Role of the Subtilisin-like Serine Protease CJPRB from Cordyceps javanica in Eliciting an Immune Response in Hyphantria cunea
Abstract
:1. Introduction
2. Results
2.1. CJPRB Protein Overexpression and Purification and Enzyme Activity Assay
2.2. Effects of CJPRB Protein Treatment on Larvae of H. cunea
2.3. Effects of CJPRB Protein Feeding on the Larvae of H. cunea
2.4. Effects of CJPRB Protein Injection on H. cunea Larvae
3. Discussion
4. Materials and Methods
4.1. Strains, Plasmids and Insects
4.2. Construction of the Expression Vector pPICZαA-CJPRB and Transformation of the P. pastoris Strain KM71H
4.3. Expression and Purification of the CJPRB Protein and GFP
4.4. SDS-PAGE and Western Blot Analysis
4.5. CJPRB Protein Activity Assay
4.6. CJPRB and GFP Infiltration of H. cunea Larvae
4.7. CJPRB and GFP Feeding for H. cunea Larvae
4.8. CJPRB and GFP Injection into H. cunea Larvae
4.9. Activity Assay of Protective Enzymes in H. cunea Larvae after CJPRB Treatment
4.10. RT–qPCR Validation of the Expression of Defense-Related Genes in H. cunea after CJPRB Protein Treatment
4.11. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Usman, M.; Gulzar, S.; Wakil, W.; Wu, S.; Piñero, J.C.; Leskey, T.C.; Nixon, L.; Oliveira-Hofman, C.; Toews, M.D.; Shapiro-Ilan, D. Virulence of entomopathogenic fungi to Rhagoletis pomonella (Diptera: Tephritidae) and interactions with entomopathogenic nematodes. J. Econ. Entomol. 2020, 113, 2627–2633. [Google Scholar] [CrossRef]
- Gandarilla, F.; Flores, M.; Ramos, L.; Elías-Santos, M.; Wong, L.; Quintero-Zapata, I. Effect of native mexican isolates of Isaria fumosorosea (Wize) Brown & Smith on Spodoptera exigua (Hübner) and Helicoverpa zea (Boddie). Southwest. Entomol. 2015, 40, 721–729. [Google Scholar]
- Kavallieratos, N.G.; Athanassiou, C.G.; Aountala, M.M.; Kontodimas, D.C. Evaluation of the entomopathogenic fungi Beauveria bassiana, Metarhizium anisopliae, and Isaria fumosorosea for control of Sitophilus oryzae. J. Food Prot. 2014, 77, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Song, W.J. Morphogenesis of Ten Different Entomogenous Fungi in Liquid Culture. Master’s Thesis, Anhui Agricultural University, Anhui, China, 2011. [Google Scholar]
- Yaginuma, K. Paecilomyces cicadae Samson isolated from soil and cicada, and its virulence to the peach fruit moth, Carposina sasakii Matsumura. Jpn. J. Appl. Entomol. Zool. 2002, 46, 225–231. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.M.; Zheng, R.L.; Ma, J. Application of Paecilomyces fumosoroseus against the main forest pests in Kunming. In Study and Application of Insecticidal Fungi in China; China Society of Plant Protection, Ed.; Agricultural Science and Technology Press: Beijing, China, 1991; Volume 12, pp. 205–207. [Google Scholar]
- Wu, J.W. Use Paecilomyces farinosus and Beauveria bassiana to control overwintering Dendrolimus tabulaeformis. Sci. Silvae Sin. 1988, 24, 34–40. [Google Scholar]
- Fang, Q.X.; Huang, W.J.; Yang, D.Q. 808 formulations applied to tea test. In Study and Application of Insecticidal Fungi in China; China Society of Plant Protection, Ed.; Agricultural Science and Technology Press: Beijing, China, 1988; Volume 1, p. 182. [Google Scholar]
- Wang, W.; Wang, Y.; Dong, G.; Chen, F. Development of Cordyceps javanica BE01 with enhanced virulence against Hyphantria cunea using polyethylene glycol-mediated protoplast transformation. Front. Microbiol. 2022, 13, 972425. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, L.; Dong, G.; Chen, F. Isolation and identification of entomopathogenic fungi and an evaluation of their actions against the larvae of the fall webworm, Hyphantria cunea (Drury) (Lepidoptera: Arctiidae). BioControl 2020, 65, 101–111. [Google Scholar] [CrossRef]
- Shahid, A.; Rao, Q.; Bakhsh, A.; Husnain, T. Entomopathogenic fungi as biological controllers: New insights into their virulence and pathogenicity. Arch. Biol. Sci. 2012, 64, 21–42. [Google Scholar] [CrossRef]
- Schrank, A.; Vainstein, M.H. Metarhizium anisopliae enzymes and toxins. Toxicon 2010, 56, 1267–1274. [Google Scholar] [CrossRef]
- Thomas, M.B.; Read, A.F. Can fungal biopesticides control malaria? Nat. Rev. Microbiol. 2007, 5, 377. [Google Scholar] [CrossRef]
- Valero-Jiménez, C.A.; Debets, A.J.M.; van Kan, J.A.L.; Schoustra, S.E.; Takken, W.; Zwaan, B.J.; Koenraadt, C.J.M. Natural variation in virulence of the entomopathogenic fungus Beauveria bassiana against malaria mosquitoes. Malar. J. 2014, 13, 479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, G.; Lai, Y.; Wang, G.; Chen, H.; Li, F.; Wang, S. Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality. Proc. Natl. Acad. Sci. USA 2017, 114, 5994–5999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- St Leger, R.J.; Joshi, L.; Roberts, D.W. Adaptation of proteases and carbohydrates of saprophytic, phytopathogenic and entomopathogenic fungi to the requirements of their ecological niches. Microbiology 1997, 143, 1983–1992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- St Leger, R.J.; Charnley, A.K.; Cooper, R.M. Cuticle-degrading enzymes of entomopathogenic fungi: Synthesis in culture on cuticle. J. Invertebr. Pathol. 1986, 48, 85–95. [Google Scholar] [CrossRef]
- Zibaee, A.; Ramzi, S. Cuticle-degrading proteases of entomopathogenic fungi: From biochemistry to biological performance. Arch. Phytopathol. Plant Prot. 2019, 51, 779–794. [Google Scholar] [CrossRef]
- Sun, M.; Liu, X. Carbon requirements of some nematophagous, entomopathogenic and mycoparasitic hyphomycetes as fungal biocontrol agents. Mycopathologia 2006, 161, 295–305. [Google Scholar] [CrossRef]
- Nakhleh, J.; Moussawi, L.E.; Osta, M.A. The melanization response in insect immunity. Adv. Insect Physiol. 2017, 52, 83–109. [Google Scholar]
- Zhao, L.; Xu, X.; Xu, Z.; Liu, Y.; Sun, S. Diapause induction, color change, and cold tolerance physiology of the diapausing larvae of the Chouioia cunea (Hymenoptera: Eulophidae). J. Insect Sci. 2014, 14, 294. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.-N.; Lai, Y.-C. Identification of highly pathogenic Beauveria bassiana strain against Pieris rapae larvae. Entomol. Res. 2018, 48, 339–347. [Google Scholar]
- Lu, A.-R. Study on Proyphenoloxidase Activity and Insect Midgut Immune. Ph.D. Thesis, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China, 2015. [Google Scholar]
- Wang, Y.-H.; Chang, M.-M.; Wang, X.-L.; Zheng, A.-H.; Zou, Z. The immune strategies of mosquito Aedes aegypti against microbial infection. Dev. Comp. Immunol. 2018, 83, 12–21. [Google Scholar] [CrossRef]
- Wang, L.; Liu, H.; Fu, H.; Zhang, L.; Guo, P.; Xia, Q.; Zhao, P. Silkworm serpin32 functions as a negative-regulator in prophenoloxidase activation. Dev. Comp. Immunol. 2019, 91, 123–131. [Google Scholar] [CrossRef]
- Yang, K.-W.; Dong, Z.-P.; Chen, A.-L.; Liao, P.-F. Roles of insect serine protease inhibitors in immunomodulation. Mod. Agric. Sci. Technol. 2014, 8, 245–250. [Google Scholar]
- Yu, H.-Z.; Li, N.-Y.; Li, B.; Toufeeq, S.; Xie, Y.-X.; Huang, Y.-L.; Du, Y.-M.; Zeng, X.-D.; Zhu, B.; Lu, Z.-J. Immune functional analysis of chitin deacetylase 3 from the asian citrus psyllid Diaphorina citri. Int. J. Mol. Sci. 2020, 21, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, X.-P. Biochemical Characteristics and Functional Analysis of Chitin Deacetylase HcCDAs from Hyphantria cunea Larvae. Ph.D. Thesis, Hebei Agricultural University, Hebei, China, 2018. [Google Scholar]
- Wang, X.; Liu, H.; Shen, Y.-J.; Cao, J.-P. Research advances in antimicrobial peptide of Musca domestica and its genetic engineering. J. Anhui Agric. Sci. 2013, 41, 4273–4275. [Google Scholar]
- Tong, S. Functional Analysis of a Beauveria bassiana Antifungal Peptide BbAFP1 and Its Application in Increasing Verticillium Wilt Resistance in Cotton. Ph.D. Thesis, Southwest University, Chongqing, China, 2020. [Google Scholar]
- Lele, D.S.; Talat, S.; Kumari, S.; Srivastava, N.; Kaur, K.J. Understanding the importance of glycosylated threonine and stereospecific action of drosocin, a proline rich antimicrobial peptide. Eur. J. Med. Chem. 2015, 92, 637–647. [Google Scholar] [CrossRef]
- Shin, S.W.; Park, S.S.; Park, D.S.; Kim, M.G.; Kim, S.C.; Brey, P.T.; Park, H.Y. Isolation and characterization of immune-related genes from the fall webworm, Hyphantria cunea, using PCR-based differential display and subtractive cloning. Insect Biochem. Mol. Biol. 1998, 28, 827–837. [Google Scholar] [CrossRef]
- Lipinski, T.; Wu, X.; Sadowska, J.; Kreiter, E.; Yasui, Y.; Cheriaparambil, S.; Rennie, R.; Bundle, D.R. A β-mannan trisaccharide conjugate vaccine aids clearance of Candida albicans in immunocompromised rabbits. Vaccine 2012, 30, 6263–6269. [Google Scholar] [CrossRef]
- Zhang, W.; Yueqing, C.; Yuxian, X. Cloning of the subtilisin Pr1A gene from a strain of locust specific fungus, Metarhizium anisopliae, and functional expression of the protein in Pichia pastoris. World J. Microbiol. Biotechnol. 2008, 24, 2481–2488. [Google Scholar] [CrossRef]
- Timofeeva, O.A. Donor-Specific HLA Antibodies as biomarkers of transplant rejection. Clin. Lab. Med. 2019, 39, 45–60. [Google Scholar] [CrossRef]
- Wang, Z.; Meng, H.; Zhuang, Z.; Chen, M.; Bo, H. Molecular cloning of a novel subtilisin-like protease (Pr1A) gene from the biocontrol fungus Isaria farinosa. Appl. Entomol. Zool. 2013, 48, 477–487. [Google Scholar] [CrossRef]
- Gillespie, J.P.; Bailey, A.M.; Cobb, B.; Vilcinskas, A. Fungi as elicitors of insect immune responses. Arch. Insect Biochem. Physiol. 2000, 44, 49–68. [Google Scholar] [CrossRef] [PubMed]
- St Leger, R.J.; Roberts, D.W. Engineering improved mycoinsecticides. Trends Biotechnol. 1997, 15, 83–85. [Google Scholar] [CrossRef]
- Dang, X.-L.; Chen, G.-J.; Li, X.-L.; Liu, Y.-G.; Jin, Y.-W.; Yi, H.-Y.; Lu, Y.-B.; Chai, Y.-Q. Construction of suppression subtractive hybridization library of Plutella xylostella immunized by Paecilomyces cicadae and analysis of immune-related genes. Chin. J. Biol. Control 2012, 28, 32–40. [Google Scholar]
- Lemaitre, B.; Hoffmann, J. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 2007, 25, 697–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuang, Z.-L. Cloning and Expression of Sublitisin-like Protease from Isaria farinosa and Inductive Transcription of Two Protease Genes. Master’s Thesis, Anhui Agricultural University, Anhui, China, 2011. [Google Scholar]
Gene (GenBank Number) | F | R |
---|---|---|
CEA (Cecropin A) (KJ660064) | GTGTTCGCTTGTTTCG | AGAACTTGAATAGCAGGAC |
SPI-1 (serpin) (MH348864) | GAGTCAAGTGGAGGTGGTA | CATCTAAGAGTGTAGGGTCA |
SPI-2 (serpin) (AF023278) | TGTATGTAAGTGACGCTGTA | AAAGACGAAGGGATGA |
CDA-2 (CDA1) (KF975504) | AAACCCACAGGAAAGG | GTTATTGCCACCGACA |
CDA-3 (CDA2) (KT781841) | TTGGACCAGTGGAAGC | AACACGCAGGTAGGGA |
HDD-1 (HDD-1) (AF034998) | TCGGACAGGAAGATAA | ATGACAGCTTGCCACT |
HDD-2 (HDD-13) (AF035000) | CCCATCGTCAACAAAGA | GCTCAGCCGTGTCAAA |
HDD-3 (HDD-23) (AF035001) | ACTTCAGTTCCGACAA | CTTCAAATGATGGTGC |
P1 (SP) (MH663425) | GCCCATAATCACCAAT | GTCAAGCCAACCAGTAG |
HcActin (KT781843) | CTACCTCACGCCATTCTC | AGCTTCTCCTTGATGTCAC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Chen, F. Role of the Subtilisin-like Serine Protease CJPRB from Cordyceps javanica in Eliciting an Immune Response in Hyphantria cunea. Int. J. Mol. Sci. 2023, 24, 4170. https://doi.org/10.3390/ijms24044170
Wang W, Chen F. Role of the Subtilisin-like Serine Protease CJPRB from Cordyceps javanica in Eliciting an Immune Response in Hyphantria cunea. International Journal of Molecular Sciences. 2023; 24(4):4170. https://doi.org/10.3390/ijms24044170
Chicago/Turabian StyleWang, Wenxiu, and Fengmao Chen. 2023. "Role of the Subtilisin-like Serine Protease CJPRB from Cordyceps javanica in Eliciting an Immune Response in Hyphantria cunea" International Journal of Molecular Sciences 24, no. 4: 4170. https://doi.org/10.3390/ijms24044170
APA StyleWang, W., & Chen, F. (2023). Role of the Subtilisin-like Serine Protease CJPRB from Cordyceps javanica in Eliciting an Immune Response in Hyphantria cunea. International Journal of Molecular Sciences, 24(4), 4170. https://doi.org/10.3390/ijms24044170