Clinical Study of Metabolic Parameters, Leptin and the SGLT2 Inhibitor Empagliflozin among Patients with Obesity and Type 2 Diabetes
Abstract
:1. Introduction
2. Results
2.1. Body Mass Index, Body Fat, and Visceral Fat Were Significantly Lower in the Empagliflozin Treated Group
2.2. Hemoglobin Levels Were Significantly Higher among the Empagliflozin Treated Patients
2.3. Renal Parameters Were Significantly Higher in Diabetic Patients, Yet Were Reduced in the Empagliflozin Treated Group
2.4. Blood Glucose and HbA1c Levels Were Significantly Higher in Diabetic Patients, Yet There Was No Significant Difference between the Different Diabetic Groups
2.5. Leptin Levels Were Significantly Higher in Obese Patients, Yet Were Reduced in the Empagliflozin-Treated Group
2.6. There Were No Significant Differences between the Other Measured Parameters
3. Discussion
4. Materials and Methods
4.1. Ethics
4.2. Patients
4.3. Study Design
4.4. Anthropometric Measurements
4.5. Laboratory Tests
4.6. Immunoassay Tests
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Loos, R.J.F.; Yeo, G.S.H. The genetics of obesity: From discovery to biology. Nat. Rev. Genet. 2022, 23, 120–133. [Google Scholar] [CrossRef]
- Klein, S.; Gastaldelli, A.; Yki-Järvinen, H.; Scherer, P.E. Why does obesity cause diabetes? Cell Metab. 2022, 34, 11–20. [Google Scholar] [CrossRef]
- Vekic, J.; Zeljkovic, A.; Stefanovic, A.; Jelic-Ivanovic, Z.; Spasojevic-Kalimanovska, V. Obesity and dyslipidemia. Metabolism 2019, 92, 71–81. [Google Scholar] [CrossRef]
- Powell-Wiley, T.M.; Poirier, P.; Burke, L.E.; Després, J.-P.; Gordon-Larsen, P.; Lavie, C.J.; Lear, S.A.; Ndumele, C.E.; Neeland, I.J.; Sanders, P.; et al. Obesity and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation 2021, 143, e984–e1010. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, M.F.; Kachur, S.M.; Lavie, C.J. Hypertension in obesity. Curr. Opin. Cardiol. 2020, 35, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Piché, M.-E.; Tchernof, A.; Després, J.-P. Obesity Phenotypes, Diabetes, and Cardiovascular Diseases. Circ. Res. 2020, 126, 1477–1500. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, S.E.; Blackburn, O.A.; Marchildon, F.; Cohen, P. Insights into the Link between Obesity and Cancer. Curr. Obes. Rep. 2017, 6, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Kovesdy, C.P.; Furth, S.L.; Zoccali, C. Obesity and kidney disease: Hidden consequences of the epidemic. J. Nephrol. 2017, 30, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Urano, T.; Inoue, S. Recent genetic discoveries in osteoporosis, sarcopenia and obesity. Endocr. J. 2015, 62, 475–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- George, M.D.; Baker, J.F. The Obesity Epidemic and Consequences for Rheumatoid Arthritis Care. Curr. Rheumatol. Rep. 2016, 18, 6. [Google Scholar] [CrossRef] [Green Version]
- Lause, M.; Kamboj, A.; Faith, E.F. Dermatologic manifestations of endocrine disorders. Transl. Pediatr. 2017, 6, 300–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farooqi, I.S.; O’Rahilly, S. Human disorders of leptin action. J. Endocrinol. 2014, 223, T63–T70. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, A.M.; Neumann, U.H.; Glavas, M.M.; Kieffer, T.J. The glucoregulatory actions of leptin. Mol. Metab. 2017, 6, 1052–1065. [Google Scholar] [CrossRef] [PubMed]
- UK Prospective Diabetes Study (UKPDS) Group. Intensive Blood-Glucose Control with Sulfonylureas or Insulin Compared with Conventional Treatment and Risk of Complications in Patients with Type 2 Diabetes. Endocrinologist 1999, 9, 149. [Google Scholar] [CrossRef] [Green Version]
- Ouchi, K.W.N.; Parker, J.L.; Lugus, J.J.; Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 2011, 11, 85–97. [Google Scholar] [CrossRef]
- Katsiki, N.; Mikhailidis, D.P.; Banach, M. Leptin, cardiovascular diseases and type 2 diabetes mellitus review-article. Acta Pharmacol. Sin. 2018, 39, 1176–1188. [Google Scholar] [CrossRef] [Green Version]
- Artasensi, A.; Pedretti, A.; Vistoli, G.; Fumagalli, L. Type 2 Diabetes Mellitus: A Review of Multi-Target Drugs. Molecules 2020, 25, 1987. [Google Scholar] [CrossRef]
- Vesa, C.M.; Popa, L.; Popa, A.R.; Rus, M.; Zaha, A.A.; Bungau, S.; Tit, D.M.; Corb Aron, R.A.; Zaha, D.C. Current Data Regarding the Relationship between Type 2 Diabetes Mellitus and Cardiovascular Risk Factors. Diagnostics 2020, 10, 314. [Google Scholar] [CrossRef]
- Musso, G.; Gambino, R.; Cassader, M.; Pagano, G. A novel approach to control hyperglycemia in type 2 diabetes: Sodium glucose co-transport (SGLT) inhibitors. Systematic review and meta-analysis of randomized trials. Ann. Med. 2012, 44, 375–393. [Google Scholar] [CrossRef]
- Szekeres, Z.; Toth, K.; Szabados, E. The Effects of SGLT2 Inhibitors on Lipid Metabolism. Metabolites 2021, 11, 87. [Google Scholar] [CrossRef]
- Fitchett, D.; Inzucchi, S.E.; Cannon, C.P.; McGuire, D.K.; Scirica, B.M.; Johansen, O.E.; Sambevski, S.; Kaspers, S.; Pfarr, E.; George, J.T.; et al. Empagliflozin Reduced Mortality and Hospitalization for Heart Failure Across the Spectrum of Cardiovascular Risk in the EMPA-REG OUTCOME Trial. Circulation 2019, 139, 1384–1395. [Google Scholar] [CrossRef]
- Jakubiak, G.K.; Osadnik, K.; Lejawa, M.; Kasperczyk, S.; Osadnik, T.; Pawlas, N. Oxidative Stress in Association with Metabolic Health and Obesity in Young Adults. Oxid. Med. Cell. Longev. 2021, 2021, 9987352. [Google Scholar] [CrossRef] [PubMed]
- Jakubiak, G.K.; Osadnik, K.; Lejawa, M.; Osadnik, T.; Golawski, M.; Lewandowski, P.; Pawlas, N. “Obesity and Insulin Re-sistance” Is the Component of the Metabolic Syndrome Most Strongly Associated with Oxidative Stress. Antioxidants 2022, 11, 79. [Google Scholar] [CrossRef]
- Tsatsoulis, A.; Paschou, S.A. Metabolically Healthy Obesity: Criteria, Epidemiology, Controversies, and Consequences. Curr. Obes. Rep. 2020, 9, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Genovesi, S.; Antolini, L.; Orlando, A.; Gilardini, L.; Bertoli, S.; Giussani, M.; Invitti, C.; Nava, E.; Battaglino, M.G.; Leone, A.; et al. Cardiovascular Risk Factors Associated with the Metabolically Healthy Obese (MHO) Phenotype Compared to the Metabolically Unhealthy Obese (MUO) Phenotype in Children. Front. Endocrinol. 2020, 11, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahabadi, A.A.; Massaro, J.M.; Rosito, G.A.; Levy, D.; Murabito, J.M.; Wolf, P.A.; O’Donnell, C.J.; Fox, C.S.; Hoffmann, U. Association of pericardial fat, intrathoracic fat, and visceral abdominal fat with cardiovascular disease burden: The Framingham Heart Study. Eur. Heart J. 2009, 30, 850–856. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Nagata, N.; Nagashimada, M.; Zhuge, F.; Ni, Y.; Chen, G.; Mayoux, E.; Kaneko, S.; Ota, T. SGLT2 Inhibition by Empagliflozin Promotes Fat Utilization and Browning and Attenuates Inflammation and Insulin Resistance by Polarizing M2 Macrophages in Diet-induced Obese Mice. Ebiomedicine 2017, 20, 137–149. [Google Scholar] [CrossRef] [Green Version]
- Andrade-Oliveira, V.; Câmara, N.O.S.; Moraes-Vieira, P.M. Adipokines as Drug Targets in Diabetes and Underlying Disturbances. J. Diabetes Res. 2015, 2015, 681612. [Google Scholar] [CrossRef]
- Vavruch, C.; Länne, T.; Fredrikson, M.; Lindström, T.; Östgren, C.J.; Nystrom, F.H. Serum leptin levels are independently related to the incidence of ischemic heart disease in a prospective study of patients with type 2 diabetes. Cardiovasc. Diabetol. 2015, 14, 62. [Google Scholar] [CrossRef] [Green Version]
- Morioka, T.; Emoto, M.; Yamazaki, Y.; Kawano, N.; Imamura, S.; Numaguchi, R.; Urata, H.; Motoyama, K.; Mori, K.; Fukumoto, S.; et al. Leptin is associated with vascular endothelial function in overweight patients with type 2 diabetes. Cardiovasc. Diabetol. 2014, 13, 10. [Google Scholar] [CrossRef] [Green Version]
- Puurunen, V.-P.; Kiviniemi, A.; Lepojärvi, S.; Piira, O.-P.; Hedberg, P.; Junttila, J.; Ukkola, O.; Huikuri, H. Leptin predicts short-term major adverse cardiac events in patients with coronary artery disease. Ann. Med. 2017, 49, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Bickel, C.; Schnabel, R.B.; Zeller, T.; Lackner, K.J.; Rupprecht, H.J.; Blankenberg, S.; Sinning, C.; Westermann, D. Predictors of leptin concentration and association with cardiovascular risk in patients with coronary artery disease: Results from the AtheroGene study. Biomarkers 2016, 22, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Tsai, J.-P.; Wang, J.-H.; Chen, M.-L.; Yang, C.-F.; Chen, Y.-C.; Hsu, B.-G. Association of serum leptin levels with central arterial stiffness in coronary artery disease patients. BMC Cardiovasc. Disord. 2016, 16, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasan-Ali, H.; El-Mottaleb, N.A.A.; Hamed, H.B.; Abd-Elsayed, A. Serum adiponectin and leptin as predictors of the presence and degree of coronary atherosclerosis. Coron. Artery Dis. 2011, 22, 264–269. [Google Scholar] [CrossRef] [Green Version]
- Feijóo-Bandín, S.; Portoles, M.; Roselló-Lletí, E.; Rivera, M.; Juanatey, J.R.G.; Lago, F. 20years of leptin: Role of leptin in cardiomyocyte physiology and physiopathology. Life Sci. 2015, 140, 10–18. [Google Scholar] [CrossRef]
- Alix, P.M.; Guebre-Egziabher, F.; Soulage, C.O. Leptin as an uremic toxin: Deleterious role of leptin in chronic kidney disease. Biochimie 2014, 105, 12–21. [Google Scholar] [CrossRef]
- Ambarkar, M. Adipokines and their Relation to Endothelial Dysfunction in Patients with Chronic Kidney Disease. J. Clin. Diagn. Res. 2016, 10, BC04–BC08. [Google Scholar] [CrossRef]
- De Oliveira, R.B.; Liabeuf, S.; Okazaki, H.; Lenglet, A. The clinical impact of plasma leptin levels in a cohort of chronic kidney disease patients. Clin. Kidney J. 2012, 6, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Packer, M.; Zannad, F.; Butler, J.; Filippatos, G.; Ferreira, J.P.; Pocock, S.J.; Brueckmann, M.; Zeller, C.; Hauske, S.; Anker, S.D.; et al. Influence of endpoint definitions on the effect of empagliflozin on major renal outcomes in the EMPEROR-Preserved trial. Eur. J. Heart Fail. 2021, 23, 1798–1799. [Google Scholar] [CrossRef]
- Packer, M.; Januzzi, J.L.; Ferreira, J.P.; Anker, S.D.; Butler, J.; Filippatos, G.; Pocock, S.J.; Brueckmann, M.; Jamal, W.; Cotton, D.; et al. Concentration-dependent clinical and prognostic importance of high-sensitivity cardiac troponin T in heart failure and a reduced ejection fraction and the influence of empagliflozin: The EMPEROR -Reduced trial. Eur. J. Heart Fail. 2021, 23, 1529–1538. [Google Scholar] [CrossRef]
- Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J. Med. 2015, 373, 2117–2128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zinman, B.; Inzucchi, S.; Lachin, J.M.; Wanner, C.; Ferrari, R.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Kempthorne-Rawson, J.; Newman, J.; et al. Rationale, design, and baseline characteristics of a randomized, placebo-controlled cardiovascular outcome trial of empagliflozin (EMPA-REG OUTCOME™). Cardiovasc. Diabetol. 2014, 13, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, P.; Wen, W.; Li, J.; Xu, J.; Zhao, M.; Chen, H.; Sun, J. Systematic Review and Meta-Analysis of Randomized Controlled Trials on the Effect of SGLT2 Inhibitor on Blood Leptin and Adiponectin Level in Patients with Type 2 Diabetes. Horm. Metab. Res. 2019, 51, 487–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vickers, S.P.; Cheetham, S.; Headland, K.; Dickinson, K.; Grempler, R.; Mayoux, E.; Mark, M.; Klein, T. Combination of the sodium-glucose cotransporter-2 inhibitor empagliflozin with orlistat or sibutramine further improves the body-weight reduction and glucose homeostasis of obese rats fed a cafeteria diet. Diabetes, Metab. Syndr. Obesity Targets Ther. 2014, 7, 265–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, C.J.; Iqbal, N.; T’Joen, C.; List, J.F. Dapagliflozin monotherapy in drug-naïve patients with diabetes: A randomized-controlled trial of low-dose range. Diabetes, Obes. Metab. 2012, 14, 951–959. [Google Scholar] [CrossRef]
- Lee, D.M.; Battson, M.L.; Jarrell, D.K.; Hou, S.; Ecton, K.E.; Weir, T.L.; Gentile, C.L. SGLT2 inhibition via dapagliflozin improves generalized vascular dysfunction and alters the gut microbiota in type 2 diabetic mice. Cardiovasc. Diabetol. 2018, 17, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malínska, H.; Hütti, M.; Miklánková, D.; Hojná, S.; Papaoušek, F.; Šilhavý, J.; Mlejnek, P.; Zicha, J.; Hrdlička, J.; Pravenec, M.; et al. Beneficial Effects of Empagliflozin Are Mediated by Reduced Renal Inflammation and Oxidative Stress in Spontaneously Hypertensive Rats Expressing Human C-Reactive Protein. Biomedicines 2022, 10, 2066. [Google Scholar] [CrossRef]
- Gohan, S.; Reshadmanesh, T.; Khodabandehloo, H.; Karbalaee-Hasani, A.; Ahangar, H.; Arsang-Jang, S.; Ismail-Beigi, F.; Dadashi, M.; Ghanban, S.; Taheri, H.; et al. The effect of EMPAgliflozin on markers of inflammation in patients with concomitant type 2 diabetes mellitus and Coronary ARtery Disease: The EMPA-CARD randomized controlled trial. Diabetol. Metab. Syndr. 2022, 13, 170. [Google Scholar] [CrossRef]
Group | C (n = 20) | O (n = 20) | D (n = 19) | OD (n = 19) | ODE (n = 20) | Total (n = 98) |
---|---|---|---|---|---|---|
Demographics and anthropometrics | ||||||
Age, years | 65.95 ± 1.98 | 66.40 ± 2.23 | 74.58 ± 6.38 | 70.90 ± 1.74 | 65.2 ± 1.86 | 68.52 ± 0.90 |
Male sex, % | 75.00 | 50.00 | 52.60 | 68.40 | 75.00 | 64.30 |
BMI, kg/m2 | 26.01 ± 0.50 | 34.75 ± 0.85 | 26.50 ± 0.44 | 35.78 ± 0.91 | 31.61 ± 0.77 | 31.04 ± 0.52 |
Body fat, % | 26.75 ± 6.73 | 38.44 ± 8.38 | 28.12 ± 6.62 | 37.24 ± 6.67 | 30.98 ± 6.06 | 32.93 ± 6.90 |
Visc. fat, %) | 10.5 ± 0.56 | 16.65 ± 0.93 | 10.89 ± 0.58 | 19.01 ± 1.25 | 15.50 ± 0.67 | 14.51 ± 0.79 |
Comorbidities | ||||||
HT, % | 100.00 | 100.00 | 100.00 | 100.0 | 100.00 | 100.00 |
DM, % | 0.00 | 0.00 | 100.00 | 100.00 | 100.00 | 59.20 |
CVD, % | 70.40 | 69.40 | 78.60 | 84.70 | 64.30 | 73.48 |
Medications | ||||||
Antihypertensive, % | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Antidiabetics (other, than SGLT2i), % | 0.00 | 0.00 | 100.00 | 100.00 | 100.00 | 59.20 |
Antihyperlipidemic, % | 70.00 | 75.00 | 89.47 | 84.20 | 80.00 | 79.59 |
Groups | C (n = 20) | O (n = 20) | D (n = 19) | OD (n = 19) | ODE (n = 20) |
---|---|---|---|---|---|
Hemoglobin, g/L | 141.85 ± 20.16 | 139.85 ± 11.85 | 133.79 ± 18.20 | 126.32 ± 14.72 | 152.90 ± 10.56 |
HbA1c, % | 5.48 ± 0.08 | 5.67 ± 0.93 | 6.72 ± 0.34 | 6.39 ± 0.15 | 7.68 ± 0.33 |
Blood glucose, mmol/L | 5.48 ± 0.85 | 5.62 ± 1.17 | 6.79 ± 1.95 | 6.20 ± 1.53 | 7.01 ± 1.61 |
CRP, mg/L | 1.93 ± 0.43 | 6.81 ± 2.08 | 3.83 ± 1.08 | 4.55 ± 1.61 | 3.94 ± 0.60 |
Urea nitrogen, mmol/L | 6.30 ± 0.75 | 5.22 ± 0.32 | 6.34 ± 0.42 | 9.69 ± 0.28 | 5.71 ± 0.31 |
Creatinine, µmol/L | 83 ± 3.99 | 81.55 ± 3.42 | 94.68 ± 3.75 | 120.26 ± 9.75 | 81.71 ± 3.87 |
Total chol., mmol/L | 4.73 ± 0.25 | 4.44 ± 0.26 | 3.79 ± 0.24 | 4.12 ± 0.36 | 4.12 ± 0.28 |
HDL, mmol/L | 1.33 ± 0.08 | 1.25 ± 0.06 | 1.11 ± 0.05 | 1.10 ± 0.08 | 1.06 ± 0.05 |
LDL, mmol/L | 3.15 ± 0.25 | 2.58 ± 0.21 | 2.21 ± 0.22 | 2.38 ± 0.31 | 2.21 ± 0.23 |
Triglycerides, mmol/L | 1.76 ± 0.38 | 1.77 ± 0.27 | 1.81 ± 0.19 | 1.78 ± 0.22 | 1.88 ± 0.16 |
Leptin, ng/mL | 5.97 ± 0.70 | 19.42 ± 3.06 | 10.33 ± 2.21 | 29.86 ± 3.61 | 17.43 ± 2.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szekeres, Z.; Sandor, B.; Bognar, Z.; Ramadan, F.H.J.; Palfi, A.; Bodis, B.; Toth, K.; Szabados, E. Clinical Study of Metabolic Parameters, Leptin and the SGLT2 Inhibitor Empagliflozin among Patients with Obesity and Type 2 Diabetes. Int. J. Mol. Sci. 2023, 24, 4405. https://doi.org/10.3390/ijms24054405
Szekeres Z, Sandor B, Bognar Z, Ramadan FHJ, Palfi A, Bodis B, Toth K, Szabados E. Clinical Study of Metabolic Parameters, Leptin and the SGLT2 Inhibitor Empagliflozin among Patients with Obesity and Type 2 Diabetes. International Journal of Molecular Sciences. 2023; 24(5):4405. https://doi.org/10.3390/ijms24054405
Chicago/Turabian StyleSzekeres, Zsolt, Barbara Sandor, Zita Bognar, Fadi H. J. Ramadan, Anita Palfi, Beata Bodis, Kalman Toth, and Eszter Szabados. 2023. "Clinical Study of Metabolic Parameters, Leptin and the SGLT2 Inhibitor Empagliflozin among Patients with Obesity and Type 2 Diabetes" International Journal of Molecular Sciences 24, no. 5: 4405. https://doi.org/10.3390/ijms24054405
APA StyleSzekeres, Z., Sandor, B., Bognar, Z., Ramadan, F. H. J., Palfi, A., Bodis, B., Toth, K., & Szabados, E. (2023). Clinical Study of Metabolic Parameters, Leptin and the SGLT2 Inhibitor Empagliflozin among Patients with Obesity and Type 2 Diabetes. International Journal of Molecular Sciences, 24(5), 4405. https://doi.org/10.3390/ijms24054405