Characterization of Oil Body and Starch Granule Dynamics in Developing Seeds of Brassica napus
Abstract
:1. Introduction
2. Results
2.1. Differences of OBs in HOC and LOC Rapeseed during Seed Development
2.2. Difference of SGs in HOC and LOC Rapeseed during Seed Development
2.3. The Difference of Cell Space and OB Area to Cell Area Ratio in HOC and LOC Rapeseed
2.4. Differential Expression of Genes Involved in the Lipid Regulation and Starch Accumulation
3. Discussion
4. Materials and Methods
4.1. Plant Material and Growing Conditions
4.2. Measurement of Oil Content
4.3. Measurement of Oil Body Sizes, Starch Granule Size and Cell Space
4.4. Gene Expression Analysis
4.5. RNA Extraction and Quantitative RT-PCR
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hajduch, M.; Casteel, J.E.; Hurrelmeyer, K.E.; Song, Z.; Agrawal, G.K.; Thelen, J.J. Proteomic Analysis of Seed Filling in Brassica napus. Developmental Characterization of Metabolic Isozymes Using High-Resolution Two-Dimensional Gel Electrophoresis. Plant Physiol. 2006, 141, 32–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Feng, Z.C.; Xiao, T.H.; Ma, X.M.; Zhou, G.S.; Huang, F.H.; Li, J.N.; Wang, H.Z. Development, potential and adaptation of Chinese rapeseed industry. Chin. J. Oil Crop Sci. 2019, 41, 485–489. [Google Scholar]
- Wang, H.Z.; Yin, Y. Analysis and strategy for oil crop industry in China. Chin. J. Oil Crop Sci. 2014, 36, 414–421. [Google Scholar]
- Vigeolas, H.; Waldeck, P.; Zank, T.; Geigenberger, P. Increasing seed oil content in oil-seed rape (Brassica napus L.) by over-expression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter. Plant Biotechnol. J. 2007, 5, 431–441. [Google Scholar] [CrossRef]
- Tzen, J.T.; Huang, A.H. Surface structure and properties of plant seed oil bodies. J. Cell Biol. 1992, 117, 327–335. [Google Scholar] [CrossRef] [Green Version]
- Tzen, J.; Cao, Y.; Laurent, P.; Ratnayake, C.; Huang, A. Lipids, Proteins, and Structure of Seed Oil Bodies from Diverse Species. Plant Physiol. 1993, 101, 267–276. [Google Scholar] [CrossRef] [Green Version]
- Siloto, R.M.; Findlay, K.; Lopez-Villalobos, A.; Yeung, E.C.; Nykiforuk, C.L.; Moloney, M.M. The accumulation of oleosins determines the size of seed oilbodies in Arabidopsis. Plant Cell 2006, 18, 1961–1974. [Google Scholar] [CrossRef] [Green Version]
- Shimada, T.L.; Hara-Nishimura, I. Oil-Body-Membrane Proteins and Their Physiological Functions in Plants. Biol. Pharm. Bull. 2010, 33, 360–363. [Google Scholar] [CrossRef] [Green Version]
- Zienkiewicz, K.; Castro, A.J.; Alché, J.D.D.; Zienkiewicz, A.; Suárez, C.; Rodríguez-García, M.I. Identification and localization of a caleosin in olive (Olea europaea L.) pollen during in vitro germination. J. Exp. Bot. 2010, 61, 1537–1546. [Google Scholar] [CrossRef] [Green Version]
- Shimada, T.L.; Takano, Y.; Hara-Nishimura, I. Oil body-mediated defense against fungi: From tissues to ecology. Plant Signal. Behav. 2015, 10, e989036. [Google Scholar] [CrossRef] [Green Version]
- Shao, Q.; Liu, X.; Su, T.; Ma, C.; Wang, P. New Insights Into the Role of Seed Oil Body Proteins in Metabolism and Plant Development. Front. Plant Sci. 2019, 10, 1568. [Google Scholar] [CrossRef]
- Hsieh, K.; Huang, A.H. Tapetosomes in Brassica Tapetum Accumulate Endoplasmic Reticulum–Derived Flavonoids and Alkanes for Delivery to the Pollen Surface. Plant Cell 2007, 19, 582–596. [Google Scholar] [CrossRef] [Green Version]
- Pyc, M.; Cai, Y.; Greer, M.S.; Yurchenko, O.; Chapman, K.D.; Dyer, J.M.; Mullen, R.T. Turning Over a New Leaf in Lipid Droplet Biology. Trends Plant Sci. 2017, 22, 596–609. [Google Scholar] [CrossRef]
- Shimada, T.; Takano, Y.; Fujiwara, M.; Fukao, Y.; Mori, M.; Okazaki, Y.; Saito, K.; Sasaki, R.; Aoki, K.; Hara-Nishimura, I. Leaf Oil Body Functions as a Subcellular Factory for the Production of a Phytoalexin in Arabidopsis. Plant Physiol. 2014, 164, 105–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatla, S.; Kaushik, V.; Yadav, M. Use of oil bodies and oleosins in recombinant protein production and other biotechnological applications. Biotechnol. Adv. 2010, 28, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Ting, J.T.L.; Lee, K.; Ratnayake, C.; Platt, K.A.; Balsamo, R.A.; Huang, A.H.C. Oleosin genes in maize kernels having diverse oil contents are constitutively expressed independent of oil contents. Size and shape of intracellular oil bodies are determined by the oleosins/oils ratio. Planta 1996, 199, 158–165. [Google Scholar] [CrossRef]
- Tzen, J.T.C.; Lai, Y.-K.; Chan, K.-L.; Huang, A.H.C. Oleosin Isoforms of High and Low Molecular Weights Are Present in the Oil Bodies of Diverse Seed Species. Plant Physiol. 1990, 94, 1282–1289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, D.; Li, T.; Li, Z.; Sun, J.; Tao, J. Characteristics of Paeonia ostii seed oil body and OLE17.5 determining oil body morphology. Food Chem. 2020, 319, 126548. [Google Scholar] [CrossRef]
- Hu, Z.-Y.; Hua, W.; Zhang, L.; Deng, L.-B.; Wang, X.-F.; Liu, G.-H.; Hao, W.-J.; Wang, H.-Z. Seed Structure Characteristics to Form Ultrahigh Oil Content in Rapeseed. PLoS ONE 2013, 8, e62099. [Google Scholar] [CrossRef] [Green Version]
- Murphy, D. The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog. Lipid Res. 2001, 40, 325–438. [Google Scholar] [CrossRef]
- Mantese, A.I.; Medan, D.; Hall, A.J. Achene Structure, Development and Lipid Accumulation in Sunflower Cultivars Differing in Oil Content at Maturity. Ann. Bot. 2006, 97, 999–1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, H.; Zhang, L.; Tan, X.; Long, H.; Shockey, J.M. Identification, Classification and Differential Expression of Oleosin Genes in Tung Tree (Vernicia fordii). PLoS ONE 2014, 9, e88409. [Google Scholar] [CrossRef] [PubMed]
- Boulard, C.; Bardet, M.; Chardot, T.; Dubreucq, B.; Gromova, M.; Guillermo, A.; Miquel, M.; Nesi, N.; Yen-Nicolaÿ, S.; Jolivet, P. The structural organization of seed oil bodies could explain the contrasted oil extractability observed in two rapeseed genotypes. Planta 2015, 242, 53–68. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Chao, H.; Wang, H.; Li, Y.; Li, D.; Xiang, J.; Gan, J.; Lu, G.; Zhang, X.; Long, Y.; et al. Identification of the Relationship between Oil Body Morphology and Oil Content by Microstructure Comparison Combining with QTL Analysis in Brassica napus. Front. Plant Sci. 2016, 7, 1989. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Wang, X.; Zhan, G.; Liu, G.; Hua, W.; Wang, H. Unusually large oilbodies are highly correlated with lower oil content in Brassica napus. Plant Cell Rep. 2009, 28, 541–549. [Google Scholar] [CrossRef]
- Dong, J.; Shi, D.; Gao, J.; Li, C.; Jie, L.; Qi, C. Correlation Between the Quantity and the Sum of Areas of Oil Bodies and Oil Content in Rapeseed (Brassica napus). Chin. Bull. Bot. 2009, 44, 79–85. [Google Scholar]
- Tzen, J.T.C. Integral Proteins in Plant Oil Bodies. ISRN Bot. 2012, 2012, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Huang, A.H.C. Oleosins and Oil Bodies in Seeds and Other Organs. Plant Physiol. 1996, 110, 1055–1061. [Google Scholar] [CrossRef] [Green Version]
- He, Y.-Q.; Wu, Y. Oil Body Biogenesis during Brassica napus Embryogenesis. J. Integr. Plant Biol. 2009, 51, 792–799. [Google Scholar] [CrossRef]
- Gan, L.; Zhang, C.-Y.; Wang, X.-D.; Wang, H.; Long, Y.; Yin, Y.-T.; Li, D.-R.; Tian, J.-H.; Li, Z.-Y.; Lin, Z.-W.; et al. Proteomic and Comparative Genomic Analysis of Two Brassica napus Lines Differing in Oil Content. J. Proteome Res. 2013, 12, 4965–4978. [Google Scholar] [CrossRef]
- Yang, L.; Ding, Y.; Chen, Y.; Zhang, S.; Huo, C.; Wang, Y.; Yu, J.; Zhang, P.; Na, H.; Zhang, H.; et al. The proteomics of lipid droplets: Structure, dynamics, and functions of the organelle conserved from bacteria to humans. J. Lipid Res. 2012, 53, 1245–1253. [Google Scholar] [CrossRef] [Green Version]
- Grillitsch, K.; Connerth, M.; Köfeler, H.; Arrey, T.N.; Rietschel, B.; Wagner, B.; Karas, M.; Daum, G. Lipid particles/droplets of the yeast Saccharomyces cerevisiae revisited: Lipidome meets Proteome. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids 2011, 1811, 1165–1176. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Chi, M.; Li, L.; Li, H.; Noman, M.; Yang, Y.; Ji, K.; Lan, X.; Qiang, W.; Du, L.; et al. Genome-Wide Identification, Expression Profiling, and Functional Validation of Oleosin Gene Family in Carthamus tinctorius L. Front. Plant Sci. 2018, 9, 1393. [Google Scholar] [CrossRef] [Green Version]
- Huang, A.H. Plant Lipid Droplets and Their Associated Proteins: Potential for Rapid Advances. Plant Physiol. 2018, 176, 1894–1918. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Yin, Y.; Liu, S.; Guo, Z.; Zhang, K.; Liang, Y.; Zhang, L.; Zhao, W.; Chao, H.; Li, M. Genome-wide identification and functional analysis of oleosin genes in Brassica napus L. BMC Plant Biol. 2019, 19, 294. [Google Scholar] [CrossRef] [Green Version]
- Vieler, A.; Brubaker, S.B.; Vick, B.; Benning, C. A Lipid Droplet Protein of Nannochloropsis with Functions Partially Analogous to Plant Oleosins. Plant Physiol. 2012, 158, 1562–1569. [Google Scholar] [CrossRef] [Green Version]
- Pasaribu, B.; Chung, T.-Y.; Chen, C.-S.; Jiang, P.-L.; Tzen, J.T. Identification of steroleosin in oil bodies of pine megagametophytes. Plant Physiol. Biochem. 2016, 101, 173–181. [Google Scholar] [CrossRef]
- Liu, H.; Wang, C.; Chen, F.; Shen, S. Proteomic analysis of oil bodies in mature Jatropha curcas seeds with different lipid content. J. Proteom. 2015, 113, 403–414. [Google Scholar] [CrossRef]
- Pasaribu, B.; Chen, C.-S.; Liao, Y.K.; Jiang, P.-L.; Tzen, J.T. Identification of caleosin and oleosin in oil bodies of pine pollen. Plant Physiol. Biochem. 2017, 111, 20–29. [Google Scholar] [CrossRef]
- Pasaribu, B.; Chung, T.-Y.; Chen, C.-S.; Wang, S.-L.; Jiang, P.-L.; Tzen, J.T. Identification of caleosin and two oleosin isoforms in oil bodies of pine megagametophytes. Plant Physiol. Biochem. 2014, 82, 142–150. [Google Scholar] [CrossRef]
- Miquel, M.; Trigui, G.; D’Andréa, S.; Kelemen, Z.; Baud, S.; Berger, A.; Deruyffelaere, C.; Trubuil, A.; Lepiniec, L.; Dubreucq, B. Specialization of Oleosins in Oil Body Dynamics during Seed Development in Arabidopsis Seeds. Plant Physiol. 2014, 164, 1866–1878. [Google Scholar] [CrossRef] [Green Version]
- Shimada, T.L.; Shimada, T.; Takahashi, H.; Fukao, Y.; Hara-Nishimura, I. A novel role for oleosins in freezing tolerance of oilseeds in Arabidopsis thaliana. Plant J. 2008, 55, 798–809. [Google Scholar] [CrossRef]
- Deruyffelaere, C.; Bouchez, I.; Morin, H.; Guillot, A.; Miquel, M.; Froissard, M.; Chardot, T.; D’Andrea, S. Ubiquitin-Mediated Proteasomal Degradation of Oleosins is Involved in Oil Body Mobilization During Post-Germinative Seedling Growth in Arabidopsis. Plant Cell Physiol. 2015, 56, 1374–1387. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Zhang, H.; Hu, Z.; Chu, S.; Yu, K.; Lv, L.; Yang, Y.; Zhang, X.; Chen, X.; Kan, G.; et al. Artificial selection on GmOLEO1 contributes to the increase in seed oil during soybean domestication. PLOS Genet. 2019, 15, e1008267. [Google Scholar] [CrossRef] [Green Version]
- López-Ribera, I.; La Paz, J.L.; Repiso, C.; García, N.; Miquel, M.; Hernández, M.L.; Martínez-Rivas, J.M.; Vicient, C.M. The Evolutionary Conserved Oil Body Associated Protein OBAP1 Participates in the Regulation of Oil Body Size. Plant Physiol. 2014, 164, 1237–1249. [Google Scholar] [CrossRef] [Green Version]
- Jolivet, P.; Boulard, C.; Bellamy, A.; Larré, C.; Barre, M.; Rogniaux, H.; D’Andréa, S.; Chardot, T.; Nesi, N. Protein composition of oil bodies from mature Brassica napus seeds. Proteomics 2009, 9, 3268–3284. [Google Scholar] [CrossRef]
- Jolivet, P.; Boulard, C.; Bellamy, A.; Valot, B.; D’Andréa, S.; Zivy, M.; Nesi, N.; Chardot, T. Oil body proteins sequentially accumulate throughout seed development in Brassica napus. J. Plant Physiol. 2011, 168, 2015–2020. [Google Scholar] [CrossRef]
- Zhang, Z.; Cheng, Z.-J.; Gan, L.; Zhang, H.; Wu, F.-Q.; Lin, Q.-B.; Wang, J.-L.; Wang, J.; Guo, X.-P.; Zhang, X.; et al. OsHSD1, a hydroxysteroid dehydrogenase, is involved in cuticle formation and lipid homeostasis in rice. Plant Sci. 2016, 249, 35–45. [Google Scholar] [CrossRef]
- Kim, H.U.; Lee, K.; Jung, S.; Shin, H.A.; Go, Y.S.; Suh, M.; Kim, J.B. Senescence-inducible LEC2 enhances triacylglycerol accumulation in leaves without negatively affecting plant growth. Plant Biotechnol. J. 2015, 13, 1346–1359. [Google Scholar] [CrossRef] [Green Version]
- Pelletier, J.M.; Kwong, R.W.; Park, S.; Le, B.H.; Baden, R.; Cagliari, A.; Hashimoto, M.; Munoz, M.D.; Fischer, R.L.; Goldberg, R.B.; et al. LEC1 sequentially regulates the transcription of genes involved in diverse developmental processes during seed development. Proc. Natl. Acad. Sci. USA 2017, 114, E6710–E6719. [Google Scholar] [CrossRef] [Green Version]
- Streb, S.; Zeeman, S.C. Starch Metabolism in Arabidopsis. Arab. Book 2012, 10, e0160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mérida, A.; Fettke, J. Starch granule initiation in Arabidopsis thaliana chloroplasts. Plant J. 2021, 107, 688–697. [Google Scholar] [CrossRef] [PubMed]
- Tetlow, I.J.; Bertoft, E. A Review of Starch Biosynthesis in Relation to the Building Block-Backbone Model. Int. J. Mol. Sci. 2020, 21, 7011. [Google Scholar] [CrossRef]
- Tiessen, A.; Nerlich, A.; Faix, B.; Hümmer, C.; Fox, S.; Trafford, K.; Weber, H.; Weschke, W.; Geigenberger, P. Subcellular analysis of starch metabolism in developing barley seeds using a non-aqueous fractionation method. J. Exp. Bot. 2012, 63, 2071–2087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahaji, A.; Sánchez-López, A.M.; De Diego, N.; Muñoz, F.; Baroja-Fernández, E.; Li, J.; Ricarte-Bermejo, A.; Baslam, M.; Aranjuelo, I.; Almagro, G.; et al. Plastidic Phosphoglucose Isomerase Is an Important Determinant of Starch Accumulation in Mesophyll Cells, Growth, Photosynthetic Capacity, and Biosynthesis of Plastidic Cytokinins in Arabidopsis. PLoS ONE 2015, 10, e0119641. [Google Scholar] [CrossRef] [Green Version]
- Tappiban, P.; Ying, Y.; Xu, F.; Bao, J. Proteomics and Post-Translational Modifications of Starch Biosynthesis-Related Proteins in Developing Seeds of Rice. Int. J. Mol. Sci. 2021, 22, 5901. [Google Scholar] [CrossRef]
- Hawkins, E.; Chen, J.; Watson-Lazowski, A.; Ahn-Jarvis, J.; Barclay, J.E.; Fahy, B.; Hartley, M.; Warren, F.J.; Seung, D. STARCH SYNTHASE 4 is required for normal starch granule initiation in amyloplasts of wheat endosperm. New Phytol. 2021, 230, 2371–2386. [Google Scholar] [CrossRef]
- Park, Y.-J.; Nemoto, K.; Tomooka, N.; Nishikawa, T. Molecular characterization and expression analysis of a gene encoding an isoamylase-type starch debranching enzyme 3 (ISA3) in grain amaranths. Mol. Breed. 2013, 33, 793–802. [Google Scholar] [CrossRef]
- Park, Y.-J.; Nishikawa, T.; Matsushima, K.; Nemoto, K. Characterization of a new granule-bound starch synthase gene found in amaranth grains (Amaranthus cruentus L.). Mol. Breed. 2017, 37, 111. [Google Scholar] [CrossRef]
- Zhan, Z.; Chen, Y.; Shockey, J.; Han, X.; Wang, Y. Proteomic Analysis of Tung Tree (Vernicia fordii) Oilseeds during the Developmental Stages. Molecules 2016, 21, 1486. [Google Scholar] [CrossRef]
- Maeda, Y.; Nojima, D.; Yoshino, T.; Tanaka, T. Structure and properties of oil bodies in diatoms. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, Y.; Guo, L.; Chen, K.; Guo, Z.; Chao, H.; Wang, B.; Li, M. 3D Reconstruction of Lipid Droplets in the Seed of Brassica napus. Sci. Rep. 2018, 8, 6560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.U.; Jung, S.-J.; Lee, K.-R.; Kim, E.H.; Lee, S.-M.; Roh, K.H.; Kim, J.-B. Ectopic overexpression of castor bean LEAFY COTYLEDON2 (LEC2) in Arabidopsis triggers the expression of genes that encode regulators of seed maturation and oil body proteins in vegetative tissues. FEBS Open Bio. 2013, 4, 25–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, K.; He, J.; Yin, Y.; Chen, K.; Deng, X.; Yu, P.; Li, H.; Zhao, W.; Yan, S.; Li, M. Lysophosphatidic acid acyltransferase 2 and 5 commonly, but differently, promote seed oil accumulation in Brassica napus. Biotechnol. Biofuels Bioprod. 2022, 15, 83. [Google Scholar] [CrossRef] [PubMed]
- Gill, R.A.; Zhang, N.; Ali, B.; Farooq, M.A.; Xu, J.; Gill, M.B.; Mao, B.; Zhou, W. Role of exogenous salicylic acid in regulating physio-morphic and molecular changes under chromium toxicity in black- and yellow- seeded Brassica napus L. Environ. Sci. Pollut. Res. 2016, 23, 20483–20496. [Google Scholar] [CrossRef]
- Miao, L.; Chao, H.; Chen, L.; Wang, H.; Zhao, W.; Li, B.; Zhang, L.; Li, H.; Wang, B.; Li, M. Stable and novel QTL identification and new insights into the genetic networks affecting seed fiber traits in Brassica napus. Theor. Appl. Genet. 2019, 132, 1761–1775. [Google Scholar] [CrossRef]
- Zhang, C.; Iskandarov, U.; Klotz, E.T.; Stevens, R.L.; Cahoon, R.E.; Nazarenus, T.J.; Pereira, S.L.; Cahoon, E.B. A thraustochytrid diacylglycerol acyltransferase 2 with broad substrate specificity strongly increases oleic acid content in engineered Arabidopsis thaliana seeds. J. Exp. Bot. 2013, 64, 3189–3200. [Google Scholar] [CrossRef]
- Schroeder, A.B.; Dobson, E.T.A.; Rueden, C.T.; Tomancak, P.; Jug, F.; Eliceiri, K.W. TheImageJecosystem: Open-source software for image visualization, processing, and analysis. Protein Sci. 2021, 30, 234–249. [Google Scholar] [CrossRef]
- Chao, H.; Wang, H.; Wang, X.; Guo, L.; Gu, J.; Zhao, W.; Li, B.; Chen, D.; Raboanatahiry, N.; Li, M. Genetic dissection of seed oil and protein content and identification of networks associated with oil content in Brassica napus. Sci. Rep. 2017, 7, 46295. [Google Scholar] [CrossRef] [Green Version]
Oil Body | Starch Granule | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Minimum (μm2) | Median (μm2) | Maximum (μm2) | Mean (μm2) | Std. Error of Mean(μm2) | Minimum (μm2) | Median (μm2) | Maximum (μm2) | Mean (μm2) | Std. Error of Mean (μm2) | |
H1 | 0.005 | 0.181 | 1.258 | 0.246 | 0.01217 | ns | ns | ns | ns | ns |
H2 | 0.013 | 0.0995 | 5.663 | 0.2408 | 0.03448 | 0.384 | 4.17 | 12.93 | 4.843 | 0.2639 |
H3 | 0.018 | 0.259 | 1.409 | 0.4393 | 0.1025 | 0.296 | 2.647 | 7.208 | 2.974 | 0.2032 |
H4 | 0.087 | 1.325 | 14.4 | 1.841 | 0.07905 | 0.495 | 1.758 | 4.343 | 2.039 | 0.1322 |
H5 | 0.068 | 1.301 | 5.412 | 1.426 | 0.04908 | 0.517 | 1.798 | 6.631 | 2.293 | 0.2041 |
H6 | 0.006 | 0.396 | 3.95 | 0.5491 | 0.01979 | 0.349 | 1.587 | 6.548 | 1.784 | 0.2422 |
H7 | 0.012 | 0.183 | 1.67 | 0.2489 | 0.008478 | 0.371 | 1.4 | 4.194 | 1.897 | 0.3845 |
L1 | 0.022 | 0.307 | 2.052 | 0.4998 | 0.06168 | ns | ns | ns | ns | ns |
L2 | 0.014 | 0.189 | 6.643 | 0.3333 | 0.0609 | 0.382 | 2.418 | 10.19 | 3.075 | 0.2913 |
L3 | 0.014 | 0.069 | 0.624 | 0.1473 | 0.02935 | 0.613 | 5.739 | 15.87 | 6.716 | 0.6154 |
L4 | 0.007 | 1.092 | 52.32 | 1.587 | 0.1314 | 0.485 | 1.4 | 4.315 | 1.823 | 0.141 |
L5 | 0.035 | 0.7335 | 3.759 | 0.9128 | 0.02376 | 0.072 | 2.23 | 7.293 | 2.309 | 0.1858 |
L6 | 0.033 | 0.3895 | 7.737 | 0.5756 | 0.03918 | 0.238 | 2.041 | 7.283 | 2.228 | 0.2994 |
L7 | 0.024 | 0.149 | 0.431 | 0.153 | 0.004933 | ns | ns | ns | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, K.; Yin, Y.; Ding, Y.; Chao, H.; Li, M. Characterization of Oil Body and Starch Granule Dynamics in Developing Seeds of Brassica napus. Int. J. Mol. Sci. 2023, 24, 4201. https://doi.org/10.3390/ijms24044201
Chen K, Yin Y, Ding Y, Chao H, Li M. Characterization of Oil Body and Starch Granule Dynamics in Developing Seeds of Brassica napus. International Journal of Molecular Sciences. 2023; 24(4):4201. https://doi.org/10.3390/ijms24044201
Chicago/Turabian StyleChen, Kang, Yongtai Yin, Yiran Ding, Hongbo Chao, and Maoteng Li. 2023. "Characterization of Oil Body and Starch Granule Dynamics in Developing Seeds of Brassica napus" International Journal of Molecular Sciences 24, no. 4: 4201. https://doi.org/10.3390/ijms24044201
APA StyleChen, K., Yin, Y., Ding, Y., Chao, H., & Li, M. (2023). Characterization of Oil Body and Starch Granule Dynamics in Developing Seeds of Brassica napus. International Journal of Molecular Sciences, 24(4), 4201. https://doi.org/10.3390/ijms24044201