Cobalamin (Vitamin B12) in Anticancer Photodynamic Therapy with Zn(II) Phthalocyanines
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Photoactive Compounds
4.1.1. 2,(3),9(10),16(17),2 3(24)-Tetrakis-[(2-pyridyloxy) Phthalocyaninato]zinc(II), (2)
4.1.2. 2,(3),9(10),16(17),13(24)-Tetrakis-{[(2-(N-methyl)pyridyloxy]phthalocyaninato} Zinc (II) Sulphate (3ZnPc)
4.2. Light Sources
4.3. Cells’ Cultures and Cultivation
4.4. Photodynamic and Cytotoxicity Studies
4.5. Parameters Determined from Cytotoxicity Studies
4.6. Cellular Localization Study
4.7. Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aniogo, E.C.; Plackal Adimuriyil, G.B.; Abrahamse, H. The role of photodynamic therapy on multidrug resistant breast cancer. Cancer Cell Int. 2019, 19, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spring, B.Q.; Rizvi, I.; Xu, N.; Hasan, T. The role of photodynamic therapy in overcoming cancer drug resistance. Photochem. Photobiol. Sci. 2015, 14, 1476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galstyan, A. Turning Photons into Drugs: Phthalocyanine-Based Photosensitizers as Efficient Photoantimicrobials. Chem. A Eur. J. 2021, 27, 1903–1920. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zheng, B.-D.; Peng, X.-H.; Li, S.-Z.; Ying, J.-W.; Zhao, Y.; Huang, J.-D.; Yoon, J. Phthalocyanines as medicinal photosensitizers: Developments in the last five years. Coord. Chem. Rev. 2019, 379, 147–160. [Google Scholar] [CrossRef]
- Sen, P.; Managa, M.; Nyokong, T. New Type of Metal-Free and Zn (II), In (III), Ga (III) Phthalocyanines Carrying Biologically Active Substituents: Synthesis and Photophysicochemical Properties and Photodynamic Therapy Activity. Inorg. Chim. Acta 2019, 491, 1–8. [Google Scholar] [CrossRef]
- Akin, M.; Saki, N.; Guzel, E.; Orman, B.; Nalbantsoy, A.; Kocak, M.B. Assessment of in vitro Cytotoxic, iNOS, Antioxidant and Photodynamic Antimicrobial Activities of Water-soluble Sulfonated Phthalocyanines. Photochem. Photobiol. 2021, 98, 907–915. [Google Scholar] [CrossRef]
- Mohammed, I.; Oluwole, D.O.; Nemakal, M.; Sannegowda, L.K.; Nyokong, T. Investigation of Novel Substituted Zinc and Aluminium Phthalocyanines for Photodynamic Therapy of Epithelial Breast Cancer. Dye. Pigment. 2019, 170, 107592. [Google Scholar] [CrossRef]
- Ayari, S.; Saglam, M.F.; Şenkuytu, E.; Erçin, P.B.; Zorlu, Y.; Sengul, I.F.; Jamoussi, B.; Atilla, D. 3-Methylindole-substituted zinc phthalocyanines for photodynamic cancer therapy. J. Porphyr. Phthalocyanines 2019, 11, 1371–1379. [Google Scholar] [CrossRef]
- Roguin, L.P.; Chiarante, N.; García Vior, M.S.; Marino, J. Zinc(II) phthalocyanines as photosensitizers for antitumor photodynamic therapy. Int. J. Biochem. Cell Biol. 2019, 114, 105575. [Google Scholar] [CrossRef]
- DeRosa, M.C.; Crutchley, R.J. Photosensitized Singlet Oxygen and Its Applications. Coord. Chem. Rev. 2002, 233–234, 351–371. [Google Scholar] [CrossRef]
- Singh, G.; Espiritu, M.; Shen, X.Y.; Hanlon, J.G.; Rainbow, A.J. In vitro induction of PDT resistance in HT29, HT1376 and SK-N-mc cells by various photosensitizers. Photochem. Photobiol. 2001, 73, 651–656. [Google Scholar] [CrossRef] [PubMed]
- Chekwube, A.E.; George, B.; Abrahamse, H. Phototoxic effectiveness of zinc phthalocyanine tetrasulfonic acid on MCF-7 cells with overexpressed P-glycoprotein. J. Photochem. Photobiol. B 2020, 204, 111811. [Google Scholar] [CrossRef] [PubMed]
- Aniogo, E.C.; George, B.P.A.; Abrahamse, H. Phthalocyanine induced phototherapy coupled with Doxorubicin; a promising novel treatment for breast cancer. Expert Rev. Anticancer Ther. 2017, 17, 693–702. [Google Scholar] [CrossRef] [PubMed]
- Aniogo, E.C.; George, B.P.; Abrahamse, H. Characterization of resistant MCF-7 breast cancer cells developed by repeated cycles of photodynamic therapy. Front. Pharmacol 2022, 13, 964141. [Google Scholar] [CrossRef]
- Balabanova, L.; Averianova, L.; Marchenok, M.; Son, O.; Tekutyeva, L. Microbial and Genetic Resources for Cobalamin (Vitamin B12) Biosynthesis: From Ecosystems to Industrial Biotechnology. Int. J. Mol. Sci. 2021, 22, 4522. [Google Scholar] [CrossRef] [PubMed]
- Gupta, Y.; Kohli, D.V.; Jain, S.K. Vitamin B12-mediated transport: A potential tool for tumor targeting of antineoplastic drugs and imaging agents. Crit. Rev. Ther. Drug Carrier Syst. 2008, 25, 347–379. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.R. The photochemistry and photobiology of vitamin B12. Photochem. Photobiol Sci. 2017, 16, 820–834. [Google Scholar] [CrossRef]
- Elzi, D.J.; Bauta, W.E.; Sanchez, J.R.; Das, T.; Mogare, S.; Fatland, P.Z.; Iza, M.; Pertsemlidis, A.; Rebel, V.I. Identification of a novel mechanism for meso-tetra (4-carboxyphenyl) porphyrin (TCPP) uptake in cancer cells. FASEB J. 2021, 35, e21427. [Google Scholar] [CrossRef]
- Quadros, E.V.; Sequeira, J.M. Cellular uptake of cobalamin: Transcobalamin and the TCblR/CD320 receptor. Biochimie 2013, 95, 1008–1018. [Google Scholar] [CrossRef] [Green Version]
- Delasoie, J.; Rossier, J.; Haeni, L.; Rothen-Rutishauser, B.; Zobi, F. Slow-targeted release of a ruthenium anticancer agent from vitamin B12 functionalized marine diatom microalgae. Dalton Trans. 2018, 47, 17221–17232. [Google Scholar] [CrossRef]
- Delasoie, J.; Schiel, P.; Vojnovic, S.; Nikodinovic-Runic, J.; Zobi, F. Photoactivatable Surface-Functionalized Diatom Microalgae for Colorectal Cancer Targeted Delivery and Enhanced Cytotoxicity of Anticancer Complexes. Pharmaceutics 2020, 12, 480. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Liang, Y.; Feng, X.; Liang, Y.; Shen, G.; Huang, H. Vitamin-B12-conjugated PLGA-PEG nanoparticles incorporating miR-532-3p induce mitochondrial damage by targeting apoptosis repressor with caspase recruitment domain (ARC) on CD320-overexpressed gastric cancer. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 120, 111722. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Xu, G.; Yang, X.; Liu, S.; Sun, Y.; Chen, L.; Liu, Q.; Liu, J. Dual-Activated Nano-Prodrug for Chemo-Photodynamic Combination Therapy of Breast Cancer. Int. J. Mol. Sci. 2022, 23, 15656. [Google Scholar] [CrossRef] [PubMed]
- Solovieva, M.; Shatalin, Y.; Fadeev, R.; Krestinina, O.; Baburina, Y.; Kruglov, A.; Kharechkina, E.; Kobyakova, M.; Rogachevsky, V.; Shishkova, E.; et al. Vitamin B 12b Enhances the Cytotoxicity of Diethyldithiocarbamate in a Synergistic Manner, Inducing the Paraptosis-Like Death of Human Larynx Carcinoma Cells. Biomolecules 2020, 10, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wöhrle, D.; Iskander, N.; Graschew, G.; Sinn, H.; Friedrich, E.A.; Maierborst, W.; Stern, M. Synthesis of positively charged phthalocyanines and their activity in the photodynamic therapy of cancer cells. Photochem. Photobiol. 1990, 51, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Mantareva, V.N.; Kussovski, V.; Orozova, P.; Dimitrova, L.; Kulu, I.; Angelov, I.; Durmus, M.; Najdenski, H. Photodynamic Inactivation of Antibiotic-Resistant and Sensitive Aeromonas hydrophila with Peripheral Pd(II)- vs. Zn(II)-Phthalocyanines. Biomedicines 2022, 10, 384. [Google Scholar] [CrossRef]
- Kulu, I.; Mantareva, V.; Kussovski, V.; Angelov, I.; Durmus, M. Effects of metal ion in cationic Pd(II) and Ni(II) phthalocyanines on physicochemical and photodynamic inactivation properties. J. Mol. Struct. 2021, 1247, 131288. [Google Scholar] [CrossRef]
- Mantareva, V.; Kussovski, V.; Orozova, P.; Angelov, I.; Durmus, M.; Najdenski, H. Palladium Phthalocyanines Varying in Substituents Position for Photodynamic Inactivation of Flavobacterium hydatis as Sensitive and Resistant Species. Curr. Issues Mol. Biol. 2022, 44, 1950–1959. [Google Scholar] [CrossRef]
- Mantareva, V.; Kril, A.; Dimitrov, R.; Wöhrle, D.; Angelov, I. Selective photodynamic therapy induced by pre-irradiation of galactopyranosyl Zn(II) phthalocyanines with UV and red lights. J. Porphyr. Phthalocyanines 2013, 17, 529–539. [Google Scholar] [CrossRef]
- Chen, D.; Song, M.; Huang, J.; Chen, N.; Xue, J.; Huang, M. Photocyanine: A novel and effective phthalocyanine-based photosensitizer for cancer treatment. J. Innov. Opt. Health Sci. 2020, 13, 2030009. [Google Scholar] [CrossRef]
- O’driscoll, L.; Clynes, M. Biomarkers and multiple drug resistance in breast cancer. Curr. Cancer Drug Targets 2006, 6, 365–384. [Google Scholar] [CrossRef] [PubMed]
- Jackowska, A.; Gryko, D. Vitamin B12 Derivatives Suitably Tailored for the Synthesis of Photolabile Conjugates. Org. Lett. 2021, 23, 4940–4944. [Google Scholar] [CrossRef] [PubMed]
- Shell, T.A.; Lawrence, D.S. Vitamin B12: A Tunable, Long Wavelength, Light-Responsive Platform for Launching Therapeutic Agents. Acc. Chem. Res. 2015, 48, 2866–2874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ostańska, E.; Aebisher, D.; Bartusik-Aebisher, D. The potential of photodynamic therapy in current breast cancer treatment methodologies. Biomed. Pharmacother. 2021, 137, 111302. [Google Scholar] [CrossRef] [PubMed]
- Mishchenko, T.; Balalaeva, I.; Gorokhova, A.; Vedunova, M.; Krysko, D.v. Which Cell Death Modality Wins the Contest for Photodynamic Therapy of Cancer? Cell Death Dis. 2022, 13, 455. [Google Scholar] [CrossRef] [PubMed]
- Casas, A.; Perotti, C.; Ortel, B.; Di Venosa, G.; Saccoliti, M.; Batlle, A.; Hasan, T. Tumor cell lines resistant to ALA-mediated photodynamic therapy and possible tools to target surviving cells. Int. J. Oncol. 2006, 29, 397–405. [Google Scholar] [CrossRef] [Green Version]
- Adorno-Cruz, V.; Kibria, G.; Liu, X.; Doherty, M.; Junk, D.J.; Guan, D. Cancer stem cells: Targeting the roots of cancer, seeds of metastasis, and sources of therapy resistance. Cancer Res. 2015, 75, 924–929. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Yang, Z.; Nie, Y.; Shi, Y.; Fan, D. Multi-drug resistance in cancer chemotherapeutics: Mechanisms and lab approaches. Cancer Lett. 2014, 347, 159–166. [Google Scholar] [CrossRef]
- Indrayanto, G.; Putra, G.S.; Suhud, F. Validation of in-vitro bioassay methods: Application in herbal drug research. Profiles Drug Subst. Excip. Relat. Methodol. 2021, 46, 273–307. [Google Scholar]
- Peña-Morán, O.A.; Villarreal, M.L.; Álvarez-Berber, L.; Meneses-Acosta, A.; Rodríguez-López, V. Cytotoxicity Post-Treat. Recovery, and selectivity analysis of naturally occurring podophyllotoxins from Bursera fagaroides var. fagaroides on breast Cancer cell lines. Molecules 2016, 21, 1013. [Google Scholar]
- Weerapreeyakul, N.; Nonpunya, A.; Barusrux, S.; Thitimetharoch, T.; Sripanidkulchai, B. Evaluation of the anticancer potential of six herbs against a hepatoma cell line. Chin. Med. 2012, 7, 15. [Google Scholar] [CrossRef] [Green Version]
- Rashidi, M.; Seghatoleslam, A.; Namavari, M.; Amiri, A.; Fahmidehkar, M.A.; Ramezani, A.; Eftekhar, E.; Hosseini, A.; Erfani, N.; Fakher, S. Selective Cytotoxicity and Apoptosis-Induction of Cyrtopodion scabrum Extract Against Digestive Cancer Cell Lines. Int. J. Cancer Manag. 2017, 10, e8633. [Google Scholar] [CrossRef]
- McCain, J.; Colón, K.L.; Barrett, P.C.; Monro, S.M.A.; Sainuddin, T.; Roque III, J.; Pinto, M.; Yin, H.; Cameron, C.G.; McFarland, S.A. Photophysical Properties and Photobiological Activities of Ruthenium(II) Complexes Bearing π-Expansive Cyclometalating Ligands with Thienyl Groups. Inorg. Chem. 2019, 58, 10778–10790. [Google Scholar] [CrossRef] [PubMed]
- Cole, H.D.; Roque III, J.A.; Shi, G.; Lifshits, L.M.; Ramasamy, E.; Barrett, P.C.; Hodges, R.O.; Cameron, C.G.; McFarland, S.A. Anticancer Agent with Inexplicable Potency in Extreme Hypoxia: Characterizing a Light-Triggered Ruthenium Ubertoxin. J. Am. Chem. Soc. 2022, 144, 9543–9547. [Google Scholar] [CrossRef]
- Roque, J.A.; Barrett, P.C.; Cole, H.D.; Lifshits, L.M.; Shi, G.; Monro, S.; von Dohlen, D.; Kim, S.; Russo, N.; Deep, G.; et al. Breaking the barrier: An osmium photosensitizer with unprecedented hypoxic phototoxicity for real world photodynamic therapy. Chem. Sci. 2020, 11, 9784. [Google Scholar] [CrossRef] [PubMed]
Cell Lines | Cytotoxicity | Phototoxicity | PIF *, PI ** | SI *** |
---|---|---|---|---|
3ZnPc, CC50 ± SD (µM) | ||||
BALB 3T3 | 7.36 ± 0.12 | 1.58 ± 0.11 | 4.66 * | - |
MCF-10A | 8.96 ± 0.26 | 0.08 ± 0.005 | 112 | - |
MCF-7 | 21.6 ± 1.53 | 0.12 ± 0.008 | 180 | 0.66 |
MDA-MB-231 | 14.59 ± 0.26 | 0.09 ± 0.004 | 162 | 0.89 |
3ZnPc + Cbl 200 µM, CC50 ± SD (µM) | ||||
MCF-10A | 28.74 ± 0.55 | 0.065 ± 0.005 | 440 | - |
MCF-7 | 9.41 ± 0.97 | 0.042 ± 0.001 | 225 | 1.56 |
MDA-MB-231 | 14.18 ± 0.22 | 0.028 ± 0.002 | 500 | 2.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mantareva, V.; Iliev, I.; Sulikovska, I.; Durmuş, M.; Angelov, I. Cobalamin (Vitamin B12) in Anticancer Photodynamic Therapy with Zn(II) Phthalocyanines. Int. J. Mol. Sci. 2023, 24, 4400. https://doi.org/10.3390/ijms24054400
Mantareva V, Iliev I, Sulikovska I, Durmuş M, Angelov I. Cobalamin (Vitamin B12) in Anticancer Photodynamic Therapy with Zn(II) Phthalocyanines. International Journal of Molecular Sciences. 2023; 24(5):4400. https://doi.org/10.3390/ijms24054400
Chicago/Turabian StyleMantareva, Vanya, Ivan Iliev, Inna Sulikovska, Mahmut Durmuş, and Ivan Angelov. 2023. "Cobalamin (Vitamin B12) in Anticancer Photodynamic Therapy with Zn(II) Phthalocyanines" International Journal of Molecular Sciences 24, no. 5: 4400. https://doi.org/10.3390/ijms24054400
APA StyleMantareva, V., Iliev, I., Sulikovska, I., Durmuş, M., & Angelov, I. (2023). Cobalamin (Vitamin B12) in Anticancer Photodynamic Therapy with Zn(II) Phthalocyanines. International Journal of Molecular Sciences, 24(5), 4400. https://doi.org/10.3390/ijms24054400