Can Modification with Urethane Derivatives or the Addition of an Anti-Hydrolysis Agent Influence the Hydrolytic Stability of Resin Dental Composite?
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
- The additives (DEGMMA/CHMDI, DEGMMA/IPDI, CHINOX SA-1) did not improve the initial (control) properties of the composite material.
- No relationship was found between the percentage composition of the polymer matrix and hydrolytic stability, tested by changes in selected properties after aging.
- The addition of CHINOX SA-1 improved the hydrolytic stability of the composites based on the UDMA/bis-EMA/TEGDMA monomers.
- In all materials, the hardness dropped dramatically after the aging protocols. This may prove that the degradation of materials takes place mainly in the top layer.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
bis-EMA | bisphenol A ethoxylateddimethacrylate, |
CHINOX SA-1 | bis(2,6-diisopropylphenyl)carbodiimide, |
CHINOX(0.5) | addition of 0.5 wt% CHINOX SA-1, |
CHINOX(1.5) | addition of 1.5 wt% CHINOX SA-1, |
CHMDI(10) | addition of 10 wt% DEGMMA/CHMDI, |
CHMDI(2.5)_IPDI(2.5) | addition of 2.5 wt% DEGMMA/CHMDI and 2.5 wt% DEGMMA/IPDI, |
CHMDI(5) | addition of 5 wt% DEGMMA/CHMDI, |
Control | 24 h, 37 °C, distilled water, |
DEGMMA/CHMDI | diethylene glycol monomethacrylate/4,4′-methylenebis(cyclohexyl isocyanate), |
DEGMMA/IPDI | diethylene glycol monomethacrylate/isophorone diisocyanate |
DTS | diametral tensile strength [MPa], |
FS | flexural strength [MPa], |
HV | hardness [-], |
E | flexural modulus [GPa], |
WS | water sorption [µg/mm3], |
DC | degree of conversion [%], |
IPDI(10) | addition of 10 wt% DEGMMA/IPDI, |
IPDI(5) | addition of 5 wt% DEGMMA/IPDI, |
MW | molecular weight [g/mol], |
TEGDMA | triethyleneglycol dimethacrylate, |
thermo_NaOH | aging for 7500 cycles, 5 °C and 55 °C, water and 7 days, 60 °C, 0.1 M NaOH, |
UDMA | urethane dimethacrylate, |
water_NaOH | aging for 5 days, 55 °C, water and 7 days, 60 °C, 0.1 M NaOH. |
Appendix A
References
- Forss, H.; Widström, E. Reasons for restorative therapy and the longevity of restorations in adults. Acta Odontol. Scand. 2004, 62, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Brunthaler, A.; König, F.; Lucas, T.; Sperr, W.; Schedle, A. Longevity of direct resin composite restorations in posterior teeth. Clin. Oral Investig. 2003, 7, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Kubo, S. Longevity of resin composite restorations. Jpn. Dent. Sci. Rev. 2011, 47, 43–55. [Google Scholar] [CrossRef] [Green Version]
- Aminoroaya, A.; Neisiany, R.E.; Khorasani, S.N.; Panahi, P.; Das, O.; Madry, H.; Cucchiarini, M.; Ramakrishna, S. A review of dental composites: Challenges, chemistry aspects, filler influences, and future insights. Compos. Part B Eng. 2021, 216, 108852. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, M.; Liu, F.; Bao, S.; Wu, T.; Jiang, X.; Zhang, Q.; Zhu, M. Investigation on the physical-mechanical properties of dental resin composites reinforced with novel bimodal silica nanostructures. Mater. Sci. Eng. C 2015, 50, 266–273. [Google Scholar] [CrossRef]
- Wang, R.; Bao, S.; Liu, F.; Jiang, X.; Zhang, Q.; Sun, B.; Zhu, M. Wear behavior of light-cured resin composites with bimodal silica nanostructures as fillers. Mater. Sci. Eng. C 2013, 33, 4759–4766. [Google Scholar] [CrossRef] [PubMed]
- Finer, Y.; Santerre, J.P. Influence of silanated filler content on the biodegradation of bisGMA/TEGDMA dental composite resins. J. Biomed. Mater. Res. Part A 2006, 79, 963–973. [Google Scholar] [CrossRef]
- Aydınoğlu, A.; Yoruç, A.B.H. Effects of silane-modified fillers on properties of dental composite resin. Mater. Sci. Eng. C 2017, 79, 382–389. [Google Scholar] [CrossRef]
- Antonucci, J.M.; Dickens, S.H.; Fowler, B.O.; Xu, H.H.K.; McDonough, W.G. Chemistry of Silanes: Interfaces in Dental Polymers and Composites. J. Res. Natl. Inst. Stand. Technol. 2005, 110, 541–558. [Google Scholar] [CrossRef]
- Karmaker, A.; Prasad, A.; Sarkar, N.K. Characterization of adsorbed silane on fillers used in dental composite restoratives and its effect on composite properties. J. Mater. Sci. Mater. Med. 2007, 18, 1157–1162. [Google Scholar] [CrossRef]
- Karabela, M.M.; Sideridou, I.D. Effect of the structure of silane coupling agent on sorption characteristics of solvents by dental resin-nanocomposites. Dent. Mater. 2008, 24, 1631–1639. [Google Scholar] [CrossRef]
- Karkanis, S.; Nikolaidis, A.K.; Koulaouzidou, E.A. Effect of Silica Nanoparticles Silanized by Functional/Functional or Functional/Non-Functional Silanes on the Physicochemical and Mechanical Properties of Dental Nanocomposite Resins. Appl. Sci. 2022, 12, 159. [Google Scholar] [CrossRef]
- Gornig, D.C.; Maletz, R.; Ottl, P.; Warkentin, M. Influence of artificial aging: Mechanical and physicochemical properties of dental composites under static and dynamic compression. Clin. Oral Investig. 2022, 26, 1491–1504. [Google Scholar] [CrossRef]
- Szczesio-Wlodarczyk, A.; Fronczek, M.; Ranoszek-Soliwoda, K.; Grobelny, J.; Sokolowski, J.; Bociong, K. The First Step in Standardizing an Artificial Aging Protocol for Dental Composites—Evaluation of Basic Protocols. Molecules 2022, 27, 3511. [Google Scholar] [CrossRef]
- Jamali, R.; Bordbar-Khiabani, A.; Yarmand, B.; Mozafari, M.; Kolahi, A. Effects of co-incorporated ternary elements on biocorrosion stability, antibacterial efficacy, and cytotoxicity of plasma electrolytic oxidized titanium for implant dentistry. Mater. Chem. Phys. 2022, 276, 125436. [Google Scholar] [CrossRef]
- Lee, J.; Son, C.; Kim, S.; Mohammed, N.B.; Daily, Z.A.; Alsharbaty, M.H.; Abullais, S.S. Effect of PMMA sealing treatment on the corrosion behavior of plasma electrolytic oxidized titanium dental implants in fluoride-containing saliva solution Effect of PMMA sealing treatment on the corrosion behavior of plasma electrolytic oxidized titanium. Mater. Res. Express 2022, 9, 125401. [Google Scholar]
- Oja, J.; Lassila, L.; Vallittu, P.K.; Garoushi, S. Effect of Accelerated Aging on Some Mechanical Properties and Wear of Different Commercial Dental Resin Composites. Materials 2021, 14, 2769. [Google Scholar] [CrossRef]
- Barszczewska-Rybarek, I.M. Characterization of urethane-dimethacrylate derivatives as alternative monomers for the restorative composite matrix. Dent. Mater. 2014, 30, 1336–1344. [Google Scholar] [CrossRef]
- Gajewski, V.E.S.; Pfeifer, C.S.; Fróes-Salgado, N.R.G.; Boaro, L.C.C.; Braga, R.R. Monomers used in resin composites: Degree of conversion, mechanical properties and water sorption/solubility. Braz. Dent. J. 2012, 23, 508–514. [Google Scholar] [CrossRef]
- Holcapkova, P.; Stloukal, P.; Kucharczyk, P.; Omastova, M.; Kovalcik, A. Anti-hydrolysis effect of aromatic carbodiimide in poly(lactic acid)/wood flour composites. Compos. Part A 2017, 103, 283–291. [Google Scholar] [CrossRef]
- Gonyalez-Bonet, A.; Kaufman, G.; Yang, Y.; Wong, C.; Jackson, A.; Huyang, G.; Bowen, R.; Sun, J. Preparation of Dental Resins Resistant to Enzymatic and Hydrolytic Degradation in Oral Environments. Biomacromolecules 2016, 118, 3381–3388. [Google Scholar] [CrossRef]
- Fugolin, A.P.P.; Pfeifer, C.S. New Resins for Dental Composites. J. Dent. Res. 2017, 96, 1085–1091. [Google Scholar] [CrossRef]
- Randolph, L.D.; Palin, W.M.; Leloup, G.; Leprince, J.G. Filler characteristics of modern dental resin composites and their influence on physico-mechanical properties. Dent. Mater. 2016, 32, 1586–1599. [Google Scholar] [CrossRef]
- Yadav, R.; Kumar, M. Dental restorative composite materials: A review. J. Oral Biosci. 2019, 61, 78–83. [Google Scholar] [CrossRef]
- Sideridou, I.; Tserki, V.; Papanastasiou, G. Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins. Biomaterials 2002, 23, 1819–1829. [Google Scholar] [CrossRef] [PubMed]
- Barszczewska-Rybarek, I.; Jurczyk, S. Comparative Study of Structure-Property Relationships in Polymer Networks Based on Bis-GMA, TEGDMA and Various Urethane-Dimethacrylates. Materials 2015, 8, 1230–1248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, J.A.; Rohr, N.; Fischer, J. Evaluation of ISO 4049: Water sorption and water solubility of resin cements. Eur. J. Oral Sci. 2017, 125, 141–150. [Google Scholar] [CrossRef]
- AL-Rawas, M.; Johari, Y.; Mohamad, D.; Khamis, M.F.; Ahmad, W.M.A.W.; Ariffin, Z.; Husein, A. Water sorption, solubility, degree of conversion, and surface hardness and topography of flowable composite utilizing nano silica from rice husk. J. Mater. Res. Technol. 2021, 15, 4173–4184. [Google Scholar] [CrossRef]
- Pieniak, D.; Przystupa, K.; Walczak, A.; Niewczas, A.M.; Krzyzak, A.; Bartnik, G.; Gil, L.; Lonkwic, P. Hydro-thermal fatigue of polymer matrix composite biomaterials. Materials 2019, 12, 3650. [Google Scholar] [CrossRef] [Green Version]
- Pala, K.; Tekçe, N.; Tuncer, S.; Demirci, M.; Öznurhan, F.; Serim, M. Flexural strength and microhardness of anterior composites after accelerated aging. J. Clin. Exp. Dent. 2017, 9, e424–e430. [Google Scholar] [CrossRef] [Green Version]
- Boussès, Y.; Brulat-bouchard, N.; Bouchard, P. A numerical, theoretical and experimental study of the effect of thermocycling on the matrix-filler. Dent. Mater. 2021, 37, 772–782. [Google Scholar] [CrossRef]
- Ferracane, J.L.; Berge, H.X.; Condon, J.R. In vitro aging of dental composites in water--effect of degree of conversion, filler volume, and filler/matrix coupling. J. Biomed. Mater. Res. 1998, 42, 465–472. [Google Scholar] [CrossRef]
- Krüger, J.; Maletz, R.; Ottl, P.; Warkentin, M. In vitro aging behavior of dental composites considering the influence of filler content, storage media and incubation time. PLoS ONE 2018, 13, e0195160. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, N.K. Internal corrosion in dental composite wear: Its Significance and Simulation. J. Biomed. Mater. Res. 2000, 53, 371–380. [Google Scholar] [CrossRef]
- Szczesio-Wlodarczyk, A.; Sokolowski, J.; Kleczewska, J.; Bociong, K. Ageing of dental composites based on methacrylate resins—A critical review of the causes and method of assessment. Polymers 2020, 12, 882. [Google Scholar] [CrossRef]
- Delaviz, Y.; Finer, Y.; Santerre, J.P. Biodegradation of resin composites and adhesives by oral bacteria and saliva: A rationale for new material designs that consider the clinical environment and treatment challenges. Dent. Mater. 2014, 30, 16–32. [Google Scholar] [CrossRef]
- Al Sunbul, H.; Silikas, N.; Watts, D.C. Surface and bulk properties of dental resin- composites after solvent storage. Dent. Mater. 2016, 32, 987–997. [Google Scholar] [CrossRef] [Green Version]
- Moon, J.-D.; Seon, E.-M.; Son, S.-A.; Jung, K.-H.; Kwon, Y.-H.; Park, J.-K. Effect of immersion into solutions at various pH on the color stability of composite resins with different shades. Restor. Dent. Endod. 2015, 40, 270. [Google Scholar] [CrossRef] [Green Version]
- Palin, W.M.; Fleming, G.J.P.; Burke, F.J.T.; Marquis, P.M.; Randall, R.C. The influence of short and medium-term water immersion on the hydrolytic stability of novel low-shrink dental composites. Dent. Mater. 2005, 21, 852–863. [Google Scholar] [CrossRef]
- Ghavami-Lahiji, M.; Firouzmanesh, M.; Bagheri, H.; Jafarzadeh Kashi, T.S.; Razazpour, F.; Behroozibakhsh, M. The effect of thermocycling on the degree of conversion and mechanical properties of a microhybrid dental resin composite. Restor. Dent. Endod. 2018, 43, e26. [Google Scholar] [CrossRef]
- Chadwick, R.G.; McCabe, J.F.; Walls, A.W.G.; Storer, R. The effect of storage media upon the surface microhardness and abrasion resistance of three composites. Dent. Mater. 1990, 6, 123–128. [Google Scholar] [CrossRef]
- Porfyris, A.; Vasilakos, S.; Zotiadis, C.; Papaspyrides, C.; Moser, K.; Van Der Schueren, L.; Buyle, G.; Pavlidou, S.; Vouyiouka, S. Accelerated ageing and hydrolytic stabilization of poly(lactic acid) (PLA) under humidity and temperature conditioning. Polym. Test. 2018, 68, 315–332. [Google Scholar] [CrossRef]
- Stloukal, P.; Jandikova, G.; Koutny, M.; Sedla, V. Carbodiimide additive to control hydrolytic stability and biodegradability of PLA. Polym. Test. 2016, 54, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Barszczewska-rybarek, I.; Gibas, M.; Kurcok, M. Evaluation of the network parameter in aliphatic poly(urethane dimethacrylate)s by dynamic thermal analysis. Polymer 2000, 41, 3129–3135. [Google Scholar] [CrossRef]
- Szczesio-Wlodarczyk, A.; Kopacz, K.; Szynkowska-Jozwik, M.I.; Sokolowski, J.; Bociong, K. An Evaluation of the Hydrolytic Stability of Selected Experimental Dental Matrices and Composites. Materials 2022, 15, 5055. [Google Scholar] [CrossRef]
Monomer | MW [g/mol] | FS [MPa] | E [GPa] | WS [µg/mm3] | DC [%] |
---|---|---|---|---|---|
UDMA | 470 | 134 a | 1.8 a | 42.3 a | 72 a |
Bis-EMA | 540 | 87 a | 1.1 a | 21.3 a | 76 a |
TEGDMA | 286 | 99 a | 1.7 a | 28.8 a | 83 a |
DEGMMA/CHMDI | 611 | 139 b | 3.4 b | 18.5 b | 41 b |
DEGMMA/IPDI | 571 | 141 b | 2.8 b | 29.9 b | 66 b |
DTS [MPa] | (IQR) | FS [MPa] | (IQR) | HV | (IQR) | |
---|---|---|---|---|---|---|
Number of Samples in the Study Group | n = 9 | n = 7 | n = 9 | |||
None, Control | 39.14 e | 2.29 | 93.8 a,b,c,d,e | 11.6 | 32 A(a–h) | 1 |
None, thermo_NaOH | 36.33 | 8.64 | 78.7 | 12.7 | 13 | 2 |
None, water_NaOH | 40.13 a,b,c,d | 1.20 | 82.6 f | 15.1 | 13 | 1 |
IPDI(2.5)_CHMDI(2.5), control | 36.90 | 5.60 | 86.7 g,i | 21.6 | 29 B(a–h) | 1 |
IPDI(2.5)_CHMDI(2.5), thermo_NaOH | 34.36 | 2.81 | 64.5 b,i | 9.8 | 10 Ab,Bb,Cb,Ea | 1 |
IPDI(2.5)_CHMDI(2.5), water_NaOH | 32.94 | 7.29 | 62.3 a,f,g,h | 7.0 | 10 Aa,Ba,Ca | 1 |
CHMDI(5), control | 37.42 f | 2.66 | 72.9 | 8.4 | 30 C(a–h) | 1 |
CHMDI(5), thermo_NaOH | 33.23 a | 2.56 | 69.2 c | 9.3 | 9 Ac,Bc,Cc,Da, Eb,Fa | 1 |
CHMDI(5), water_NaOH | 37.28 g | 1.76 | 79.2 h | 14.9 | 14 G | 1 |
CHMDI(10), control | 35.35 | 1.79 | 83.1 | 17.9 | 28 D(a-d) | 1 |
CHMDI(10), thermo_NaOH | 34.18 b | 3.01 | 64.5 d | 23.7 | 9 Ad,Bd,Cd,Db, Ec,Fb | 1 |
CHMDI(10), water_NaOH | 30.38 c,e,f,g,h | 4.77 | 73.0 | 13.8 | 8 Ae,Be,Ce,Dc, Ed,Fc,G | 1 |
IPDI(5), control | 34.17 | 2.68 | 80.6 | 8.1 | 29 E(a–g) | 1 |
IPDI(5), thermo_NaOH | 33.34 | 4.52 | 65.1 e | 10.9 | 9 Af,Bf,Cf,Dd,Ee, Fd | 1 |
IPDI(5), water_NaOH | 37.18 h | 2.89 | 80.7 | 22.9 | 13 | 1 |
IPDI(10), control | 35.99 | 1.80 | 73.7 | 14.9 | 27 F(a–d) | 2 |
IPDI(10), thermo_NaOH | 33.90 | 6.80 | 71.0 | 12.0 | 10 Ag,Bg,Cg,Ef | 1 |
IPDI(10), water_NaOH | 32.10 d | 5.91 | 70.7 | 5.8 | 10 Ah,Bh,Ch,Eg | 1 |
DTS [MPa] | IQR | FS [MPa] | SD | HV | IQR | |
---|---|---|---|---|---|---|
Number of Samples in the Study Group | n = 9 | n = 7 | n = 9 | |||
None, Control | 39.14 | 2.29 | 95.0 A(a–h) | 7.6 | 32 a,b,c,d,e | 1 |
None, thermo_NaOH | 36.33 | 8.64 | 77.0 Aa,C(a–c) | 6.5 | 12 a | 3 |
None, water_NaOH | 40.13 a,b,c | 1.20 | 82.5 Ab,B(a–e) | 8.1 | 12 | 2 |
CHINOX(0.5), control | 34.13 a | 2.33 | 73.0 Ac,Ba,E | 7.2 | 29 f,g,h,i | 1 |
CHINOX(0.5), thermo_NaOH | 35.00 | 2.98 | 69.5 Ad,Bb | 10.6 | 10 b,f,j | 2 |
CHINOX(0.5), water_NaOH | 31.28 b | 7.13 | 77.7 Ae,D(a–c) | 5.4 | 11 c,g,k | 2 |
CHINOX(1.5), control | 33.89 c | 1.64 | 65.0 Af,Bc,Ca,Da | 11.5 | 28 j,k,l,m | 2 |
CHINOX(1.5), thermo_NaOH | 35.38 | 2.37 | 62.7 Ag,Bd,Cb,Db,E | 9.0 | 11 d,h,l | 1 |
CHINOX(1.5), water_NaOH | 34.71 | 4.81 | 66.0 Ah,Be,Cc,Dc | 8.5 | 10 e,i,m | 2 |
Control | CHMDI(2.5)_IPDI(2.5) | CHMDI(5) | CHMDI(10) | IPDI(5) | IPDI(10) | CHINOX(0.5) | CHINOX(1.5) | ||
---|---|---|---|---|---|---|---|---|---|
Sorption | n = 5 | 25.42 (0.53) | 28.96 (0.40) | 26.55 (1.07) | 32.40 (1.56) | 26.81 (0.60) | 32.64 (2.41) | 32.97 (1.53) | 32.91 (0.73) |
Solubility | n = 5 | 0.70 (0.20) | 0.68 (0.15) | 1.05 (0.28) | 1.46 (0.42) | 1.31 (0.08) | 1.48 (0.48) | 1.26 (0.71) | 2.00 (0.29) |
Material Signature | Base Material | Modification |
---|---|---|
Control | UDMA 40 wt% bis-EMA 40 wt% TEGDMA 20 wt% | None |
CHMDI(2.5)_IPDI(2.5) | DEGMMA/CHMDI 2.5 wt% and DEGMMA/IPDI 2.5 wt% | |
CHMDI(5) | DEGMMA/CHMDI 5 wt% | |
CHMDI(10) | DEGMMA/CHMDI 10 wt% | |
IPDI(5) | DEGMMA/IPDI 5 wt% | |
IPDI(10) | DEGMMA/IPDI 10 wt% | |
CHINOX(0.5) | CHINOX SA-1 0.5 wt% | |
CHINOX(1.5) | CHINOX SA-1 1.5 wt% |
Ageing Protocol Signature | Description |
---|---|
control | 24 h, 37 °C, distilled water |
thermo_NaOH | 7500 cycles, 5 °C and 55 °C, water and 7 days, 60 °C, 0.1 M NaOH |
water_NaOH | 5 days, 55 °C, water and 7 days, 60 °C, 0.1 M NaOH |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szczesio-Wlodarczyk, A.; Barszczewska-Rybarek, I.M.; Chrószcz-Porębska, M.W.; Kopacz, K.; Sokolowski, J.; Bociong, K. Can Modification with Urethane Derivatives or the Addition of an Anti-Hydrolysis Agent Influence the Hydrolytic Stability of Resin Dental Composite? Int. J. Mol. Sci. 2023, 24, 4336. https://doi.org/10.3390/ijms24054336
Szczesio-Wlodarczyk A, Barszczewska-Rybarek IM, Chrószcz-Porębska MW, Kopacz K, Sokolowski J, Bociong K. Can Modification with Urethane Derivatives or the Addition of an Anti-Hydrolysis Agent Influence the Hydrolytic Stability of Resin Dental Composite? International Journal of Molecular Sciences. 2023; 24(5):4336. https://doi.org/10.3390/ijms24054336
Chicago/Turabian StyleSzczesio-Wlodarczyk, Agata, Izabela M. Barszczewska-Rybarek, Marta W. Chrószcz-Porębska, Karolina Kopacz, Jerzy Sokolowski, and Kinga Bociong. 2023. "Can Modification with Urethane Derivatives or the Addition of an Anti-Hydrolysis Agent Influence the Hydrolytic Stability of Resin Dental Composite?" International Journal of Molecular Sciences 24, no. 5: 4336. https://doi.org/10.3390/ijms24054336
APA StyleSzczesio-Wlodarczyk, A., Barszczewska-Rybarek, I. M., Chrószcz-Porębska, M. W., Kopacz, K., Sokolowski, J., & Bociong, K. (2023). Can Modification with Urethane Derivatives or the Addition of an Anti-Hydrolysis Agent Influence the Hydrolytic Stability of Resin Dental Composite? International Journal of Molecular Sciences, 24(5), 4336. https://doi.org/10.3390/ijms24054336