Identification of Novel Core Genes Involved in Malignant Transformation of Inflamed Colon Tissue Using a Computational Biology Approach and Verification in Murine Models
Abstract
:1. Introduction
2. Results
2.1. Identification of Core Genes Related to Colitis and Colitis-Associated Cancer
2.1.1. Hierarchical Clustering and Functional Analysis of DEGs
2.1.2. Analysis of Interconnection between Acute Colitis- and CAC-Specific Core Genes
2.2. Identification of Novel Acute Colitis- and CAC-Specific Hub Genes
2.2.1. Acute Colitis-Associated Hub Genes
2.2.2. CAC-Associated Hub Genes
2.3. Validation of Novel Candidate Genes for Colitis and CAC
2.3.1. Murine Model of DSS-Induced Colitis and CAC
2.3.2. Core Genes Expression in the Colonic Tissue of Mice with Acute Colitis and CAC
3. Discussion
Limitations of the Study
4. Materials and Methods
4.1. Microarray Data Collection and Differential Expression Analysis
4.2. Functional Analysis of DEGs
4.3. Reconstruction of Gene Association Networks
4.4. Data Mining Analysis
4.5. Murine Models of Acute Colitis and Colitis-Associated Cancer (CAC)
4.6. Histology
4.7. Quantitative Real-Time PCR (qRT-PCR)
4.8. The Association of DEGs Expression with Survival Rates of Patients with Colorectal Cancer
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bardou, M.; Rouland, A.; Martel, M.; Loffroy, R.; Barkun, A.N.; Chapelle, N. Review: Obesity and colorectal cancer. Aliment. Pharmacol. Ther. 2022, 56, 407–418. [Google Scholar] [CrossRef]
- Dai, Z.H.; Tang, M.; Chen, Y.L.; Zhang, T.L.; Li, J.; Lv, G.H.; Yan, Y.G.; Ouyang, Z.H.; Huang, W.; Zou, M.X. Incidence and Risk Factors for Cerebrovascular-Specific Mortality in Patients with Colorectal Cancer: A Registry-Based Cohort Study Involving 563,298 Patients. Cancers 2022, 14, 2053. [Google Scholar] [CrossRef]
- Majumder, S.; Shivaji, U.N.; Kasturi, R.; Sigamani, A.; Ghosh, S.; Iacucci, M. Inflammatory bowel disease-related colorectal cancer: Past, present and future perspectives. World J. Gastrointest. Oncol. 2022, 14, 547. [Google Scholar] [CrossRef] [PubMed]
- Grivennikov, S.I. Inflammation and colorectal cancer: Colitis-associated neoplasia. Semin. Immunopathol. 2013, 35, 229–244. [Google Scholar] [CrossRef] [PubMed]
- M’koma, A.E. Inflammatory Bowel Disease: Clinical Diagnosis and Surgical Treatment-Overview. Medicina 2022, 58, 567. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, S.-W.; Yen, H.-H.; Chen, Y.-Y. Chemoprevention of Colitis-Associated Dysplasia or Cancer in Inflammatory Bowel Disease. Gut Liver 2022, 16, 840–848. [Google Scholar] [CrossRef] [PubMed]
- Iwanaga, K.; Nakamura, T.; Maeda, S.; Aritake, K.; Hori, M.; Urade, Y.; Ozaki, H.; Murata, T. Mast cell-derived prostaglandin D2 inhibits colitis and colitis-associated colon cancer in mice. Cancer Res. 2014, 74, 3011–3019. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.C.; Itzkowitz, S.H. Colorectal Cancer in Inflammatory Bowel Disease: Mechanisms and Management. Gastroenterology 2022, 162, 715–730.e3. [Google Scholar] [CrossRef]
- Frigerio, S.; Lartey, D.A.; D’haens, G.R.; Grootjans, J. The Role of the Immune System in IBD-Associated Colorectal Cancer: From Pro to Anti-Tumorigenic Mechanisms. Int. J. Mol. Sci. 2021, 22, 12739. [Google Scholar] [CrossRef]
- Rogler, G. Chronic ulcerative colitis and colorectal cancer. Cancer Lett. 2014, 345, 235–241. [Google Scholar] [CrossRef] [Green Version]
- Matson, J.; Ramamoorthy, S.; Lopez, N.E. The Role of Biomarkers in Surgery for Ulcerative Colitis: A Review. J. Clin. Med. 2021, 10, 3362. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, R.; Miyamoto, S.; Yasui, Y.; Sugie, S.; Tanaka, T. Global gene expression analysis of the mouse colonic mucosa treated with azoxymethane and dextran sodium sulfate. BMC Cancer 2007, 7, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, L.; Han, X.; Li, J.-X.; Liao, Y.-T.; Kou, F.-S.; Wang, Z.-B.; Shi, R.; Zhao, X.-J.; Sun, Z.-M.; Hao, Y. Identification of differentially expressed genes in ulcerative colitis and verification in a colitis mouse model by bioinformatics analyses. World J. Gastroenterol. 2020, 26, 5983–5996. [Google Scholar] [CrossRef] [PubMed]
- Xiu, M.; Liu, Y.; Chen, G.; Hu, C.; Kuang, B. Identifying Hub Genes, Key Pathways and Immune Cell Infiltration Characteristics in Pediatric and Adult Ulcerative Colitis by Integrated Bioinformatic Analysis. Dig. Dis. Sci. 2021, 66, 3002–3014. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Zhang, X.; Luo, Y.; Huang, J.; Yu, M. Identification of CXCL10 and CXCL11 as the candidate genes involving the development of colitis-associated colorectal cancer. Front. Genet. 2022, 13, 945414. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Kong, Y.; Chen, N.; Peng, W.; Zi, R.; Jiang, M.; Zhu, J.; Wang, Y.; Yue, J.; Lv, J.; et al. Identification of Immune-Related Gene Signature and Prediction of CeRNA Network in Active Ulcerative Colitis. Front. Immunol. 2022, 13, 855645. [Google Scholar] [CrossRef]
- Cheng, C.; Hua, J.; Tan, J.; Qian, W.; Zhang, L.; Hou, X. Identification of differentially expressed genes, associated functional terms pathways, and candidate diagnostic biomarkers in inflammatory bowel diseases by bioinformatics analysis. Exp. Ther. Med. 2019, 18, 278–288. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Fang, T.; Chen, X. Identification of Differentially Expressed Genes and miRNAs for Ulcerative Colitis Using Bioinformatics Analysis. Front. Genet. 2022, 13, 914384. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, X.; Xu, L.; Zhang, Z.; Wang, F.; Tang, X. Investigation of Potential Genetic Biomarkers and Molecular Mechanism of Ulcerative Colitis Utilizing Bioinformatics Analysis. Biomed. Res. Int. 2020, 2020, 4921387. [Google Scholar] [CrossRef] [Green Version]
- Shi, W.; Zou, R.; Yang, M.; Mai, L.; Ren, J.; Wen, J.; Liu, Z.; Lai, R. Analysis of Genes Involved in Ulcerative Colitis Activity and Tumorigenesis Through Systematic Mining of Gene Co-expression Networks. Front. Physiol. 2019, 10, 662. [Google Scholar] [CrossRef]
- Chen, H.-M.; MacDonald, J.A. Molecular Network Analyses Implicate Death-Associated Protein Kinase 3 (DAPK3) as a Key Factor in Colitis-Associated Dysplasia Progression. Inflamm. Bowel Dis. 2022, 28, 1485–1496. [Google Scholar] [CrossRef]
- Ding, H.; Liu, X.; Jian-ming, X.; Qiao, M. Identification of Crucial Genes and Related Transcription Factors in Ulcerative Colitis. Ann. Clin. Lab. Sci. 2021, 51, 245–254. [Google Scholar] [PubMed]
- Huang, Y.; Zhang, X.; Wang, P.; Li, Y.; Yao, J. Identification of hub genes and pathways in colitis-associated colon cancer by integrated bioinformatic analysis. BMC Genom. Data 2022, 23, 48. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021, 49, D605–D612. [Google Scholar] [CrossRef]
- Markov, A.V.; Kel, A.E.; Salomatina, O.V.; Salakhutdinov, N.F.; Zenkova, M.A.; Logashenko, E.B. Deep insights into the response of human cervical carcinoma cells to a new cyano enone-bearing triterpenoid soloxolone methyl: A transcriptome analysis. Oncotarget 2019, 10, 5267–5297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, D.; Lim, J.; Wang, X.; Liang, F.; Xiao, G. Enhanced construction of gene regulatory networks using hub gene information. BMC Bioinform. 2017, 18, 186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Łukaszewicz-Zając, M.; Pączek, S.; Mroczko, B. A Disintegrin and Metalloproteinase (ADAM) Family—Novel Biomarkers of Selected Gastrointestinal (GI) Malignancies? Cancers 2022, 14, 2307. [Google Scholar] [CrossRef]
- Marônek, M.; Marafini, I.; Gardlík, R.; Link, R.; Troncone, E.; Monteleone, G. Metalloproteinases in Inflammatory Bowel Diseases. J. Inflamm. Res. 2021, 14, 1029–1041. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Saikam, V.; Skrada, K.A.; Merlin, D.; Iyer, S.S. Inflammatory bowel disease biomarkers. Med. Res. Rev. 2022, 42, 1856–1887. [Google Scholar] [CrossRef]
- Guijarro, L.G.; Cano-Martínez, D.; Toledo-Lobo, M.V.; Salinas, P.S.; Chaparro, M.; Gómez-Lahoz, A.M.; Zoullas, S.; Rodríguez-Torres, R.; Román, I.D.; Monasor, L.S.; et al. Relationship between IGF-1 and body weight in inflammatory bowel diseases: Cellular and molecular mechanisms involved. Biomed. Pharmacother. 2021, 144, 112239. [Google Scholar] [CrossRef]
- Prasad, H.; Visweswariah, S.S. Impaired Intestinal Sodium Transport in Inflammatory Bowel Disease: From the Passenger to the Driver’s Seat. Cell. Mol. Gastroenterol. Hepatol. 2021, 12, 277–292. [Google Scholar] [CrossRef]
- Camilleri, M. Bile acid detergency: Permeability, inflammation, and effects of sulfation. Am. J. Physiol. Liver Physiol. 2022, 322, G480–G488. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Sun, M.; Zhu, J.; Wei, M.; Li, H.; Zhao, P.; Wang, J.; Li, R.; Tian, L.; Tao, Y.; et al. Tissue metabolic profiling reveals major metabolic alteration in colorectal cancer. Mol. Omics 2021, 17, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Deng, S.; Yan, L.; Gu, J.; Mao, F.; Xue, Y.; Zheng, C.; Yang, M.; Liu, H.; Liu, L.; et al. An Oxidative Stress Index-Based Score for Prognostic Prediction in Colorectal Cancer Patients Undergoing Surgery. Oxid. Med. Cell. Longev. 2021, 2021, 6693707. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Cheuk, I.W.-Y.; Siu, M.-T.; Yang, W.; Cheng, A.S.; Shin, V.Y.; Kwong, A. Human haptoglobin contributes to breast cancer oncogenesis through glycolytic activity modulation. Am. J. Cancer Res. 2020, 10, 2865–2877. [Google Scholar]
- Santiago-Sánchez, G.S.; Pita-Grisanti, V.; Quiñones-Díaz, B.; Gumpper, K.; Cruz-Monserrate, Z.; Vivas-Mejía, P.E. Biological Functions and Therapeutic Potential of Lipocalin 2 in Cancer. Int. J. Mol. Sci. 2020, 21, 4365. [Google Scholar] [CrossRef]
- Camilli, C.; Hoeh, A.E.; De Rossi, G.; Moss, S.E.; Greenwood, J. LRG1: An emerging player in disease pathogenesis. J. Biomed. Sci. 2022, 29, 6. [Google Scholar] [CrossRef]
- Soman, A.; Asha Nair, S. Unfolding the cascade of SERPINA3: Inflammation to cancer. Biochim. Biophys. Acta Rev. Cancer 2022, 1877, 188760. [Google Scholar] [CrossRef]
- Fan, J.; Peng, Z.; Zhou, C.; Qiu, G.; Tang, H.; Sun, Y.; Wang, X.; Li, Q.; Le, X.; Xie, K. Gene-expression profiling in Chinese patients with colon cancer by coupling experimental and bioinformatic genomewide gene-expression analyses. Cancer 2008, 113, 266–275. [Google Scholar] [CrossRef]
- Shabani, F.; Farasat, A.; Mahdavi, M.; Gheibi, N. Calprotectin (S100A8/S100A9): A key protein between inflammation and cancer. Inflamm. Res. 2018, 67, 801–812. [Google Scholar] [CrossRef]
- Nugteren, S.; Samsom, J.N. Secretory Leukocyte Protease Inhibitor (SLPI) in mucosal tissues: Protects against inflammation, but promotes cancer. Cytokine Growth Factor Rev. 2021, 59, 22–35. [Google Scholar] [CrossRef] [PubMed]
- Wang, I.M.; Zhang, B.; Yang, X.; Zhu, J.; Stepaniants, S.; Zhang, C.; Meng, Q.; Peters, M.; He, Y.; Ni, C.; et al. Systems analysis of eleven rodent disease models reveals an inflammatome signature and key drivers. Mol. Syst. Biol. 2012, 8, 594. [Google Scholar] [CrossRef] [PubMed]
- May, R.D.; Fung, M. Strategies targeting the IL-4/IL-13 axes in disease. Cytokine 2015, 75, 89–116. [Google Scholar] [CrossRef] [PubMed]
- Garlatti, V.; Lovisa, S.; Danese, S.; Vetrano, S. The Multiple Faces of Integrin–ECM Interactions in Inflammatory Bowel Disease. Int. J. Mol. Sci. 2021, 22, 10439. [Google Scholar] [CrossRef]
- Genua, M.; D’Alessio, S.; Cibella, J.; Gandelli, A.; Sala, E.; Correale, C.; Spinelli, A.; Arena, V.; Malesci, A.; Rutella, S.; et al. The urokinase plasminogen activator receptor (uPAR) controls macrophage phagocytosis in intestinal inflammation. Gut 2015, 64, 589–600. [Google Scholar] [CrossRef]
- Karamanavi, E.; Angelopoulou, K.; Lavrentiadou, S.; Tsingotjidou, A.; Abas, Z.; Taitzoglou, I.; Vlemmas, I.; Erdman, S.E.; Poutahidis, T. Urokinase-Type Plasminogen Activator Deficiency Promotes Neoplasmatogenesis in the Colon of Mice. Transl. Oncol. 2014, 7, 174–187.e5. [Google Scholar] [CrossRef] [Green Version]
- Derkacz, A.; Olczyk, P.; Olczyk, K.; Komosinska-Vassev, K. The Role of Extracellular Matrix Components in Inflammatory Bowel Diseases. J. Clin. Med. 2021, 10, 1122. [Google Scholar] [CrossRef]
- Walter, L.; Harper, C.; Garg, P. Role of Matrix Metalloproteinases in Inflammation/Colitis-Associated Colon Cancer. ImmunoGastroenterology 2013, 2, 22. [Google Scholar] [CrossRef]
- Wang, Q.; Morris, R.J.; Bode, A.M.; Zhang, T. Prostaglandin Pathways: Opportunities for Cancer Prevention and Therapy. Cancer Res. 2022, 82, 949–965. [Google Scholar] [CrossRef]
- Breynaert, C.; de Bruyn, M.; Arijs, I.; Cremer, J.; Martens, E.; Van Lommel, L.; Geboes, K.; De Hertogh, G.; Schuit, F.; Ferrante, M.; et al. Genetic Deletion of Tissue Inhibitor of Metalloproteinase-1/TIMP-1 Alters Inflammation and Attenuates Fibrosis in Dextran Sodium Sulphate-induced Murine Models of Colitis. J. Crohn’s Colitis 2016, 10, 1336–1350. [Google Scholar] [CrossRef] [Green Version]
- Niu, L.; Gao, C.; Li, Y. Identification of potential core genes in colorectal carcinoma and key genes in colorectal cancer liver metastasis using bioinformatics analysis. Sci. Rep. 2021, 11, 23938. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, S.; Gilmer, J.F.; Medina, C. Matrix Metalloproteinases in Inflammatory Bowel Disease: An Update. Mediat. Inflamm. 2015, 2015, 964131. [Google Scholar] [CrossRef] [PubMed]
- Nakov, R. New markers in ulcerative colitis. Clin. Chim. Acta 2019, 497, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, G.; Saermark, T.; Kirkegaard, T.; Brynskov, J. Spontaneous and cytokine induced expression and activity of matrix metalloproteinases in human colonic epithelium. Clin. Exp. Immunol. 2009, 155, 257–265. [Google Scholar] [CrossRef]
- Kobayashi, K.; Arimura, Y.; Goto, A.; Okahara, S.; Endo, T.; Shinomura, Y.; Imai, K. Therapeutic implications of the specific inhibition of causative matrix metalloproteinases in experimental colitis induced by dextran sulphate sodium. J. Pathol. 2006, 209, 376–383. [Google Scholar] [CrossRef]
- de Bruyn, M.; Breynaert, C.; Arijs, I.; De Hertogh, G.; Geboes, K.; Thijs, G.; Matteoli, G.; Hu, J.; Van Damme, J.; Arnold, B.; et al. Inhibition of gelatinase B/MMP-9 does not attenuate colitis in murine models of inflammatory bowel disease. Nat. Commun. 2017, 8, 15384. [Google Scholar] [CrossRef] [Green Version]
- Liao, H.-Y.; Da, C.-M.; Liao, B.; Zhang, H.-H. Roles of matrix metalloproteinase-7 (MMP-7) in cancer. Clin. Biochem. 2021, 92, 9–18. [Google Scholar] [CrossRef]
- Wernicke, A.-K.; Churin, Y.; Sheridan, D.; Windhorst, A.; Tschuschner, A.; Gattenlöhner, S.; Roderfeld, M.; Roeb, E. Matrix metalloproteinase-13 refines pathological staging of precancerous colorectal lesions. Oncotarget 2016, 7, 73552–73557. [Google Scholar] [CrossRef] [Green Version]
- Lambrecht, B.N.; Vanderkerken, M.; Hammad, H. The emerging role of ADAM metalloproteinases in immunity. Nat. Rev. Immunol. 2018, 18, 745–758. [Google Scholar] [CrossRef]
- Calligaris, M.; Cuffaro, D.; Bonelli, S.; Spanò, D.P.; Rossello, A.; Nuti, E.; Scilabra, S.D. Strategies to Target ADAM17 in Disease: From Its Discovery to the iRhom Revolution. Molecules 2021, 26, 944. [Google Scholar] [CrossRef]
- Blaydon, D.C.; Biancheri, P.; Di, W.-L.; Plagnol, V.; Cabral, R.M.; Brooke, M.A.; van Heel, D.A.; Ruschendorf, F.; Toynbee, M.; Walne, A.; et al. Inflammatory Skin and Bowel Disease Linked to ADAM17 Deletion. N. Engl. J. Med. 2011, 365, 1502–1508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christophi, G.P.; Rong, R.; Holtzapple, P.G.; Massa, P.T.; Landas, S.K. Immune Markers and Differential Signaling Networks in Ulcerative Colitis and Crohn’s Disease. Inflamm. Bowel Dis. 2012, 18, 2342–2356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Su, Z.-Y.; Zhang, C.; Gaspar, J.M.; Wang, R.; Hart, R.P.; Verzi, M.P.; Kong, A.-N.T. Mechanisms of colitis-accelerated colon carcinogenesis and its prevention with the combination of aspirin and curcumin: Transcriptomic analysis using RNA-seq. Biochem. Pharmacol. 2017, 135, 22–34. [Google Scholar] [CrossRef] [PubMed]
- Conrad, C.; Yildiz, D.; Cleary, S.J.; Margraf, A.; Cook, L.; Schlomann, U.; Panaretou, B.; Bowser, J.L.; Karmouty-Quintana, H.; Li, J.; et al. ADAM8 signaling drives neutrophil migration and ARDS severity. JCI Insight 2022, 7, e87489. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Meng, Y.; Han, X.; Zhang, W. ADAM8 Activates NLRP3 Inflammasome to Promote Cerebral Ischemia-Reperfusion Injury. J. Healthc. Eng. 2021, 2021, 3097432. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, K.; Han, G.-C.; Wang, R.-X.; Xiao, H.; Hou, C.-M.; Guo, R.-F.; Dou, Y.; Shen, B.-F.; Li, Y.; et al. Neutrophil infiltration favors colitis-associated tumorigenesis by activating the interleukin-1 (IL-1)/IL-6 axis. Mucosal Immunol. 2014, 7, 1106–1115. [Google Scholar] [CrossRef] [Green Version]
- Perera, A.P.; Sajnani, K.; Dickinson, J.; Eri, R.; Körner, H. NLRP3 inflammasome in colitis and colitis-associated colorectal cancer. Mamm. Genome 2018, 29, 817–830. [Google Scholar] [CrossRef]
- Conrad, C.; Benzel, J.; Dorzweiler, K.; Cook, L.; Schlomann, U.; Zarbock, A.; Slater, E.P.; Nimsky, C.; Bartsch, J.W. ADAM8 in invasive cancers: Links to tumor progression, metastasis, and chemoresistance. Clin. Sci. 2019, 133, 83–99. [Google Scholar] [CrossRef]
- Yang, Z.; Bai, Y.; Huo, L.; Chen, H.; Huang, J.; Li, J.; Fan, X.; Yang, Z.; Wang, L.; Wang, J. Expression of A disintegrin and metalloprotease 8 is associated with cell growth and poor survival in colorectal cancer. BMC Cancer 2014, 14, 568. [Google Scholar] [CrossRef] [Green Version]
- Park Bin, G.; Choi, S.; Yoon Sang, Y.; Kim, D. TrkB/C-induced HOXC6 activation enhances the ADAM8-mediated metastasis of chemoresistant colon cancer cells. Mol. Med. Rep. 2021, 23, 423. [Google Scholar] [CrossRef]
- Okada, K.; Itoh, H.; Ikemoto, M. Serum complement C3 and α2-macroglobulin are potentially useful biomarkers for inflammatory bowel disease patients. Heliyon 2021, 7, e06554. [Google Scholar] [CrossRef] [PubMed]
- Sina, C.; Kemper, C.; Derer, S. The intestinal complement system in inflammatory bowel disease: Shaping intestinal barrier function. Semin. Immunol. 2018, 37, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Sünderhauf, A.; Skibbe, K.; Preisker, S.; Ebbert, K.; Verschoor, A.; Karsten, C.M.; Kemper, C.; Huber-Lang, M.; Basic, M.; Bleich, A.; et al. Regulation of epithelial cell expressed C3 in the intestine—Relevance for the pathophysiology of inflammatory bowel disease? Mol. Immunol. 2017, 90, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.J.; Kim, J.E.; Lee, S.J.; Gong, J.E.; Jin, Y.J.; Lee, H.; Hwang, D.Y. Promotion of the inflammatory response in mid colon of complement component 3 knockout mice. Sci. Rep. 2022, 12, 1700. [Google Scholar] [CrossRef]
- Subramanian, S.; Pallati, P.K.; Sharma, P.; Agrawal, D.K.; Nandipati, K.C. Significant association of TREM-1 with HMGB1, TLRs and RAGE in the pathogenesis of insulin resistance in obese diabetic populations. Am. J. Transl. Res. 2017, 9, 3224–3244. [Google Scholar]
- Fan, D.; He, X.; Bian, Y.; Guo, Q.; Zheng, K.; Zhao, Y.; Lu, C.; Liu, B.; Xu, X.; Zhang, G.; et al. Triptolide Modulates TREM-1 Signal Pathway to Inhibit the Inflammatory Response in Rheumatoid Arthritis. Int. J. Mol. Sci. 2016, 17, 498. [Google Scholar] [CrossRef] [Green Version]
- Tammaro, A.; Stroo, I.; Rampanelli, E.; Blank, F.; Butter, L.M.; Claessen, N.; Takai, T.; Colonna, M.; Leemans, J.C.; Florquin, S.; et al. Role of TREM1-DAP12 in Renal Inflammation during Obstructive Nephropathy. PLoS ONE 2013, 8, e82498. [Google Scholar] [CrossRef]
- Li, X.; Lee, E.J.; Gawel, D.R.; Lilja, S.; Schäfer, S.; Zhang, H.; Benson, M. Meta-Analysis of Expression Profiling Data Indicates Need for Combinatorial Biomarkers in Pediatric Ulcerative Colitis. J. Immunol. Res. 2020, 2020, 8279619. [Google Scholar] [CrossRef] [Green Version]
- Biagioli, M.; Mencarelli, A.; Carino, A.; Cipriani, S.; Marchianò, S.; Fiorucci, C.; Donini, A.; Graziosi, L.; Baldelli, F.; Distrutti, E.; et al. Genetic and Pharmacological Dissection of the Role of Spleen Tyrosine Kinase (Syk) in Intestinal Inflammation and Immune Dysfunction in Inflammatory Bowel Diseases. Inflamm. Bowel Dis. 2018, 24, 123–135. [Google Scholar] [CrossRef] [Green Version]
- Hermann, C.D.; Schoeps, B.; Eckfeld, C.; Munkhbaatar, E.; Kniep, L.; Prokopchuk, O.; Wirges, N.; Steiger, K.; Häußler, D.; Knolle, P.; et al. TIMP1 expression underlies sex disparity in liver metastasis and survival in pancreatic cancer. J. Exp. Med. 2021, 218, e20210911. [Google Scholar] [CrossRef]
- Clough, E.; Barrett, T. The Gene Expression Omnibus Database BT—Statistical Genomics: Methods and Protocols; Mathé, E., Davis, S., Eds.; Springer: New York, NY, USA, 2016; pp. 93–110. ISBN 978-1-4939-3578-9. [Google Scholar]
- Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; Holko, M.; et al. NCBI GEO: Archive for functional genomics data sets—Update. Nucleic Acids Res. 2013, 41, D991–D995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heberle, H.; Meirelles, V.G.; da Silva, F.R.; Telles, G.P.; Minghim, R. InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinform. 2015, 16, 169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Bardes, E.E.; Aronow, B.J.; Jegga, A.G. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009, 37, W.305–W.311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doncheva, N.T.; Morris, J.H.; Gorodkin, J.; Jensen, L.J. Cytoscape StringApp: Network Analysis and Visualization of Proteomics Data. J. Proteome Res. 2019, 18, 623–632. [Google Scholar] [CrossRef]
- Assenov, Y.; Ramírez, F.; Schelhorn, S.E.S.E.; Lengauer, T.; Albrecht, M. Computing topological parameters of biological networks. Bioinformatics 2008, 24, 282–284. [Google Scholar] [CrossRef] [Green Version]
- MORPHEUS. Versatile Matrix Visualization and Analysis Software. Available online: https://software.broadinstitute.org/morpheus/ (accessed on 12 November 2022).
- Wang, J.-H.; Zhao, L.-F.; Wang, H.-F.; Wen, Y.-T.; Jiang, K.-K.; Mao, X.-M.; Zhou, Z.-Y.; Yao, K.-T.; Geng, Q.-S.; Guo, D.; et al. GenCLiP 3: Mining human genes’ functions and regulatory networks from PubMed based on co-occurrences and natural language processing. Bioinformatics 2019, 36, 1973–1975. [Google Scholar] [CrossRef]
- Krzywinski, M.; Schein, J.; Birol, I.; Connors, J.; Gascoyne, R.; Horsman, D.; Jones, S.J.; Marra, M.A. Circos: An information aesthetic for comparative genomics. Genome Res. 2009, 19, 1639–1645. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, T.; Kohno, H.; Suzuki, R.; Yamada, Y.; Sugie, S.; Mori, H. A novel inflammation-related mouse colon carcinogenesis model induced by azoxymethane and dextran sodium sulfate. Cancer Sci. 2003, 94, 965–973. [Google Scholar] [CrossRef]
- Anaya, J. OncoLnc: Linking TCGA survival data to mRNAs, miRNAs, and lncRNAs. PeerJ Comput. Sci. 2016, 2016, e67. [Google Scholar] [CrossRef] [Green Version]
Object | Pathology | GEO ID | Murine Strain | Sex | Analyzed Groups | Number of DSS Cycles |
---|---|---|---|---|---|---|
Mice | Acute colitis | GSE31106 | ICR | m | 3 untreated mice, 3 AOM/DSS-treated mice | 1 |
GSE35609 | ICR | f | 4 untreated mice, 4 TNBS-treated mice | – | ||
GSE42768 | C57Bl6 | f | 3 untreated mice, 3 DSS-treated mice | 1 | ||
GSE64658 | C57Bl6 | f | 6 untreated mice, 3 AOM/DSS-treated mice | 1 | ||
GSE71920 | C57Bl6 | m | 3 untreated mice, 3 DSS-treated mice | 1 | ||
CAC | GSE31106 | ICR | m | 3 untreated mice, 3 AOM/DSS-treated mice | 3 | |
GSE42768 | C57Bl6 | f | 3 untreated mice, 3 DSS-treated mice | 3 | ||
GSE56050 | Lrg5-lacZ | m | 2 untreated mice, 2 AOM/DSS-treated mice | 3 | ||
GSE64658 | C57Bl6 | f | 6 untreated mice, 6 AOM/DSS-treated mice | 3 | ||
Humans | Ulcerative colitis (UC) | GSE73661 | – | f, m | 12 healthy samples, 67 UC samples | – |
GSE75214 | – | f, m | 11 healthy samples, 74 UC samples | – | ||
GSE87466 | – | f, m | 21 healthy samples, 27 UC samples | – | ||
GSE92415 | – | f, m | 21 healthy samples, 87 UC samples | – | ||
Crohn’s disease (CD) | GSE9686 | – | f, m | 8 healthy samples, 11 CD samples | – | |
GSE10616 | – | f, m | 26 healthy samples, 18 CD samples | – | ||
GSE16879 | – | f, m | 6 healthy samples, 18 CD samples | – | ||
GSE75214 | – | f, m | 11 healthy samples, 59 CD samples | – |
Gene | Type | Sequence |
---|---|---|
Adam8 | Forward | 5′-TATGCAACCACAAGAGGGAG-3′ |
Probe | 5′-((5,6)-FAM)-TCATCTGATACATCTGCCAGCCGC-3′–BHQ1 | |
Reverse | 5′-ACCAAGACCACAACCACAC-3′ | |
C3 | Forward | 5′-GTTTATTCCTTCATTTCGCCTGG-3′ |
Probe | 5′-((5,6)-FAM)-ACACCCTGATTGGAGCTAGTGGC-3′–BHQ1 | |
Reverse | 5′-GATGGTTATCTCTTGGGTCACC-3′ | |
Timp1 | Forward | 5′-CTCAAAGACCTATAGTGCTGGC-3′ |
Probe | 5′-((5,6)-FAM)-ACTCACTGTTTGTGGACGGATCAGG-3′–BHQ1 | |
Reverse | 5′-CAAAGTGACGGCTCTGGTAG-3′ | |
Tyrobp | Forward | 5′-GGTGACTTGGTGTTGACTCTG-3′ |
Probe | 5′-((5,6)-FAM)-CCTTCCGCTGTCCCTTGACCTC-3′–BHQ1 | |
Reverse | 5′-GACCCTGAAGCTCCTGATAAG-3′ | |
Mmp3 | Forward | 5′-TGCATATGAGGTTACTAACAGAGAC-3′ |
Probe | ((5,6)-FAM)-5′-AATCAGTTCTGGGCTATACGAGGGC-3′-BHQ1 | |
Reverse | 5′-CAGGGTGTGAATGCTTTTAGG-3′ | |
Mmp7 | Forward | 5′-CATAATTGGCTTCGCAAGGAG-3′ |
Probe | ((5,6)-FAM)-5′-TACTGGACTGATGGTGAGGACGCA-3′-BHQ1 | |
Reverse | 5′-CAAATTCATGGGTGGCAGC-3′ | |
Mmp9 | Forward | 5′-ACCTGAAAACCTCCAACCTC-3′ |
Probe | ((5,6)-FAM)-5′-TAGCGGTACAAGTATGCCTCTGCC-3′-BHQ1 | |
Reverse | 5′-TCGAATGGCCTTTAGTGTCTG-3′ | |
Mmp13 | Forward | 5′-GATTATCCCCGCCTCATAGAAG-3′ |
Probe | ((5,6)-FAM)-5′-CAGCATCTACTTTGTTGCCAATTCCAGG-3′-BHQ1 | |
Reverse | 5′-CCCACCCCATACATCTGAAAG-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markov, A.V.; Savin, I.A.; Zenkova, M.A.; Sen’kova, A.V. Identification of Novel Core Genes Involved in Malignant Transformation of Inflamed Colon Tissue Using a Computational Biology Approach and Verification in Murine Models. Int. J. Mol. Sci. 2023, 24, 4311. https://doi.org/10.3390/ijms24054311
Markov AV, Savin IA, Zenkova MA, Sen’kova AV. Identification of Novel Core Genes Involved in Malignant Transformation of Inflamed Colon Tissue Using a Computational Biology Approach and Verification in Murine Models. International Journal of Molecular Sciences. 2023; 24(5):4311. https://doi.org/10.3390/ijms24054311
Chicago/Turabian StyleMarkov, Andrey V., Innokenty A. Savin, Marina A. Zenkova, and Aleksandra V. Sen’kova. 2023. "Identification of Novel Core Genes Involved in Malignant Transformation of Inflamed Colon Tissue Using a Computational Biology Approach and Verification in Murine Models" International Journal of Molecular Sciences 24, no. 5: 4311. https://doi.org/10.3390/ijms24054311
APA StyleMarkov, A. V., Savin, I. A., Zenkova, M. A., & Sen’kova, A. V. (2023). Identification of Novel Core Genes Involved in Malignant Transformation of Inflamed Colon Tissue Using a Computational Biology Approach and Verification in Murine Models. International Journal of Molecular Sciences, 24(5), 4311. https://doi.org/10.3390/ijms24054311