; Preti, C.; Rossato, M.; Beretta, L.; Radstake, T.R.D.J. Earliest phase of systemic sclerosis typified by increased levels of inflammatory proteins in the serum. Arthritis Rheumatol. 2017, 69, 2359–2369. [Google Scholar] [CrossRef] [Green Version]
- Oller-Rodríguez, J.E.; Vicens Bernabeu, E.; Gonzalez-Mazarío, R.; Grau García, E.; Ortiz Sanjuan, F.M.; Román Ivorra, J.A. Utility of cytokines CXCL4, CXCL8 and GDF15 as biomarkers in systemic sclerosis. Med. Clin. 2022, 159, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.; Koch, A.E.; Ahmed, S. Pathological role of fractalkine/CX3CL1 in rheumatic diseases: A unique chemokine with multiple functions. Front. Immunol. 2012, 2, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skoda, M.; Stangret, A.; Szukiewicz, D. Fractalkine and placental growth factor: A duet of inflammation and angiogenesis in cardiovascular disorders. Cytokine Growth Factor Rev. 2018, 39, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, M.; Sato, S.; Echigo, T.; Hamaguchi, Y.; Yasui, M.; Takehara, K. Up regulated expression of fractalkine/CX3CL1 and CX3CR1 in patients with systemic sclerosis. Ann. Rheum. Dis. 2005, 64, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Sicinska, J.; Gorska, E.; Cicha, M.; Kuklo-Kowalska, A.; Hamze, V.; Stepien, K.; Wasik, M.; Rudnicka, L. Increased serum fractalkine in systemic sclerosis. Down-regulation by prostaglandin E1. Clin. Exp. Rheumatol. 2008, 26, 527–533. [Google Scholar]
- Benyamine, A.; Magalon, J.; Cointe, S.; Lacroix, R.; Arnaud, L.; Bardin, N.; Rossi, P.; Francès, Y.; Bernard-Guervilly, F.; Kaplanski, G.; et al. Increased serum levels of fractalkine and mobilisation of CD34+CD45- endothelial progenitor cells in systemic sclerosis. Arthritis Res. Ther. 2017, 19, 60. [Google Scholar] [CrossRef] [Green Version]
- Stochmal, A.; Czuwara, J.; Zaremba, M.; Rudnicka, L. Altered serum level of metabolic and endothelial factors in patients with systemic sclerosis. Arch. Dermatol. Res. 2020, 312, 453–458. [Google Scholar] [CrossRef] [Green Version]
- Żółkiewicz, J.; Stochmal, A.; Rudnicka, L. The role of adipokines in systemic sclerosis: A missing link? Arch. Dermatol. Res. 2019, 311, 251–263. [Google Scholar] [CrossRef] [Green Version]
- Recinella, L.; Orlando, G.; Ferrante, C.; Chiavaroli, A.; Brunetti, L.; Leone, S. Adipokines: New potential therapeutic target for obesity and metabolic, rheumatic, and cardiovascular diseases. Front. Physiol. 2020, 11, 578966. [Google Scholar] [CrossRef]
- Brezovec, N.; Kojc, N.; Erman, A.; Hladnik, M.; Stergar, J.; Milanič, M.; Tomšič, M.; Čučnik, S.; Sodin-Šemrl, S.; Perše, M.; et al. Molecular and cellular markers in chlorhexidine-induced peritoneal fibrosis in mice. Biomedicines 2022, 10, 2726. [Google Scholar] [CrossRef]
- Lee, Y.H.; Song, G.G. Meta-analysis of circulating adiponectin, leptin, and resistin levels in systemic sclerosis. Z. Rheumatol. 2017, 76, 789–797. [Google Scholar] [CrossRef] [PubMed]
- Masui, Y.; Asano, Y.; Shibata, S.; Noda, S.; Aozasa, N.; Akamata, K.; Yamada, D.; Tamaki, Z.; Tada, Y.; Sugaya, M.; et al. Serum adiponectin levels inversely correlate with the activity of progressive skin sclerosis in patients with diffuse cutaneous systemic sclerosis: Significance of serum adiponectin levels in SSc. J. Eur. Acad. Dermatol. Venereol. 2012, 26, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Arakawa, H.; Jinnin, M.; Muchemwa, F.C.; Makino, T.; Kajihara, I.; Makino, K.; Honda, N.; Sakai, K.; Fukushima, S.; Ihn, H. Adiponectin expression is decreased in the involved skin and sera of diffuse cutaneous scleroderma patients: Letter to the editor. Exp. Dermatol. 2011, 20, 764–766. [Google Scholar] [CrossRef] [PubMed]
- Lakota, K.; Wei, J.; Carns, M.; Hinchcliff, M.; Lee, J.; Whitfield, M.L.; Sodin-Semrl, S.; Varga, J. Levels of adiponectin, a marker for PPAR-gamma activity, correlate with skin fibrosis in systemic sclerosis: Potential utility as a biomarker? Arthritis Res. Ther. 2012, 14, R102. [Google Scholar] [CrossRef] [Green Version]
- Winsz-Szczotka, K.; Kuźnik-Trocha, K.; Komosińska-Vassev, K.; Kucharz, E.; Kotulska, A.; Olczyk, K. Relationship between adiponectin, leptin, IGF-1 and total lipid peroxides plasma concentrations in patients with systemic sclerosis: Possible role in disease development. Int. J. Rheum. Dis. 2016, 19, 706–714. [Google Scholar] [CrossRef]
- Michalska-Jakubus, M.; Sawicka, K.; Potembska, E.; Kowal, M.; Krasowska, D. Clinical associations of serum leptin and leptin/adiponectin ratio in systemic sclerosis. Postep. Dermatol. Alergol. 2019, 36, 325–328. [Google Scholar] [CrossRef]
- Korman, B.D.; Marangoni, R.G.; Hinchcliff, M.; Shah, S.J.; Carns, M.; Hoffmann, A.; Ramsey-Goldman, R.; Varga, J. Brief report: Association of elevated adipsin levels with pulmonary arterial hypertension in systemic sclerosis. Arthritis Rheumatol. 2017, 69, 2062–2068. [Google Scholar] [CrossRef] [Green Version]
- Stochmal, A.; Czuwara, J.; Zaremba, M.; Rudnicka, L. Epoprostenol up-regulates serum adiponectin level in patients with systemic sclerosis: Therapeutic implications. Arch. Dermatol. Res. 2021, 313, 783–791. [Google Scholar] [CrossRef]
- Tahergorabi, Z.; Khazaei, M. Leptin and its cardiovascular effects: Focus on angiogenesis. Adv. Biomed. Res. 2015, 4, 79. [Google Scholar]
- Kotulska, A.; Kucharz, E.J.; Brzezińska-Wcisło, L.; Wadas, U. A decreased serum leptin level in patients with systemic sclerosis. Clin. Rheumatol. 2001, 20, 300–302. [Google Scholar] [CrossRef]
- Pehlivan, Y.; Onat, A.M.; Ceylan, N.; Turkbeyler, I.H.; Buyukhatipoglu, H.; Comez, G.; Babacan, T.; Tarakcioglu, M. Serum leptin, resistin and TNF-α levels in patients with systemic sclerosis: The role of adipokines in scleroderma. Int. J. Rheum. Dis. 2012, 15, 374–379. [Google Scholar] [CrossRef]
- Huertas, A.; Tu, L.; Gambaryan, N.; Girerd, B.; Perros, F.; Montani, D.; Fabre, D.; Fadel, E.; Eddahibi, S.; Cohen-Kaminsky, S.; et al. Leptin and regulatory t-lymphocytes in idiopathic pulmonary arterial hypertension. Eur. Respir. J. 2012, 40, 895–904. [Google Scholar] [CrossRef] [Green Version]
- Olewicz-Gawlik, A.; Danczak-Pazdrowska, A.; Kuznar-Kaminska, B.; Batura-Gabryel, H.; Katulska, K.; Wojciech, S.; Trzybulska, D.; Hrycaj, P. Circulating adipokines and organ involvement in patients with systemic sclerosis. Acta Reumatol. Port. 2015, 40, 156–162. [Google Scholar]
- Zhao, J.-H.; Huang, X.-L.; Duan, Y.; Wang, Y.-J.; Chen, S.-Y.; Wang, J. Serum adipokines levels in patients with systemic sclerosis: A meta-analysis. Mod. Rheumatol. 2017, 27, 298–305. [Google Scholar] [CrossRef]
- Masui, Y.; Asano, Y.; Akamata, K.; Aozasa, N.; Noda, S.; Taniguchi, T.; Takahashi, T.; Ichimura, Y.; Toyama, T.; Sumida, H.; et al. Serum resistin levels: A possible correlation with pulmonary vascular involvement in patients with systemic sclerosis. Rheumatol. Int. 2014, 34, 1165–1170. [Google Scholar] [CrossRef]
- Sawicka, K.; Michalska-Jakubus, M.; Kowal, M.; Potembska, E.; Krasowska, D. Resistin: A possible biomarker of organ involvement in systemic sclerosis patients? Clin. Exp. Rheumatol. 2017, 35, 144–150. [Google Scholar]
- Pellicano, C.; Leodori, G.; Colalillo, A.; Navarini, L.; Gigante, A.; Rosato, E. Serum resistin is predictive marker of development of new digital ulcers in systemic sclerosis. Clin. Exp. Med. 2022, 22, 421–426. [Google Scholar] [CrossRef]
- He, Y.S.; Hu, Y.Q.; Xiang, K.; Chen, Y.; Feng, Y.T.; Yin, K.J.; Huang, J.X.; Wang, J.; Wu, Z.D.; Wang, G.H.; et al. Therapeutic potential of Galectin-1 and Galectin-3 in autoimmune diseases. Curr. Pharm. Des. 2022, 28, 36–45. [Google Scholar] [CrossRef]
- Sundblad, V.; Gomez, R.A.; Stupirski, J.C.; Hockl, P.F.; Pino, M.S.; Laborde, H.; Rabinovich, G.A. Circulating Galectin-1 and Galectin-3 in sera from patients with systemic sclerosis: Associations with clinical features and treatment. Front. Pharmacol. 2021, 12, 650605. [Google Scholar] [CrossRef]
- Yanaba, K.; Asano, Y.; Akamata, K.; Noda, S.; Aozasa, N.; Taniguchi, T.; Takahashi, T.; Toyama, T.; Ichimura, Y.; Sumida, H.; et al. Circulating galectin-1 concentrations in systemic sclerosis: Potential contribution to digital vasculopathy. Int. J. Rheum. Dis. 2016, 19, 622–627. [Google Scholar] [CrossRef]
- Koca, S.S.; Akbas, F.; Ozgen, M.; Yolbas, S.; Ilhan, N.; Gundogdu, B.; Isik, A. Serum galectin-3 level in systemic sclerosis. Clin. Rheumatol. 2014, 33, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, T.; Asano, Y.; Akamata, K.; Noda, S.; Masui, Y.; Yamada, D.; Takahashi, T.; Ichimura, Y.; Toyama, T.; Tamaki, Z.; et al. Serum levels of galectin-3: Possible association with fibrosis, aberrant angiogenesis, and immune activation in patients with systemic sclerosis. J. Rheumatol. 2012, 39, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Miura, S.; Asano, Y.; Saigusa, R.; Yamashita, T.; Taniguchi, T.; Takahashi, T.; Ichimura, Y.; Toyama, T.; Tamaki, Z.; Tada, Y.; et al. Serum vaspin levels: A possible correlation with digital ulcers in patients with systemic sclerosis. J. Dermatol. 2015, 42, 528–531. [Google Scholar] [CrossRef] [PubMed]
- Sawicka, K.; Michalska-Jakubus, M.; Potembska, E.; Kowal, M.; Pietrzak, A.; Krasowska, D. Visfatin and chemerin levels correspond with inflammation and might reflect the bridge between metabolism, inflammation and fibrosis in patients with systemic sclerosis. Postep. Dermatol. Alergol. 2019, 36, 551–565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akamata, K.; Asano, Y.; Taniguchi, T.; Yamashita, T.; Saigusa, R.; Nakamura, K.; Noda, S.; Aozasa, N.; Toyama, T.; Takahashi, T.; et al. Increased expression of chemerin in endothelial cells due to Fli1 deficiency may contribute to the development of digital ulcers in systemic sclerosis. Rheumatology 2015, 54, 1308–1316. [Google Scholar] [CrossRef] [Green Version]
- Chighizola, C.B.; Raschi, E.; Privitera, D.; Luppino, A.F.; Artusi, C.; Schioppo, T.; Mastaglio, C.; Ingegnoli, F.; Borghi, M.O.; Meroni, P.L. Serum chemerin in systemic sclerosis: A novel marker of early diffuse disease? Clin. Exp. Rheumatol. 2017, 35, 223–224. [Google Scholar]
- Sanges, S.; Rice, L.; Tu, L.; Valenzi, E.; Cracowski, J.-L.; Montani, D.; Mantero, J.C.; Ternynck, C.; Marot, G.; Bujor, A.M.; et al. Biomarkers of haemodynamic severity of systemic sclerosis-associated pulmonary arterial hypertension by serum proteome analysis. Ann. Rheum. Dis. 2023, 82, 365–373. [Google Scholar] [CrossRef]
- Kakkar, V.; Assassi, S.; Allanore, Y.; Kuwana, M.; Denton, C.P.; Khanna, D.; Del Galdo, F. Type 1 Interferon activation in systemic sclerosis: A biomarker, a target or the culprit. Curr. Opin. Rheumatol. 2022, 34, 357–364. [Google Scholar] [CrossRef]
- Boron, M.; Hauzer-Martin, T.; Keil, J.; Sun, X.L. Circulating thrombomodulin: Release mechanisms, measurements, and levels in diseases and medical procedures. TH Open 2022, 6, e194–e212. [Google Scholar] [CrossRef]
- Mercié, P.; Seigneur, M.; Conri, C. Plasma thrombomodulin as a marker of vascular damage in systemic sclerosis. J. Rheumatol. 1995, 22, 1440–1441. [Google Scholar]
- Soma, Y.; Takehara, K.; Sato, S.; Ishibashi, Y. Increase in plasma thrombomodulin in patients with systemic sclerosis. J. Rheumatol. 1993, 20, 1444–1445. [Google Scholar] [PubMed]
- Stratton, R.J.; Pompon, L.; Coghlan, J.G.; Pearson, J.D.; Black, C.M. Soluble thrombomodulin concentration is raised in scleroderma associated pulmonary hypertension. Ann. Rheum. Dis. 2000, 59, 132–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cacoub, P.; Karmochkine, M.; Dorent, R.; Nataf, P.; Piette, J.C.; Godeau, P.; Gandjbakhch, I.; Boffa, M.C. Plasma levels of thrombomodulin in pulmonary hypertension. Am. J. Med. 1996, 101, 160–164. [Google Scholar] [CrossRef]
- Matsushita, T.; Takehara, K. Soluble CD163 is a potential biomarker in systemic sclerosis. Expert Rev. Mol. Diagn. 2019, 19, 197–199. [Google Scholar] [CrossRef] [Green Version]
- Nakayama, W.; Jinnin, M.; Makino, K.; Kajihara, I.; Makino, T.; Fukushima, S.; Inoue, Y.; Ihn, H. Serum levels of soluble CD163 in patients with systemic sclerosis. Rheumatol. Int. 2012, 32, 403–407. [Google Scholar] [CrossRef] [PubMed]
- Hassan, W.A.; Baraka, E.A.; Elnady, B.M.; Gouda, T.M.; Fouad, N. Serum soluble CD163 and its association with various disease parameters in patients with systemic sclerosis. Eur. J. Rheumatol. 2016, 3, 95–100. [Google Scholar] [CrossRef]
- Frantz, C.; Pezet, S.; Avouac, J.; Allanore, Y. Soluble CD163 as a potential biomarker in systemic sclerosis. Dis. Markers 2018, 2018, 8509583. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, K.; Ogawa, F.; Yoshizaki, A.; Akiyama, Y.; Kuwatsuka, Y.; Okazaki, S.; Tomita, H.; Takenaka, M.; Sato, S. Increased serum levels of soluble CD163 in patients with scleroderma. Clin. Rheumatol. 2012, 31, 1059–1064. [Google Scholar] [CrossRef] [Green Version]
- Kowal-Bielecka, O.; Bielecki, M.; Guiducci, S.; Trzcinska-Butkiewicz, B.; Michalska-Jakubus, M.; Matucci-Cerinic, M.; Brzosko, M.; Krasowska, D.; Chyczewski, L.; Kowal, K. High serum sCD163/sTWEAK ratio is associated with lower risk of digital ulcers but more severe skin disease in patients with systemic sclerosis. Arthritis Res. Ther. 2013, 15, R69. [Google Scholar] [CrossRef] [Green Version]
- Bielecki, M.; Kowal, K.; Lapinska, A.; Chyczewski, L.; Kowal-Bielecka, O. Increased release of soluble CD163 by the peripheral blood mononuclear cells is associated with worse prognosis in patients with systemic sclerosis. Adv. Med. Sci. 2013, 58, 126–133. [Google Scholar] [CrossRef] [Green Version]
- Asgari, R.; Vaisi-Raygani, A.; Aleagha, M.S.E.; Mohammadi, P.; Bakhtiari, M.; Arghiani, N. CD147 and MMPs as key factors in physiological and pathological processes. Biomed. Pharmacother. 2023, 157, 113983. [Google Scholar] [CrossRef]
- Yanaba, K.; Asano, Y.; Tada, Y.; Sugaya, M.; Kadono, T.; Hamaguchi, Y.; Sato, S. Increased serum soluble CD147 levels in patients with systemic sclerosis: Association with scleroderma renal crisis. Clin. Rheumatol. 2012, 31, 835–839. [Google Scholar] [CrossRef]
- Schioppo, T.; Artusi, C.; Ciavarella, T.; Ingegnoli, F.; Murgo, A.; Zeni, S.; Chighizola, C.; Meroni, P.L. N-TproBNP as biomarker in systemic sclerosis. Clin. Rev. Allergy Immunol. 2012, 43, 292–301. [Google Scholar] [CrossRef]
- Allanore, Y.; Borderie, D.; Meune, C.; Cabanes, L.; Weber, S.; Ekindjian, O.G.; Kahan, A. N-Terminal pro-Brain Natriuretic Peptide as a diagnostic marker of early pulmonary artery hypertension in patients with systemic sclerosis and effects of calcium-channel blockers. Arthritis Rheum. 2003, 48, 3503–3508. [Google Scholar] [CrossRef]
- Cavagna, L.; Caporali, R.; Klersy, C.; Ghio, S.; Albertini, R.; Scelsi, L.; Moratti, R.; Bonino, C.; Montecucco, C. Comparison of Brain Natriuretic Peptide (BNP) and NT-ProBNP in screening for pulmonary arterial hypertension in patients with systemic sclerosis. J. Rheumatol. 2010, 37, 2064–2070. [Google Scholar] [CrossRef]
- Allanore, Y.; Borderie, D.; Avouac, J.; Zerkak, D.; Meune, C.; Hachulla, E.; Mouthon, L.; Guillevin, L.; Meyer, O.; Ekindjian, O.G.; et al. High N-Terminal pro-Brain Natriuretic Peptide levels and low diffusing capacity for carbon monoxide as independent predictors of the occurrence of precapillary pulmonary arterial hypertension in patients with systemic sclerosis. Arthritis Rheum. 2008, 58, 284–291. [Google Scholar] [CrossRef]
- Williams, M.H.; Handler, C.E.; Akram, R.; Smith, C.J.; Das, C.; Smee, J.; Nair, D.; Denton, C.P.; Black, C.M.; Coghlan, J.G. Role of N-Terminal Brain Natriuretic Peptide (N-TproBNP) in scleroderma-associated pulmonary arterial hypertension. Eur. Heart J. 2006, 27, 1485–1494. [Google Scholar] [CrossRef] [PubMed]
- Dimitroulas, T.; Giannakoulas, G.; Papadopoulou, K.; Sfetsios, T.; Karvounis, H.; Dimitroula, H.; Parcharidou, D.; Koliakos, G.; Garyfallos, A.; Styliadis, I.; et al. Left atrial volume and N-Terminal Pro-B type Natriuretic Peptide are associated with elevated pulmonary artery pressure in patients with systemic sclerosis. Clin. Rheumatol. 2010, 29, 957–964. [Google Scholar] [CrossRef]
- Chung, L.; Fairchild, R.M.; Furst, D.E.; Li, S.; Alkassab, F.; Bolster, M.B.; Csuka, M.E.; Derk, C.T.; Domsic, R.T.; Fischer, A.; et al. Utility of B-type natriuretic peptides in the assessment of patients with systemic sclerosis-associated pulmonary hypertension in the PHAROS registry. Clin. Exp. Rheumatol. 2017, 35, 106–113. [Google Scholar]
- Oravec, R.M.; Bredemeier, M.; Laurino, C.C.; Pinotti, A.F.F.; Rohde, L.E.P.; Brenol, J.C.T.; Xavier, R.M. NT-ProBNP levels in systemic sclerosis: Association with clinical and laboratory abnormalities. Clin. Biochem. 2010, 43, 745–749. [Google Scholar] [CrossRef]
- Ciurzyński, M.; Bienias, P.; Lichodziejewska, B.; Kurnicka, K.; Szewczyk, A.; Glińska-Wielochowska, M.; Kurzyna, M.; Błaszczyk, M.; Liszewska-Pfejfer, D.; Pruszczyk, P. Non-invasive diagnostic and functional evaluation of cardiac involvement in patients with systemic sclerosis. Clin. Rheumatol. 2008, 27, 991–997. [Google Scholar] [CrossRef]
- Avouac, J.; Meune, C.; Chenevier-Gobeaux, C.; Borderie, D.; Lefevre, G.; Kahan, A.; Allanore, Y. cardiac biomarkers in systemic sclerosis: Contribution of high-sensitivity cardiac troponin in addition to N-Terminal pro-Brain Natriuretic Peptide. Arthritis Care Res. 2015, 67, 1022–1030. [Google Scholar] [CrossRef] [PubMed]
- Mukerjee, D.; Yap, L.B.; Holmes, A.M.; Nair, D.; Ayrton, P.; Black, C.M.; Coghlan, J.G. Significance of plasma N-Terminal pro-Brain Natriuretic Peptide in patients with systemic sclerosis-related pulmonary arterial hypertension. Respir. Med. 2003, 97, 1230–1236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Qin, D.; Qin, L.; Yang, X.; Luo, Q.; Wang, H. Diagnostic value of cardiac natriuretic peptide on pulmonary hypertension in systemic sclerosis: A systematic review and meta-analysis. Joint Bone Spine 2022, 89, 105287. [Google Scholar] [CrossRef]
- Kahaleh, M.B.; Osborn, I.; LeRoy, E.C. Increased factor VIII/von Willebrand factor antigen and von Willebrand factor activity in scleroderma and in Raynaud’s phenomenon. Ann. Intern. Med. 1981, 94, 482–484. [Google Scholar] [CrossRef]
- Herrick, A.L.; Illingworth, K.; Blann, A.; Hay, C.R.; Hollis, S.; Jayson, M.I. Von Willebrand factor, thrombomodulin, thromboxane, beta-thromboglobulin and markers of fibrinolysis in primary Raynaud’s phenomenon and systemic sclerosis. Ann. Rheum. Dis. 1996, 55, 122–127. [Google Scholar] [CrossRef] [Green Version]
- Scheja, A.; Åkesson, A.; Geborek, P.; Wildt, M.; Wollheim, C.B.; Wollheim, F.A.; Vischer, U.M. Von Willebrand factor propeptide as a marker of disease activity in systemic sclerosis (scleroderma). Arthritis Res. 2001, 3, 178–182. [Google Scholar] [CrossRef]
- Kumanovics, G.; Minier, T.; Radics, J.; Palinkas, L.; Berki, T.; Czirjak, L. Comprehensive investigation of novel serum markers of pulmonary fibrosis associated with systemic sclerosis and dermato/polymyositis. Clin. Exp. Rheumatol. 2008, 26, 414–420. [Google Scholar]
- Habe, K.; Wada, H.; Higashiyama, A.; Akeda, T.; Tsuda, K.; Mori, R.; Kakeda, M.; Matsumoto, T.; Ohishi, K.; Yamanaka, K.; et al. The plasma levels of ADAMTS-13, von Willebrand Factor, VWFpp, and fibrin-related markers in patients with systemic sclerosis having thrombosis. Clin. Appl. Thromb. Hemost. 2018, 24, 920–927. [Google Scholar] [CrossRef] [Green Version]
- Barnes, T.; Gliddon, A.; Dore, C.J.; Maddison, P.; Moots, R.J.; the QUINs Trial Study Group. Baseline vWF factor predicts the development of elevated pulmonary artery pressure in systemic sclerosis. Rheumatology 2012, 51, 1606–1609. [Google Scholar] [CrossRef] [Green Version]
- Serhan, C.N.; Yang, R.; Martinod, K.; Kasuga, K.; Pillai, P.S.; Porter, T.F.; Oh, S.F.; Spite, M. Maresins: Novel macrophage mediators with potent antiinflammatory and proresolving actions. J. Exp. Med. 2009, 206, 15–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellicano, C.; Romaggioli, L.; Miglionico, M.; Colalillo, A.; Ramaccini, C.; Gigante, A.; Muscaritoli, M.; Rosato, E. Maresin1 is a predictive marker of new digital ulcers in systemic sclerosis patients. Microvasc. Res. 2022, 142, 104366. [Google Scholar] [CrossRef]
- Margheri, F.; Manetti, M.; Serratì, S.; Nosi, D.; Pucci, M.; Matucci-Cerinic, M.; Kahaleh, B.; Bazzichi, L.; Fibbi, G.; Ibba-Manneschi, L.; et al. Domain 1 of the urokinase-type plasminogen activator receptor is required for its morphologic and functional, beta2 integrin-mediated connection with actin cytoskeleton in human microvascular endothelial cells: Failure of association in systemic sclerosis endothelial cells. Arthritis Rheum. 2006, 54, 3926–3938. [Google Scholar] [PubMed]
- Hamie, L.; Daoud, G.; Nemer, G.; Nammour, T.; El Chediak, A.; Uthman, I.W.; Kibbi, A.G.; Eid, A.; Kurban, M. SuPAR, an emerging biomarker in kidney and inflammatory diseases. Postgrad. Med. J. 2018, 94, 517–524. [Google Scholar] [CrossRef]
- Legány, N.; Toldi, G.; Distler, J.H.; Beyer, C.; Szalay, B.; Kovács, L.; Vásárhelyi, B.; Balog, A. Increased plasma soluble urokinase plasminogen activator receptor levels in systemic sclerosis: Possible association with microvascular abnormalities and extent of fibrosis. Clin. Chem. Lab. Med. 2015, 53, 1799–1805. [Google Scholar] [CrossRef]
- Butt, S.; Jeppesen, J.L.; Iversen, L.V.; Fenger, M.; Eugen-Olsen, J.; Andersson, C.; Jacobsen, S. Association of soluble urokinase plasminogen activator receptor levels with fibrotic and vascular manifestations in systemic sclerosis. PLoS ONE 2021, 16, 0247256. [Google Scholar] [CrossRef]
- Hysa, E.; Campitiello, R.; Sammorì, S.; Gotelli, E.; Cere, A.; Pesce, G.; Pizzorni, C.; Paolino, S.; Sulli, A.; Smith, V.; et al. Specific autoantibodies and microvascular damage progression assessed by nailfold videocapillaroscopy in systemic sclerosis: Are there peculiar associations? An update. Antibodies 2023, 12, 3. [Google Scholar] [CrossRef]
- Mecoli, C.A.; Perin, J.; Van Eyk, J.E.; Zhu, J.; Fu, Q.; Allmon, A.G.; Rao, Y.; Zeger, S.; Wigley, F.M.; Hummers, L.K.; et al. Vascular biomarkers and digital ulcerations in systemic sclerosis: Results from a randomized controlled trial of oral treprostinil (DISTOL-1). Clin. Rheumatol. 2020, 39, 1199–1205. [Google Scholar] [CrossRef] [PubMed]
- Arron, J.R. Biomarkers in systemic sclerosis: Mechanistic insights into pathogenesis and treatment. Curr. Opin. Rheumatol. 2021, 33, 480–485. [Google Scholar] [CrossRef]
Molecule | Proposed Biomarker | Vascular Association | References |
---|---|---|---|
Cell Adhesion Molecules | ↑ L-Selectin | pitting scars, DUs | [22] |
↑ E-Selectin | avascular areas at NVC megacapillaries/avascular areas at NVC SRC | [25] [26] [39] | |
↑ P-Selectin | PAH | [42] | |
↑ ICAM-1 | DUs SRC PAH | [29] [39] [42] | |
↑ VCAM-1 | PAH SRC | [32,42] [39] | |
↑ sJAM-A and sJAM-C | early/active NVC, DUs | [36,37] | |
Pro-Angiogenic Molecules | ↑ VEGF | sPAP nailfold capillary density late NVC pattern | [51,52] [51] [31] |
↓ VEGF | DUs | [49,53,54,55,56] | |
↑ Endoglin | telangiectasias, sPAP DUs late NVC pattern | [64] [62] [56] | |
↑ Endothelin-1 | pitting scars and DUs absence of DUs active NVC pattern PAH SRC | [69,70,71] [67] [31] [68,73] [75] | |
↓ Endothelin-1 | early NVC pattern | [72] | |
Anti-Angiogenic Molecules | ↑ VEGF165b | late NVC pattern, absence of microhaemorrhages, presence of ramified/bushy capillaries and avascular areas | [87] |
↑ Pentraxin 3 | pitting scars, DUs and PAH | [89,90] | |
↑ Endostatin | pitting scars, DUs, gangrene progession of capillaroscopic damage avascular areas PAH SCR | [53,95,100,101] [100,101,102] [49] [48,98] [98,100] | |
↓ Endostatin | giant capillaries, microhaemorrhages | [49] | |
↑ Angiostatin | active and late NVC patterns | [106] | |
Angiopoietins | ↓ Ang-1 | giant capillaries, microvascular leakage/collapse | [107] |
↑ Ang-2 | late NVC pattern | [107] | |
MMPs and TIMPs | ↓ MMP-9 | PAH ischemic retinopathy | [111] [112] |
↑ MMP-12 | DUs, severity of nailfold capillary abnormalities | [113] | |
↑ TIMP-4 | sPAP | [114] | |
Neurovascular Guidance Molecules | ↑ Sema3E | early NVC pattern, absence of DUs | [117,121] |
↓ sNRP1 | NVC severity, DUs | [117,118] | |
↑ sNRP1 | PAH | [119] | |
↑ Slit2 | DUs | [117] | |
Sirtuins | ↓ SIRT1 and SIRT3 | NVC severity | [129] |
↓ SIRT3 | DUs | [129] |
Cytokines | Proposed Biomarker | Vascular Association | References |
---|---|---|---|
Interleukins | ↑ IL1α | DUs | [134] |
↑ IL18BPa | sPAP | [136] | |
↑ IL33 | DUs | [137,141] | |
↑ ST2 | DUs, late NVC pattern | [141] | |
↓ ST2 | sPAP | [140] | |
↑ IL13, IL4, IL10, and IL6 | PAH | [144] | |
↑ IL35 | early NVC pattern | [148] | |
↑ IL1β and IL13 | PAH | [32,149] | |
↓ IL6 | DUs | [150] | |
↑ sOSMR | DUs | [151] | |
↑ IL17F and IL17E | DUs | [153] | |
↑ IL17 | telangiectasias | [150] | |
↑ IL32 | PAH and sPAP | [155] | |
↑ MIF | PAH | [156] | |
Chemokines | ↑ CCL20 | mPAP | [175] |
↑ CCL21 | PAH | [178,179] | |
↑ CCL23 | PAH | [181] | |
↑ CXCL4 | DUs, early NVC pattern | [183] | |
↓ CXCL5 | DUs | [188] | |
↑ CXCL16 | PAH | [189,190] | |
↑ GDF15 | PAH, dilated loops at NVC | [191] | |
↑ CX3CL1 | pitting scars, DUs | [194] | |
Adipokines | ↓ Adiponectin | pitting scars | [203] |
↑ Leptin | PAH | [143,212] | |
↑ Resistin | DUs PAH | [213,217] [143] | |
↑ Galectin 1 | telangiectasias | [219] | |
↓ Galectin 1 | pitting scars, DUs | [220] | |
↑ Galectin 3 | DUs | [222] | |
↓ Vaspin | DUs | [223] | |
↑ Adipsin | PAH | [207] | |
↑ Chemerin | DUs | [225] | |
↓ Chemerin | PAH | [224] | |
↑ Visfatin | PAH | [224] | |
Interferons | ↑ IFN-γ | PAH | [150] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fioretto, B.S.; Rosa, I.; Matucci-Cerinic, M.; Romano, E.; Manetti, M. Current Trends in Vascular Biomarkers for Systemic Sclerosis: A Narrative Review. Int. J. Mol. Sci. 2023, 24, 4097. https://doi.org/10.3390/ijms24044097
Fioretto BS, Rosa I, Matucci-Cerinic M, Romano E, Manetti M. Current Trends in Vascular Biomarkers for Systemic Sclerosis: A Narrative Review. International Journal of Molecular Sciences. 2023; 24(4):4097. https://doi.org/10.3390/ijms24044097
Chicago/Turabian StyleFioretto, Bianca Saveria, Irene Rosa, Marco Matucci-Cerinic, Eloisa Romano, and Mirko Manetti. 2023. "Current Trends in Vascular Biomarkers for Systemic Sclerosis: A Narrative Review" International Journal of Molecular Sciences 24, no. 4: 4097. https://doi.org/10.3390/ijms24044097
APA StyleFioretto, B. S., Rosa, I., Matucci-Cerinic, M., Romano, E., & Manetti, M. (2023). Current Trends in Vascular Biomarkers for Systemic Sclerosis: A Narrative Review. International Journal of Molecular Sciences, 24(4), 4097. https://doi.org/10.3390/ijms24044097