In Vitro Evaluation of Antioxidant and Protective Potential of Kombucha-Fermented Black Berry Extracts against H2O2-Induced Oxidative Stress in Human Skin Cells and Yeast Model
Abstract
:1. Introduction
2. Results and Discussion
2.1. Determination of Bioactive Compounds
2.2. Assessment of Antioxidant Activity
2.3. Cytotoxicity Assessment
3. Materials and Methods
3.1. Plant Material and Fermentation Procedure
3.2. Determination of Biologically Active Compounds
3.3. Total Anthocyanin Content
3.4. Assessment of Antioxidant Activity
3.4.1. DPPH Radical Scavenging Assay
3.4.2. ABTS+ Scavenging Assay
3.4.3. Detection of Intracellular Levels of Reactive Oxygen Species (ROS)
3.4.4. Assessment of Antioxidant Activity Using the S. cerevisiae Model
Yeast Strains
Growth Conditions
Kinetics of Growth Assay
A Spot Test
Localization of the Yap1-GFP Protein in Yeast Cells
3.5. Cytotoxicity Anlysis
3.5.1. Cell Culture
3.5.2. Alamar Blue Assay
3.5.3. Neutral Red Uptake Assay
3.6. Statistical Analaysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Finkel, T.; Holbrook, N.J. Oxidants, Oxidative Stress and the Biology of Ageing. Nature 2000, 408, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Petruk, G.; Del Giudice, R.; Rigano, M.M.; Monti, D.M. Antioxidants from Plants Protect against Skin Photoaging. Oxid. Med. Cell. Longev. 2018, 2018, 1454936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elsner, P.; Jagdeo, J.; Sivamani, R.; Maibach, H. Cosmeceuticals and Active Cosmetics, 3rd ed.; CRC Press Taylor & Francis Group: New York, NY, USA, 2016; ISBN 78-1-4822-1417-8. [Google Scholar]
- Jin, H.C.; Jin, Y.S.; Hai, R.C.; Mi, K.L.; Choon, S.Y.; Rhie, G.E.; Kwang, H.C.; Kyu, H.K.; Kyung, C.P.; Hee, C.E. Modulation of Skin Collagen Metabolism in Aged and Photoaged Human Skin in Vivo. J. Investig. Dermatol. 2001, 117, 1218–1224. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, P.K.; Maity, N.; Nema, N.K.; Sarkar, B.K. Bioactive Compounds from Natural Resources against Skin Aging. Phytomedicine 2011, 19, 64–73. [Google Scholar] [CrossRef]
- Seeram, N.P.; Nair, M.G. Inhibition of Lipid Peroxidation and Structure-Activity-Related Studies of the Dietary Constituents Anthocyanins, Anthocyanidins, and Catechins. J. Agric. Food Chem. 2002, 50, 5308–5312. [Google Scholar] [CrossRef]
- Nizioł-Łukaszewska, Z.; Zagórska-Dziok, M.; Ziemlewska, A.; Bujak, T. Comparison of the Antiaging and Protective Properties of Plants from the Apiaceae Family. Oxid. Med. Cell. Longev. 2020, 2020, 5307614. [Google Scholar] [CrossRef]
- Ferreira, M.S.; Magalhães, M.C.; Oliveira, R.; Sousa-Lobo, J.M.; Almeida, I.F. Trends in the Use of Botanicals in Anti-Aging Cosmetics. Molecules 2021, 26, 3584. [Google Scholar] [CrossRef]
- Poljsak, B. Strategies for Reducing or Preventing the Generation of Oxidative Stress. Oxid. Med. Cell. Longev. 2011, 2011, 194586. [Google Scholar] [CrossRef] [Green Version]
- Cádiz-Gurrea, M.; de la, L.; Pinto, D.; Delerue-Matos, C.; Rodrigues, F. Olive Fruit and Leaf Wastes as Bioactive Ingredients for Cosmetics—A Preliminary Study. Antioxidants 2021, 10, 245. [Google Scholar] [CrossRef]
- Gopalan, A.; Reuben, S.C.; Ahmed, S.; Darvesh, A.S.; Hohmann, J.; Bishayee, A. The Health Benefits of Blackcurrants. Food Funct. 2012, 3, 795–809. [Google Scholar] [CrossRef]
- Ziemlewska, A.; Zagórska-Dziok, M.; Nizioł-Łukaszewska, Z. Assessment of Cytotoxicity and Antioxidant Properties of Berry Leaves as By-Products with Potential Application in Cosmetic and Pharmaceutical Products. Sci. Rep. 2021, 11, 3240. [Google Scholar] [CrossRef] [PubMed]
- Tabart, J.; Kevers, C.; Evers, D.; Dommes, J. Ascorbic Acid, Phenolic Acid, Flavonoid, and Carotenoid Profiles of Selected Extracts from Ribes Nigrum. J. Agric. Food Chem. 2011, 59, 4763–4770. [Google Scholar] [CrossRef] [PubMed]
- Nour, V.; Trandafir, I.; Cosmulescu, S. Antioxidant Capacity, Phenolic Compounds and Minerals Content of Blackcurrant (Ribes nigrum L.) Leaves as Influenced by Harvesting Date and Extraction Method. Ind. Crop. Prod. 2014, 53, 133–139. [Google Scholar] [CrossRef]
- Ziemlewska, A.; Nizioł-Łukaszewska, Z.; Bujak, T.; Zagórska-Dziok, M.; Wójciak, M.; Sowa, I. Effect of Fermentation Time on the Content of Bioactive Compounds with Cosmetic and Dermatological Properties in Kombucha Yerba Mate Extracts. Sci. Rep. 2021, 11, 18792. [Google Scholar] [CrossRef]
- Bujor, O.C.; Le Bourvellec, C.; Volf, I.; Popa, V.I.; Dufour, C. Seasonal Variations of the Phenolic Constituents in Bilberry (Vaccinium Myrtillus L.) Leaves, Stems and Fruits, and Their Antioxidant Activity. Food Chem. 2016, 213, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Shahbazi, R.; Sharifzad, F.; Bagheri, R.; Alsadi, N.; Yasavoli-Sharahi, H.; Matar, C. Anti-Inflammatory and Immunomodulatory Properties of Fermented Plant Foods. Nutrients 2021, 13, 1516. [Google Scholar] [CrossRef] [PubMed]
- Majchrzak, W.; Motyl, I.; Śmigielski, K. Biological and Cosmetical Importance of Fermented Raw Materials: An Overview. Molecules 2022, 27, 4845. [Google Scholar] [CrossRef]
- Kowalski, R.; Gustafson, E.; Carroll, M.; de Mejia, E.G. Enhancement of Biological Properties of Blackcurrants by Lactic Acid Fermentation and Incorporation into Yogurt: A Review. Antioxidants 2020, 9, 1194. [Google Scholar] [CrossRef]
- Markkinen, N.; Laaksonen, O.; Nahku, R.; Kuldjärv, R.; Yang, B. Impact of Lactic Acid Fermentation on Acids, Sugars, and Phenolic Compounds in Black Chokeberry and Sea Buckthorn Juices. Food Chem. 2019, 286, 204–215. [Google Scholar] [CrossRef]
- Wu, Y.; Li, S.; Tao, Y.; Li, D.; Han, Y.; Show, P.L.; Wen, G.; Zhou, J. Fermentation of Blueberry and Blackberry Juices Using Lactobacillus Plantarum, Streptococcus Thermophilus and Bifidobacterium Bifidum: Growth of Probiotics, Metabolism of Phenolics, Antioxidant Capacity in Vitro and Sensory Evaluation. Food Chem. 2021, 348, 129083. [Google Scholar] [CrossRef]
- Li, T.; Jiang, T.; Liu, N.; Wu, C.; Xu, H.; Lei, H. Biotransformation of Phenolic Profiles and Improvement of Antioxidant Capacities in Jujube Juice by Select Lactic Acid Bacteria. Food Chem. 2021, 339, 127859. [Google Scholar] [CrossRef]
- Malbaša, R.V.; Lončar, E.S.; Vitas, J.S.; Čanadanović-Brunet, J.M. Influence of Starter Cultures on the Antioxidant Activity of Kombucha Beverage. Food Chem. 2011, 127, 1727–1731. [Google Scholar] [CrossRef]
- Hur, S.J.; Lee, S.Y.; Kim, Y.C.; Choi, I.; Kim, G.B. Effect of Fermentation on the Antioxidant Activity in Plant-Based Foods. Food Chem. 2014, 160, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Sadh, P.K.; Kumar, S.; Chawla, P.; Duhan, J.S. Fermentation: A Boon for Production of Bioactive Compounds by Processing of Food Industries Wastes (By-Products). Molecules 2018, 23, 2560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayabalan, R.; Malbaša, R.V.; Lončar, E.S.; Vitas, J.S.; Sathishkumar, M. A Review on Kombucha Tea-Microbiology, Composition, Fermentation, Beneficial Effects, Toxicity, and Tea Fungus. Compr. Rev. Food Sci. Food Saf. 2014, 13, 538–550. [Google Scholar] [CrossRef]
- Jayabalan, R.; Subathradevi, P.; Marimuthu, S.; Sathishkumar, M.; Swaminathan, K. Changes in Free-Radical Scavenging Ability of Kombucha Tea during Fermentation. Food Chem. 2008, 109, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Shahbazi, H.; Hashemi Gahruie, H.; Golmakani, M.T.; Eskandari, M.H.; Movahedi, M. Effect of Medicinal Plant Type and Concentration on Physicochemical, Antioxidant, Antimicrobial, and Sensorial Properties of Kombucha. Food Sci. Nutr. 2018, 6, 2568–2577. [Google Scholar] [CrossRef]
- Puupponen-Pimiä, R.; Nohynek, L.; Alakomi, H.L.; Oksman-Caldentey, K.M. Bioactive Berry Compounds—Novel Tools against Human Pathogens. Appl. Microbiol. Biotechnol. 2005, 67, 8–18. [Google Scholar] [CrossRef]
- Cieślik, E.; Gręda, A.; Adamus, W. Contents of Polyphenols in Fruit and Vegetables. Food Chem. 2006, 94, 135–142. [Google Scholar] [CrossRef]
- Villarreal-Soto, S.A.; Bouajila, J.; Pace, M.; Leech, J.; Cotter, P.D.; Souchard, J.P.; Taillandier, P.; Beaufort, S. Metabolome-Microbiome Signatures in the Fermented Beverage, Kombucha. Int. J. Food Microbiol. 2020, 333, 108778. [Google Scholar] [CrossRef]
- Olas, B.; Wachowicz, B.; Tomczak, A.; Erler, J.; Stochmal, A.; Oleszek, W. Comparative Anti-Platelet and Antioxidant Properties of Polyphenol-Rich Extracts from: Berries of Aronia Melanocarpa, Seeds of Grape and Bark of Yucca Schidigera in Vitro. Platelets 2008, 19, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Dugo, P.; Mondello, L.; Errante, G.; Zappia, G.; Dugo, G. Identification of Anthocyanins in Berries by Narrow-Bore High-Performance Liquid Chromatography with Electrospray Ionization Detection. J. Agric. Food Chem. 2001, 49, 3987–3992. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Xu, L.; Yang, L.; Wang, X. Epigallocatechin Gallate Is the Most Effective Catechin against Antioxidant Stress via Hydrogen Peroxide and Radical Scavenging Activity. Med. Sci. Monit. 2018, 24, 8198–8206. [Google Scholar] [CrossRef] [PubMed]
- Grzesik, M.; Naparło, K.; Bartosz, G.; Sadowska-Bartosz, I. Antioxidant Properties of Catechins: Comparison with Other Antioxidants. Food Chem. 2018, 241, 480–492. [Google Scholar] [CrossRef]
- Ines, S.; Ines, B.; Wissem, B.; Mohamed, B.S.; Nawel, H.; Dijoux-Franca, M.G.; Kamel, G.; Leïla, C.G. In Vitro Antioxidant and Antigenotoxic Potentials of 3,5-O-Di-Galloylquinic Acid Extracted from Myrtus Communis Leaves and Modulation of Cell Gene Expression by H2O2. J. Appl. Toxicol. 2012, 32, 333–341. [Google Scholar] [CrossRef]
- Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative Stress and Antioxidant Defense. World Allergy Organ. J. 2012, 5, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Kannan, K.; Jain, S.K. A Oxidative Stress and Apoptosis. Pathophysiology 2000, 27, 153–163. [Google Scholar] [CrossRef]
- Xu, J.G.; Hu, Q.P.; Liu, Y. Antioxidant and DNA-Protective Activities of Chlorogenic Acid Isomers. J. Agric. Food Chem. 2012, 60, 11625–11630. [Google Scholar] [CrossRef]
- Gao, X.H.; Zhang, S.D.; Wang, L.T.; Yu, L.; Zhao, X.L.; Ni, H.Y.; Wang, Y.Q.; Wang, J.D.; Shan, C.H.; Fu, Y.J. Anti-Inflammatory Effects of Neochlorogenic Acid Extract from Mulberry Leaf (Morus Alba L.) against LPS-Stimulated Inflammatory Response through Mediating the AMPK/Nrf2 Signaling Pathway in A549 Cells. Molecules 2020, 25, 1385. [Google Scholar] [CrossRef] [Green Version]
- Olszowy, M. What Is Responsible for Antioxidant Properties of Polyphenolic Compounds from Plants? Plant Physiol. Biochem. 2019, 144, 135–143. [Google Scholar] [CrossRef]
- Miłek, M.; Grabek-Lejko, D.; Stępień, K.; Sidor, E.; Mołoń, M.; Dżugan, M. The Enrichment of Honey with Aronia Melanocarpa Fruits Enhances Its in Vitro and in Vivo Antioxidant Potential and Intensifies Its Antibacterial and Antiviral Properties. Food Funct. 2021, 12, 8. [Google Scholar] [CrossRef]
- O’Brien, J.; Wilson, I.; Orton, T.; Pognan, F. Investigation of the Alamar Blue (Resazurin) Fluorescent Dye for the Assessment of Mammalian Cell Cytotoxicity. Eur. J. Biochem. 2000, 267, 5421–5426. [Google Scholar] [CrossRef] [PubMed]
- Babich, H.; Borenfreund, E. Applications of the Neutral Red Cytotoxicity Assay to In Vitro Toxicology. Altern. Lab. Anim. 1990, 18, 129–144. [Google Scholar] [CrossRef]
- Kähkönen, M.P.; Hopia, A.I.; Heinonen, M. Berry Phenolics and Their Antioxidant Activity. J. Agric. Food Chem. 2001, 49, 4076–4082. [Google Scholar] [CrossRef] [PubMed]
- Del Bo, C.; Martini, D.; Porrini, M.; Klimis-Zacas, D.; Riso, P. Berries and Oxidative Stress Markers: An Overview of Human Intervention Studies. Food Funct. 2015, 6, 2890–2917. [Google Scholar] [CrossRef]
- Olas, B. Berry Phenolic Antioxidants—Implications for Human Health? Front. Pharmacol. 2018, 9, 78. [Google Scholar] [CrossRef]
- Lee, S.J.; Choi, H.R.; Lee, J.C.; Park, H.J.; Lee, H.K.; Jeong, J.T.; Lee, T.B. The Anti-Aging Effects of Various Berries in the Human Skin Keratinocyte (HaCaT) Cells. Korean J. Food Sci. Technol. 2014, 46, 198–204. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.R.; Jeong, D.H.; Kim, S.; Lee, S.W.; Sin, H.S.; Yu, K.Y.; Jeong, S., II; Kim, S.Y. Fermentation of Blackberry with L. plantarum JBMI F5 Enhance the Protection Effect on UVB-Mediated Photoaging in Human Foreskin Fibroblast and Hairless Mice through Regulation of MAPK/NF-ΚB Signaling. Nutrients 2019, 11, 2429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pakravan, N.; Mahmoudi, E.; Hashemi, S.A.; Kamali, J.; Hajiaghayi, R.; Rahimzadeh, M.; Mahmoodi, V. Cosmeceutical Effect of Ethyl Acetate Fraction of Kombucha Tea by Intradermal Administration in the Skin of Aged Mice. J. Cosmet. Dermatol. 2018, 17, 1216–1224. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Liu, X.; Gao, Y. Extraction Optimization of Bioactive Compounds (Crocin, Geniposide and Total Phenolic Compounds) from Gardenia (Gardenia jasminoides Ellis) Fruits with Response Surface Methodology. Innov. Food Sci. Emerg. Technol. 2009, 10, 610–615. [Google Scholar] [CrossRef]
- Taghavi, T.; Patel, H.; Akande, O.E.; Galam, D.C.A. Total Anthocyanin Content of Strawberry and the Profile Changes by Extraction Methods and Sample Processing. Foods 2022, 11, 1072. [Google Scholar] [CrossRef] [PubMed]
- Ziemlewska, A.; Nizioł-Łukaszewska, Z.; Zagórska-Dziok, M.; Bujak, T. Evaluation of Cosmetic and Dermatological Properties of Kombucha-Fermented Berry Leaf Extracts Considered to Be By-Products. Molecules 2022, 27, 2345. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Czachor, J.; Miłek, M.; Galiniak, S.; Stępień, K.; Dżugan, M.; Mołoń, M. Coffee Extends Yeast Chronological Lifespan through Antioxidant Properties. Int. J. Mol. Sci. 2020, 21, 9510. [Google Scholar] [CrossRef]
- Page, B.; Page, M.; Noel, C. A New Fluorometric Assay for Cytotoxicity Measurements In-Vitro. Int. J. Oncol. 1993, 3, 473–476. [Google Scholar]
- Borenfreund, E.; Puerner, J.A. Toxicity Determined in Vitro by Morphological Alterations and Neutral Red Absorption. Toxicol. Lett. 1985, 24, 119–124. [Google Scholar] [CrossRef] [PubMed]
- D’Urso, G.; Montoro, P.; Piacente, S. Detection and Comparison of Phenolic Compounds in Different Extracts of Black Currant Leaves by Liquid Chromatography Coupled with High-Resolution ESI-LTQ-Orbitrap MS and High-Sensitivity ESI-Qtrap MS. J. Pharm. Biomed. Anal. 2020, 179, 112926. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Lu, H.; Wang, Q.; Liu, H.; Shen, H.; Xu, W.; Ge, J.; He, D. Rapid Qualitative Profiling and Quantitative Analysis of Phenolics in Ribes Meyeri Leaves and Their Antioxidant and Antidiabetic Activities by HPLC-QTOF-MS/MS and UHPLC-MS/MS. J. Sep. Sci. 2021, 44, 1404–1420. [Google Scholar] [CrossRef]
- Romani, A.; Campo, M.; Pinelli, P. HPLC/DAD/ESI-MS Analyses and Anti-Radical Activity of Hydrolyzable Tannins from Different Vegetal Species. Food Chem. 2012, 130, 214–221. [Google Scholar] [CrossRef]
- Anttonen, M.J.; Karjalainen, R.O. High-Performance Liquid Chromatography Analysis of Black Currant (Ribes nigrum L.) Fruit Phenolics Grown Either Conventionally or Organically. J. Agric. Food Chem. 2006, 54, 7530–7538. [Google Scholar] [CrossRef]
- Wu, X.; Gu, L.; Prior, R.L.; McKay, S. Characterization of Anthocyanins and Proanthocyanidins in Some Cultivars of Ribes, Aronia, and Sambucus and Their Antioxidant Capacity. J. Agric. Food Chem. 2004, 52, 7846–7856. [Google Scholar] [CrossRef] [PubMed]
- Efenberger-Szmechtyk, M.; Nowak, A.; Czyżowska, A.; Kucharska, A.Z.; Fecka, I. Composition and Antibacterial Activity of Aronia melanocarpa (Michx.) Elliot, Cornus mas L. and Chaenomeles Superba Lindl. Leaf Extracts. Molecules 2020, 25, 2011. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.E.; Kim, G.S.; Park, S.; Kim, Y.H.; Kim, M.B.; Lee, W.S.; Jeong, S.W.; Lee, S.J.; Jin, J.S.; Shin, S.C. Determination of Chokeberry (Aronia melanocarpa) Polyphenol Components Using Liquid Chromatography-Tandem Mass Spectrometry: Overall Contribution to Antioxidant Activity. Food Chem. 2014, 146, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Cebulak, T.; Oszmiański, J.; Kapusta, I.; Lachowicz, S. Effect of UV-C Radiation, Ultra-Sonication Electromagnetic Field and Microwaves on Changes in Polyphenolic Compounds in Chokeberry (Aronia melanocarpa). Molecules 2017, 22, 1161. [Google Scholar] [CrossRef] [Green Version]
- Ossipov, V.; Zubova, M.; Nechaeva, T.; Zagoskina, N.; Salminen, J.P. The Regulating Effect of Light on the Content of Flavan-3-Ols and Derivatives of Hydroxybenzoic Acids in the Callus Culture of the Tea Plant, Camellia sinensis L. Biochem. Syst. Ecol. 2022, 101, 104383. [Google Scholar] [CrossRef]
- Stein-Chisholm, R.E.; Beaulieu, J.C.; Grimm, C.C.; Lloyd, S.W. Lc–Ms/Ms and Uplc–Uv Evaluation of Anthocyanins and Anthocyanidins during Rabbiteye Blueberry Juice Processing. Beverages 2017, 3, 56. [Google Scholar] [CrossRef] [Green Version]
- Bayazid, A.B.; Chun, E.M.; Al Mijan, M.; Park, S.H.; Moon, S.K.; Lim, B.O. Anthocyanins Profiling of Bilberry (Vaccinium myrtillus L.) Extract That Elucidates Antioxidant and Anti-Inflammatory Effects. Food Agric. Immunol. 2021, 32, 713–726. [Google Scholar] [CrossRef]
Molecular Formula | Name of Compound | R. nigrum | A. melanocarpa | V.myrtillus |
---|---|---|---|---|
C6H12O7 | Gluconic acid | x | x | x |
C7H12O6 | Quinic acid | x | x | x |
C7H6O5 | Galic acid | x | x | x |
C14H16O10 | Galloylquinic acid | x | x | x |
C30H26O14 | Prodelphinidin B4/B3 | x | ||
C13H16O10 | Galloylglucose | x | ||
C13H16O9 | Dihydroxybenzoic acid hexoside | x | x | |
C13H16O8 | Hydroxybenzoic acid hexoside | x | x | |
C15H14O7 | Gallocatechin | x | ||
C16H18O9 | Neochlorogenic acid | x | x | |
C15H18O9 | Caffeoyl hexoside | x | ||
C15H18O9 | Caffeoyl glucose | x | ||
C15H14O7 | Epigallocatechin | x | x | x |
C15H18O8 | Coumaroyl hexoside | x | ||
C15H14O6 | Catechin | x | x | x |
C16H18O9 | Chlorogenic acid | x | x | |
C21H20O12 | Delphinidin hexoside | x | ||
C21H20O11 | Cyanidin 3-glucoside/galactoside | x | ||
C27H30 O16 | Cyanidin 3-sophoroside | x | ||
C21H20O11 | Cyanidin hexoside | x | ||
C16H18O9 | Cryptochlorogenic acid | x | ||
C20H18O10 | Cyanidin 3-arabinoside | x | x | |
C15H14O6 | Epicatechin | x | x | x |
C27H30O15 | Cyanidin rutoside | x | x | |
C22H18O11 | Epigallocatechin gallate | x | x | x |
C20H18O10 | Cyanidin 3-xyloside | x | ||
C7H6O3 | Salicylic acid | x | ||
C27H30O17 | Quercetin dihexoside | x | ||
C27H30O17 | Myricetin rhamnosylhexoside | x | ||
C21H20O13 | Myricetin 3-O-galactoside | x | x | |
C21H20O12 | Eriodictyol glucuronide | x | x | |
C26H28O16 | Quercetin-3-O-vicianoside | x | ||
C27H30O16 | Quercetin robinobioside | x | ||
C27H30O16 | Quercetin rutoside | x | x | x |
C21H20O12 | Quercetin glucoside | x | x | x |
C23H22O13 | Quercetin acetylglucoside | x | ||
C27H30O15 | Kaempferol-3-rutinoside | x | x | |
C21H20O11 | Kaempferol glucoside | x | x | |
C21H20O11 | Quercetin rhamnoside | x | ||
C28H32O16 | Isorhamnetin rhamnosyl hexoside | x |
Analyzed Plant | Name of Compound | Content (µg/mL) | ||
---|---|---|---|---|
E | F10 | F20 | ||
Rubus nigrum | Gallic acid | 0.45 ± 0.02 a | 2.46 ± 0.07 b | 3.73 ± 0.13 c |
Caffeoyl glucose | 1.83 ± 0.08 a | 1.36 ± 0.07 b | 2.57 ± 0.05 c | |
Coumaroyl hexoside | 1.01 ± 0.03 a | 0.88 ± 0.03 b | 1.38 ± 0.05 c | |
Salicylic acid | 3.27 ± 0.07 a | 1.65 ± 0.04 b | 1.55 ± 0.05 b | |
Dihydroxybenzoic acid hexoside | 0.66 ± 0.02 a | 0.57 ± 0.00 b | 0.59 ± 0.01 b | |
Myricetin rhamnosyl hexoside | 2.08 ± 0.07 a | 1.20 ± 0.01 b | 1.51 ± 0.01 c | |
Myricetin 3-O-galactoside | 2.71 ± 0.02 a | 1.41 ± 0.01 b | 1.90 ± 0.04 c | |
Rutin | 3.50 ± 0.18 a | 1.92 ± 0.01 b | 1.99 ± 0.02 b | |
Quercetin glucoside | 1.19 ± 0.01 a | 0.60 ± 0.02 b | 0.69 ± 0.01 b | |
Kaempferol-3-rutinoside | 0.35 ± 0.03 a | 0.21 ± 0.01 b | 0.28 ± 0.01 a,b | |
Kaempferol glucoside | 0.56 ± 0.03 a | 0.30 ± 0.05 a | 0.42 ± 0.07 a | |
Galloyloquinic acid | - | 0.73 ± 0.02 a | 0.88 ± 0.04 a | |
Gallocatechin | 1.16 ± 0.04 a | 1.59 ± 0.00 b | 2.04 ± 0.01 c | |
Epigallocatechin | - | 3.20 ± 0.09 a | 4.37 ± 0.11 b | |
Catechin | - | 0.27 ± 0.00 a | 0.27 ± 0.01 a | |
Epicatechin | - | 1.56 ± 0.06 a | 1.42 ± 0.10 a | |
Epigallocatechin gallate | - | 4.97 ± 0.20 a | 3.18 ± 0.12 b | |
Aronia melanocarpa | Gallic acid | - | 1.48 ± 0.04 a | 3.19 ± 0.04 b |
Protocatechuic acid | 0.13 ± 0.01 a | 0.18 ± 0.00 b | 0.20 ± 0.00 b | |
Neochlorogenic acid | 24.9 ± 1.09 a | 17.42 ± 0.80 b | 21.85 ± 0.33 a | |
Chlorogenic acid | 25.18 ± 0.21 a | 16.80 ± 0.38 b | 20.98 ± 0.71 c | |
Quercetin rutoside | 2.54 ± 0.01 a | 1.80 ± 0.06 b | 2.31 ± 0.09 a | |
Quercetin dihexoside I | 0.21 ± 0.01 a | 0.16 ± 0.00 b | 0.24 ± 0.00 c | |
Quercetin dihexoside II | 0.09 ± 0.00 a | 0.04 ± 0.00 a | 0.05 ± 0.00 a | |
Quercetin-3-O-vicianoside | 0.20 ± 0.01 a | 0.23 ± 0.01 b | 0.24 ± 0.01 b | |
Quercetin robinobioside | 0.29 ± 0.00 a | 0.14 ± 0.00 b | 0.16 ± 0.00 b | |
Quercetin glucoside | 2.05 ± 0.04 a | 0.97 ± 0.02 b | 1.22 ± 0.05 c | |
Kaempferol-3-rutinoside | 0.10 ± 0.00 a | 0.26 ± 0.00 b | 0.36 ± 0.01 c | |
Galloyl quinic | 0.93 ± 0.06 a | 1.26 ± 0.07 b | ||
Gallocatechin | - | 3.62 ± 0.14 a | 4.09 ± 0.17 a | |
Catechin | - | 1.18 ± 0.01 a | 1.47 ± 0.04 a | |
Epicatechin | - | 1.51 ± 0.33 a | 2.58 ± 0.09 b | |
Epigallocatechin gallate | - | 5.56 ± 0.22 a | 7.74 ± 0.02 b | |
Epigallocatechin | - | 3.66 ± 0.07 a | 5.82 ± 0.15 b | |
Vaccinium myrtillus | Gallic acid | - | 1.61 ± 0.07 a | 2.24 ± 0.09 b |
Galloyl quinic acid | - | 0.096 ± 0.01 a | 1.28 ± 0.04 b | |
Neochlorogenic acid | - | 0.18 ± 0.00 a | 0.25 ± 0.00 b | |
Chlorogenic acid | 0.44 ± 0.01 a | 14.70 ± 0.23 b | 17.69 ± 0.53 b | |
Cryptochlorogenic acid | 0.24 ± 0.00 a | 0.26 ± 0.00 a | 0.32 ± 0.01 b | |
Dihydroxybenzoic acid hexoside I | 0.20 ± 0.00 a | 0.95 ± 0.00 b | 0.11 ± 0.00 c | |
Dihydroxybenzoic acid hexoside II | - | 0.10 ± 0.01 a | 0.13 ± 0.00 b | |
Dihydroxybenzoic acid hexoside III | 0.16 ± 0.00 a | 0.26 ± 0.01 b | 0.33 ± 0.00 c | |
Caffeoyl hexoside I | 0.16 ± 0.00 a | 0.10 ± 0.01 b | 0.11 ± 0.00 b | |
Caffeoyl hexoside II | 0.30 ± 0.01 a | 0.30 ± 0.10 a,b | 0.37 ± 0.01 b | |
Rutoside | 0.14 ± 0.00 a | 1.09 ± 0.02 b | 1.22 ± 0.00 b | |
Quercetin glucoside | 0.06 ± 0.00 a | 0.38 ± 0.01 b | 0.37 ± 0.02 b | |
Quercetin rhamnoside | 0.15 ± 0.00 a | 0.10 ± 0.01 b | 1.04 ± 0.06 b | |
Gallocatechin | - | 0.61 ± 0.02 a | 0.87 ± 0.03 b | |
Epigallocatechin | - | 1.11 ± 0.02 a | 1.30 ± 0.02 a | |
Catechin | - | 0.11 ± 0.01 a | 0.22 ± 0.01 b | |
Epicatechin | - | 1.82 ± 0.08 a | 2.15 ± 0.03 b | |
Epigallocatechin gallate | - | 2.76 ± 0.07 a | 3.86 ± 0.05 b |
Ribes nigrum | Aronia melanocarpa | Vaccinium myrtillus | |
---|---|---|---|
Total Anthocyanin Content (mg CG/100 g ± SD) | |||
E | 293.90 ± 2.3 a | 410.79 ± 3.5 a | 125.24 ± 1.9 a |
F10 | 485.94 ± 5.3 b | 713.24 ± 7.8 b | 187.03 ± 2.5 b |
F20 | 512.66 ± 4.9 c | 873.55 ± 8.6 c | 193.53 ± 2.9 b |
Ribes nigrum | Aronia melanocarpa | Vaccinium myrtillus | |
---|---|---|---|
IC50 (µg/mL) | |||
E | 1268 ± 11.2 a | 938 ± 6.7 a | 4610 ± 17.9 a |
F10 | 753 ± 2.5 b | 791 ± 7.4 b | 1375 ± 8.5 b |
F20 | 810 ± 4.5 c | 722 ± 7.0 c | 1739 ± 6.9 c |
Ribes nigrum | Aronia melanocarpa | Vaccinium myrtillus | |
---|---|---|---|
IC50 (µg/mL) | |||
E | 219± 2.1 a | 151± 3.7 a | 313 ± 3.9 a |
F10 | 122 ± 1.9 b | 128 ± 2.6 b | 131 ± 1.3 b |
F20 | 127 ± 3.3 c | 126 ± 2.1 c | 130 ± 1.7 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziemlewska, A.; Zagórska-Dziok, M.; Nizioł-Łukaszewska, Z.; Kielar, P.; Mołoń, M.; Szczepanek, D.; Sowa, I.; Wójciak, M. In Vitro Evaluation of Antioxidant and Protective Potential of Kombucha-Fermented Black Berry Extracts against H2O2-Induced Oxidative Stress in Human Skin Cells and Yeast Model. Int. J. Mol. Sci. 2023, 24, 4388. https://doi.org/10.3390/ijms24054388
Ziemlewska A, Zagórska-Dziok M, Nizioł-Łukaszewska Z, Kielar P, Mołoń M, Szczepanek D, Sowa I, Wójciak M. In Vitro Evaluation of Antioxidant and Protective Potential of Kombucha-Fermented Black Berry Extracts against H2O2-Induced Oxidative Stress in Human Skin Cells and Yeast Model. International Journal of Molecular Sciences. 2023; 24(5):4388. https://doi.org/10.3390/ijms24054388
Chicago/Turabian StyleZiemlewska, Aleksandra, Martyna Zagórska-Dziok, Zofia Nizioł-Łukaszewska, Patrycja Kielar, Mateusz Mołoń, Dariusz Szczepanek, Ireneusz Sowa, and Magdalena Wójciak. 2023. "In Vitro Evaluation of Antioxidant and Protective Potential of Kombucha-Fermented Black Berry Extracts against H2O2-Induced Oxidative Stress in Human Skin Cells and Yeast Model" International Journal of Molecular Sciences 24, no. 5: 4388. https://doi.org/10.3390/ijms24054388
APA StyleZiemlewska, A., Zagórska-Dziok, M., Nizioł-Łukaszewska, Z., Kielar, P., Mołoń, M., Szczepanek, D., Sowa, I., & Wójciak, M. (2023). In Vitro Evaluation of Antioxidant and Protective Potential of Kombucha-Fermented Black Berry Extracts against H2O2-Induced Oxidative Stress in Human Skin Cells and Yeast Model. International Journal of Molecular Sciences, 24(5), 4388. https://doi.org/10.3390/ijms24054388