Facile Mesoporous Hollow Silica Synthesis for Formaldehyde Adsorption
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Mesoporous Silica Synthesis Using a Calcination Process (Named MS-C)
3.3. Mesoporous Hollow Silica Synthesis Using a Calcination Process (Named MHS-C)
3.4. Mesoporous Hollow Silica Synthesis through a Room Temperature Process (Named MHS-R)
3.5. Synthesis to Introduce Amine Group
3.6. Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Davenport, J.J.; Hodgkinson, J.; Saffell, J.R.; Tatam, R.P. A measurement strategy for non-dispersive ultra-violet detection of formaldehyde in indoor air: Spectral analysis and interferent gases. Meas. Sci. Technol. 2016, 16, 15802. [Google Scholar] [CrossRef]
- Robert, B.; Nallathambi, G. Indoor formaldehyde removal by catalytic oxidation, adsorption and nanofibrous membranes: A review. Environ. Chem. Lett. 2021, 19, 2551–2579. [Google Scholar] [CrossRef]
- Xu, J.; Sun, M.; Mi, Y.; Xu, L. The formaldehyde adsorption on anatase TiO2 (2 1 1) surface. Chem. Phys. Lett. 2021, 778, 138771. [Google Scholar] [CrossRef]
- Crispi, S.; Neri, G. Development of a Conductometric Sensor Based on Al,Ca-Doped ZnO for the Detection of Formaldehyde. Sensors 2022, 22, 7465. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Wang, H.; Hu, J.; Lv, T.; Rong, Q.; Zhang, Y.; Zi, B.; Chen, M.; Zhang, D.; Wei, J.; et al. Formaldehyde gas sensor with extremely high response employing cobalt-doped SnO2 ultrafine nanoparticles. Nanoscale Adv. 2022, 4, 824–836. [Google Scholar] [CrossRef]
- Kang, Z.; Zhang, D.; Li, T.; Liu, X.; Song, X. Polydopamine-modified SnO2 nanofiber composite coated QCM gas sensor for high-performance formaldehyde sensing. Sens. Actuators B Chem. 2021, 345, 130299. [Google Scholar] [CrossRef]
- Kang, Y.-J.; Jo, H.-K.; Jang, M.-H.; Ma, X.; Jeon, Y.; Oh, K.; Park, J.-I. A Brief Review of Formaldehyde Removal through Activated Carbon Adsorption. Appl. Sci. 2022, 12, 5025–5039. [Google Scholar] [CrossRef]
- Gomez, J.A.I.; Giampiccolo, A.; Tobaldi, D.M.; Mair, S.; Silva, C.F.; Barrasa, M.C.; Maskell, D.; Ansell, M.P.; Kurchania, R.; Mayer, F.; et al. Photocatalytic Lime Render for Indoor and Outdoor Air Quality Improvement. Catalysts 2021, 11, 296. [Google Scholar] [CrossRef]
- Wangchuk, T.; He, C.; Dudzinska, M.R.; Morawska, L. Seasonal variations of outdoor air pollution and factors driving them in the school environment in rural Bhutan. Atmos. Environ. 2015, 113, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.; Zhou, Y.; Qu, F. Preparation and performance of CNTs-Pt formaldehyde sensor and CNTs-Au glucose sensor. Sens. Rev. 2022, 42, 544–553. [Google Scholar] [CrossRef]
- Yang, S.; Zhu, Z.; Wei, F.; Yang, X. Enhancement of formaldehyde removal by activated carbon fiber via in situ growth of carbon nanotubes. Build. Environ. 2017, 126, 27–33. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, C.; Fu, Z.; Zhang, H.; Tang, Y. Adsorption of formaldehyde molecule on Al-doped vacancy-defected single-walled carbon nanotubes: A theoretical study. Comput. Mater. Sci. 2014, 82, 337–344. [Google Scholar] [CrossRef]
- Majidi, R.; Karami, A.R. Adsorption of formaldehyde on graphene and graphyne. Phys. E 2014, 59, 169–173. [Google Scholar] [CrossRef]
- Yang, L.; Xiao, W.; Wang, J.; Li, X.; Wang, L. Tunable formaldehyde sensing properties of palladium cluster decorated graphene. RSC Adv. 2021, 11, 37120–37130. [Google Scholar] [CrossRef]
- Yang, L.; Xiao, W.; Wang, J.; Li, X.; Wang, L. Adsorption and sensing properties of formaldehyde on chemically modified graphene surfaces. Crystals 2022, 12, 553–562. [Google Scholar] [CrossRef]
- Bellat, J.-P.; Weber, G.; Bezverkhyy, I.; Lamonier, J.-F. Selective adsorption of formaldehyde and water vapors in NaY and NaX zeolite. Microporous Mesoporous Mater. 2019, 288, 109563–109568. [Google Scholar] [CrossRef]
- Kalantarifard, A.; Gon, J.G.; Yang, G.S. Formaldehyde Adsorption into Clinoptilolite Zeolite Modified with the Addition of Rich Materials and Desorption Performance Using Microwave Heating. Terr. Atmos. Ocean. Sci. 2016, 27, 865–875. [Google Scholar] [CrossRef] [Green Version]
- Jin, Z.; Wang, L.; Hu, Q.; Zhang, L.; Xu, S.; Dong, X.; Gao, X.; Ma, R.; Meng, X.; Xiao, F.-S. Hydrophobic Zeolite Containing Titania Particles as Wettability-Selective Catalyst for Formaldehyde Removal. ACS Catal. 2018, 8, 5250–5254. [Google Scholar] [CrossRef]
- Lee, K.J.; Miyawaki, J.; Shiratori, N.; Yoon, S.-H. Toward an effective adsorbent for polar pollutants: Formaldehyde adsorption by activated carbon. J. Hazard. Mater. 2013, 260, 82–88. [Google Scholar] [CrossRef]
- Zahed, M.; Jafari, D.; Esfandyari, M. Adsorption of formaldehyde from aqueous solution using activated carbon prepared from Hibiscus rosa-sinensis. Int. J. Environ. Anal. Chem. 2022, 102, 2979–3001. [Google Scholar] [CrossRef]
- Wang, M.; Wen, B.; Fan, B.; Zhang, H. Study on adsorption mechanism of silicate adsorbents with different morphologies and pore structures towards formaldehyde in water. Colloids Surf. A 2020, 599, 124887–124895. [Google Scholar] [CrossRef]
- Wang, X.; Sun, J.; Zhang, Y.; Zhang, Y. Study on the correlation between pore morphology of porous calcium silicate and high- capacity formaldehyde adsorption. Environ. Technol. 2021, 42, 2021–2030. [Google Scholar] [CrossRef] [PubMed]
- Portela, R.; Jansson, I.; Suarez, S.; Villarroel, M.; Sanchez, B.; Avila, P. Natural silicate-TiO2 hybrids for photocatalytic oxidation of formaldehyde in gas phase. Chem. Eng. J. 2017, 310, 560–570. [Google Scholar] [CrossRef]
- Nomura, A.; Jones, C.W. Enhanced Formaldehyde-Vapor Adsorption Capacity of Polymeric Amine-Incorporated Aminosilicas. Chem. Eur. J. 2014, 20, 6381–6390. [Google Scholar] [CrossRef]
- Saeung, S.; Boonamnuayvitaya, V. Adsorption of formaldehyde vapor by amine-functionalized mesoporous silica materials. J. Environ. Sci. 2008, 20, 379–384. [Google Scholar]
- Fan, J.; Wang, T.; Wu, B.; Wang, C. Highly Active Amino-Fullerene Derivative-Modified TiO2 for Enhancing Formaldehyde Degradation Efficiency under Solar-Light Irradiation. Nanomaterials 2022, 12, 2366. [Google Scholar] [CrossRef]
- Meoto, S.; Kent, N.; Nigra, M.M.; Coppens, M.-O. Effect of stirring rate on the morphology of FDU-12 mesoporous silica particles. Microporous Mesoporous Mater. 2017, 249, 61–66. [Google Scholar] [CrossRef]
- Kang, M.; Lee, J.-t.; Kim, M.-K.; Byun, M.; Bae, J.-Y. Facile Synthesis of Mesoporous Silica at Room Temperature for CO2 Adsorption. Micromachines 2022, 13, 926. [Google Scholar] [CrossRef]
- Lee, J.-t.; Bae, J.-Y. Synthesis and Characteristics of Double-Shell Mesoporous Hollow Silica Nanomaterials to Improve CO2 Adsorption Performance. Micromachines 2021, 12, 1424. [Google Scholar] [CrossRef]
- Bae, J.Y.; Jang, S.G. Preparation and Characterization of Amine-Functionalized Mesoporous Hollow Silica for CO2 Capture. J. Nanosci. Nanotechnol. 2020, 20, 7070–7074. [Google Scholar] [CrossRef]
- Bae, J.Y.; Jang, S.G. Characteristics of CO2 Capture by Tetraethylenepentamine Modified Mesoporous Silica Morphology. J. Nanosci. Nanotechnol. 2019, 19, 6291–6296. [Google Scholar] [CrossRef]
- Bae, J.Y. CO2 Capture by Amine-Functionalized Mesoporous Hollow Silica. J. Nanosci. Nanotechnol. 2017, 17, 7418–7422. [Google Scholar] [CrossRef]
- Teng, Z.; Han, Y.; Li, J.; Yan, F.; Yang, W. Preparation of hollow mesoporous silica spheres by a sol–gel/emulsion approach. Microporous Mesoporous Mater. 2010, 127, 67–72. [Google Scholar] [CrossRef]
- Yan, X.; Zhang, L.; Zhang, Y.; Qiao, K.; Yan, Z.; Komarneni, S. Amine-modified mesocellular silica foams for CO2 capture. Chem. Eng. J. 2011, 168, 918–924. [Google Scholar] [CrossRef]
- Kukade, S.D.; Naik, R.R.; Bawankar, S.V. Green Synthesis and Characterization of Thymol–guanidine– formaldehyde Terpolymer Resin. Orbital: Electron. J. Chem. 2014, 6, 240–245. [Google Scholar]
- Tengroth, C.; Gasslander, U.; Anderson, F.O.; Jacobsson, S.P. Cross-Linking of Gelatin Capsules with Formaldehyde and Other Aldehydes: An FTIR Spectroscopy Study. Pharm. Dev. Technol. 2005, 10, 405–412. [Google Scholar] [CrossRef]
BET (m2/g) | Pore Size (nm) | Pore Volume (cc/g) | |
---|---|---|---|
MS-C | 1036.154 | 3.408 | 0.342 |
MHS-C | 841.884 | 4.313 | 0.379 |
MHS-R | 1223.950 | 3.835 | 0.363 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, M.; Lee, J.-t.; Bae, J.Y. Facile Mesoporous Hollow Silica Synthesis for Formaldehyde Adsorption. Int. J. Mol. Sci. 2023, 24, 4208. https://doi.org/10.3390/ijms24044208
Kang M, Lee J-t, Bae JY. Facile Mesoporous Hollow Silica Synthesis for Formaldehyde Adsorption. International Journal of Molecular Sciences. 2023; 24(4):4208. https://doi.org/10.3390/ijms24044208
Chicago/Turabian StyleKang, Misun, Jong-tak Lee, and Jae Young Bae. 2023. "Facile Mesoporous Hollow Silica Synthesis for Formaldehyde Adsorption" International Journal of Molecular Sciences 24, no. 4: 4208. https://doi.org/10.3390/ijms24044208
APA StyleKang, M., Lee, J. -t., & Bae, J. Y. (2023). Facile Mesoporous Hollow Silica Synthesis for Formaldehyde Adsorption. International Journal of Molecular Sciences, 24(4), 4208. https://doi.org/10.3390/ijms24044208