A Model Eumelanin from 5,6-Dihydroxyindole-2-Carboxybutanamide Combining Remarkable Antioxidant and Photoprotective Properties with a Favourable Solubility Profile for Dermo-Cosmetic Applications
Abstract
:1. Introduction
2. Results and Discussion
2.1. Oxidation of ADHICA
2.2. Preparation and Structural Characterization of ADHICA Melanin
2.3. Solubility Properties of ADHICA Melanin in Solvents of Dermo-Cosmetic Interest
2.4. Antioxidant Properties of ADHICA Melanin
3. Materials and Methods
3.1. Oxidation of ADHICA and Isolation of Its 4,4′-Dimer
3.2. Preparation of Melanins from DHICA and ADHICA
3.3. Evaluation of the Solubility Properties of DHICA and ADHICA Melanins
3.4. DPPH Assay
3.5. FRAP Assay
3.6. Inhibition of Lipid Peroxidation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AAPH | 2,2′-azobis(amidinopropane) dihydrochloride |
ADHICA | 5,6-dihydroxyindole-2-carboxybutanamide |
DHI | 5,6-dihydroxyindole |
DHICA | 5,6-dihydroxyindole-2-carboxylic acid |
DIPEA | N,N-diisopropylethylamine |
DMF | dimethylformamide |
DMSO | dimethyl sulfoxide |
DOPA | 3,4-dihydroxy-L-phenylalanine |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
FRAP | Ferric Reducing Antioxidant Power |
HATU | 1-[Bis(dimethylamino) methylene]-1H-1,2,3-triazolo [4,5-b]pyridinium-3-oxide hexafluorophosphate |
HEPES | 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid |
SDS | sodium dodecyl sulfate |
TPTZ | 2,4,6-Tris(2-pyridyl)-s-triazine |
Trolox | 6 -hydroxy-2,5,7,8 -tetramethylchroman-2-carboxylic acid |
References
- Borovanský, J.; Riley, P.A. (Eds.) Melanins and Melanosomes: Biosynthesis, Biogenesis, Physiological, and Pathological Functions; Wiley-VCH: New York, NY, USA, 2011; Volume 4, p. 2557. ISBN 978-3-527-32892-5. [Google Scholar]
- Meredith, P.; Sarna, T. The physical and chemical properties of eumelanin. Pigment Cell Res. 2006, 19, 572–594. [Google Scholar] [CrossRef] [PubMed]
- Gracio, J.D.A.; Singh, Â.M.K.; Ruch, D.; Buehler, M.J.; Al, C.E.T. Self-Assembly of Tetramers of Eumelanin: Experiment, Simulation. ACS Nano 2013, 7, 1524–1532. [Google Scholar] [CrossRef]
- D’Ischia, M.; Napolitano, A.; Pezzella, A.; Meredith, P.; Buehler, M. Melanin Biopolymers: Tailoring Chemical Complexity for Materials Design. Angew. Chem.—Int. Ed. 2020, 59, 11196–11205. [Google Scholar] [CrossRef] [PubMed]
- D’Ischia, M.; Wakamatsu, K.; Cicoira, F.; Di Mauro, E.; Garcia-Borron, J.C.; Commo, S.; Galván, I.; Ghanem, G.; Kenzo, K.; Meredith, P.; et al. Melanins and melanogenesis: From pigment cells to human health and technological applications. Pigment. Cell Melanoma Res. 2015, 28, 520–544. [Google Scholar] [CrossRef] [Green Version]
- D’Mello, S.A.N.; Finlay, G.J.; Baguley, B.C.; Askarian-Amiri, M.E. Signaling pathways in melanogenesis. Int. J. Mol. Sci. 2016, 17, 1144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, L.; Gong, L.; Zhang, J.; Han, L.; Xiang, L.; Chen, J.; Liu, J.; Yan, B.; Zeng, H. A wet adhesion strategy via synergistic cation-π and hydrogen bonding interactions of antifouling zwitterions and mussel-inspired binding moieties. J. Mater. Chem. A 2019, 7, 21944–21952. [Google Scholar] [CrossRef]
- Agar, N.; Young, A.R. Melanogenesis: A photoprotective response to DNA damage? Mutat. Res.—Fundam. Mol. Mech. Mutagen. 2005, 571, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Migliaccio, L.; Aprano, S.; Iannuzzi, L.; Maglione, M.G.; Tassini, P.; Minarini, C.; Manini, P.; Pezzella, A. Eumelanin–PEDOT: PSS Complementing en Route to Mammalian-Pigment-Based Electrodes: Design and Fabrication of an ITO-Free Organic Light-Emitting Device. Adv. Electron. Mater. 2017, 3, 1600342. [Google Scholar] [CrossRef]
- Ryu, J.H.; Messersmith, P.B.; Lee, H. Polydopamine Surface Chemistry: A Decade of Discovery. ACS Appl. Mater. Interfaces 2018, 10, 7523–7540. [Google Scholar] [CrossRef] [PubMed]
- Panzella, L.; Ebato, A.; Napolitano, A.; Koike, K. The late stages of melanogenesis: Exploring the chemical facets and the application opportunities. Int. J. Mol. Sci. 2018, 19, 1753. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ai, K.; Ji, X.; Askhatova, D.; Du, R.; Lu, L.; Shi, J. Comprehensive insights into the multi-antioxidative mechanisms of melanin nanoparticles and their application to protect brain from injury in ischemic stroke. J. Am. Chem. Soc. 2017, 139, 856–862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Micillo, R.; Panzella, L.; Iacomino, M.; Prampolini, G.; Cacelli, I.; Ferretti, A.; Crescenzi, O.; Koike, K.; Napolitano, A.; D’Ischia, M. Eumelanin broadband absorption develops from aggregation-modulated chromophore interactions under structural and redox control. Sci. Rep. 2017, 7, 41532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Micillo, R.; Panzella, L.; Koike, K.; Monfrecola, G.; Napolitano, A.; D’Ischia, M. “Fifty shades” of black and red or how carboxyl groups fine tune eumelanin and pheomelanin properties. Int. J. Mol. Sci. 2016, 17, 746. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Liu, X.M.; Dai, X.; Zhou, Q.; Lei, T.C.; Beermann, F.; Wakamatsu, K.; Xu, S.Z. Regulation of DHICA-mediated antioxidation by dopachrome tautomerase: Implication for skin photoprotection against UVA radiation. Free Radic. Biol. Med. 2010, 48, 1144–1151. [Google Scholar] [CrossRef]
- D’Orazio, J.; Jarrett, S.; Amaro-Ortiz, A.; Scott, T. UV radiation and the skin. Int. J. Mol. Sci. 2013, 14, 12222–12248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brenner, M.; Hearing, V.J. The protective role of melanin against UV damage in human skin. Photochem. Photobiol. 2008, 84, 539–549. [Google Scholar] [CrossRef] [Green Version]
- Micillo, R.; Iacomino, M.; Perfetti, M.; Panzella, L.; Koike, K.; D’Errico, G.; d’Ischia, M.; Napolitano, A. Unexpected impact of esterification on the antioxidant activity and (photo)stability of a eumelanin from 5,6-dihydroxyindole-2-carboxylic acid. Pigment Cell Melanoma Res. 2018, 31, 475–483. [Google Scholar] [CrossRef]
- Lawrie, K.J.; Meredith, P.; McGeary, R.P. Synthesis and polymerization studies of organic-soluble eumelanins. Photochem. Photobiol. 2008, 84, 632–638. [Google Scholar] [CrossRef]
- Liberti, D.; Alfieri, M.L.; Monti, D.M.; Panzella, L.; Napolitano, A. A melanin-related phenolic polymer with potent photoprotective and antioxidant activities for dermo-cosmetic applications. Antioxidants 2020, 9, 270. [Google Scholar] [CrossRef] [Green Version]
- Argenziano, R.; Della Greca, M.; Panzella, L.; Napolitano, A. A Straightforward Access to New Amides of the Melanin Precursor 5,6-Dihydroxyindole-2-carboxylic Acid and Characterization of the Properties of the Pigments Thereof. Molecules 2022, 27, 4816. [Google Scholar] [CrossRef]
- Pezzella, A.; Napolitano, A.; D’Ischia, M.; Prota, G. Oxidative polymerisation of 5,6-dihydroxyindole-2-carboxylic acid to melanin: A new insight. Tetrahedron 1996, 52, 7913–7920. [Google Scholar] [CrossRef]
- Panzella, L.; Benning, K.; Nesbeth, D.N.; Setaro, B.; D’Errico, G.; Napolitano, A.; d’Ischia, M. Identification of black sturgeon caviar pigment as eumelanin. Food Chem. 2022, 373, 131474. [Google Scholar] [CrossRef] [PubMed]
- Panzella, L.; Gentile, G.; D’Errico, G.; Della Vecchia, N.F.; Errico, M.E.; Napolitano, A.; Carfagna, C.; D’Ischia, M. Atypical structural and π-electron features of a melanin polymer that lead to superior free-radical-scavenging properties. Angew. Chem.—Int. Ed. 2013, 52, 12684–12687. [Google Scholar] [CrossRef] [PubMed]
- Haywood, R.; Andrady, C.; Kassouf, N.; Sheppard, N. Intensity-dependent Direct Solar Radiation- and UVA-induced Radical Damage to Human Skin and DNA, Lipids and Proteins. Photochem. Photobiol. 2011, 87, 117–130. [Google Scholar] [CrossRef]
- Muñoz-García, A.B.; Sannino, F.; Vitiello, G.; Pirozzi, D.; Minieri, L.; Aronne, A.; Pernice, P.; Pavone, M.; D’Errico, G. Origin and electronic features of reactive oxygen species at hybrid zirconia-acetylacetonate interfaces. ACS Appl. Mater. Interfaces 2015, 7, 21662–21667. [Google Scholar] [CrossRef]
- Mostert, A.B.; Hanson, G.R.; Sarna, T.; Gentle, I.R.; Powell, B.J.; Meredith, P. Hydration-controlled X-band EPR spectroscopy: A tool for unravelling the complexities of the solid-state free radical in eumelanin. J. Phys. Chem. B 2013, 117, 4965–4972. [Google Scholar] [CrossRef]
- Goupy, P.; Dufour, C.; Loonis, M.; Dangles, O. Quantitative kinetic analysis of hydrogen transfer reactions from dietary polyphenols to the DPPH radical. J. Agric. Food Chem. 2003, 51, 615–622. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Liégeois, C.; Lermusieau, G.; Collin, S. Measuring antioxidant efficiency of wort, malt, and hops against the 2,2′-azobis(2-amidinopropane) dihydrochloride-induced oxidation of an aqueous dispersion of linoleic acid. J. Agric. Food Chem. 2000, 48, 1129–1134. [Google Scholar] [CrossRef]
Samples | Spin/g Concentration | ΔB (±0.2) | Gauss Fraction | g-Factor (±0.0003) |
---|---|---|---|---|
DHICA melanin | 1.9 × 1018 | 3.9 ± 0.2 | 0.47 | 2.0029 ± 0.0003 |
ADHICA melanin | 4.8 × 1017 | 4.7 ± 0.2 | 0.28 | 2.0030 ± 0.0003 |
Solvent | Maximum Solubility (mg/mL) |
---|---|
DMSO | 5 |
Ethanol | 1.5 |
Methanol | 1 |
Propylene glycol | 0.33 |
Propylene glycol/glycerol | 0.25 |
Samples | EC50 (mg/mL) | Trolox eqs. (mg/mL) |
---|---|---|
DHICA melanin | 0.242 ± 0.004 | 0.33 ± 0.01 |
ADHICA melanin | 0.0374 ± 0.0004 | 0.246 ± 0.004 |
DHICA Melanin mg/mL | ADHICA Melanin mg/mL | |
---|---|---|
EC50 (AAPH) | 0.0598 ± 0.0008 | 0.037 ± 0.004 |
EC50 (solar light) | Not detectable | 0.062 ± 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Argenziano, R.; Alfieri, M.L.; Gallucci, N.; D’Errico, G.; Panzella, L.; Napolitano, A. A Model Eumelanin from 5,6-Dihydroxyindole-2-Carboxybutanamide Combining Remarkable Antioxidant and Photoprotective Properties with a Favourable Solubility Profile for Dermo-Cosmetic Applications. Int. J. Mol. Sci. 2023, 24, 4241. https://doi.org/10.3390/ijms24044241
Argenziano R, Alfieri ML, Gallucci N, D’Errico G, Panzella L, Napolitano A. A Model Eumelanin from 5,6-Dihydroxyindole-2-Carboxybutanamide Combining Remarkable Antioxidant and Photoprotective Properties with a Favourable Solubility Profile for Dermo-Cosmetic Applications. International Journal of Molecular Sciences. 2023; 24(4):4241. https://doi.org/10.3390/ijms24044241
Chicago/Turabian StyleArgenziano, Rita, Maria Laura Alfieri, Noemi Gallucci, Gerardino D’Errico, Lucia Panzella, and Alessandra Napolitano. 2023. "A Model Eumelanin from 5,6-Dihydroxyindole-2-Carboxybutanamide Combining Remarkable Antioxidant and Photoprotective Properties with a Favourable Solubility Profile for Dermo-Cosmetic Applications" International Journal of Molecular Sciences 24, no. 4: 4241. https://doi.org/10.3390/ijms24044241
APA StyleArgenziano, R., Alfieri, M. L., Gallucci, N., D’Errico, G., Panzella, L., & Napolitano, A. (2023). A Model Eumelanin from 5,6-Dihydroxyindole-2-Carboxybutanamide Combining Remarkable Antioxidant and Photoprotective Properties with a Favourable Solubility Profile for Dermo-Cosmetic Applications. International Journal of Molecular Sciences, 24(4), 4241. https://doi.org/10.3390/ijms24044241