How to Tackle Bacteriophages: The Review of Approaches with Mechanistic Insight
Abstract
:1. Introduction
2. Physical Methods Used to Inactivate Bacteriophages
2.1. Thermal Disinfection
2.2. UV Radiation
2.3. Pressure and Humidity
2.4. Filtration
2.5. Femtosecond Laser
2.6. Non-Thermal Plasma
Factor | Phage | Conditions | Remarks/Mechanism | References |
---|---|---|---|---|
Temperature | P008, pll98, MS2, P680, P1532, PRD1, ΦX174, somatic coliphages, Bacteroides fragilis phage, Lactobacillus helveticus, Lactococcus lactis bacteriophages, OMKO1, HK97, λ, PP7, thermophilic Bacillus phages | Medium temperature range from 55 °C to 100 °C | Structural damage, protein denaturation The medium plays an important role in terms of the thermal resistance of phages P680 requires a higher temperature (from 100 °C for 20 min to 140 °C for 2 s) | [27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44] |
E. coli phage | Inactivation in the wet and dry state | In the dried state, rate of inactivation varies exponentially | [105] | |
MS2 | Low temperature 4–15 °C | Reduction 15 °C after 30 days Virus inactivation of 2 log at 15 °C after 30 days and reduction of 3.5 log at 25 °C after 28 days | [106,107] | |
Pressure | 832-B1, QP4, QF12, 13.2, B1, MLC-A, MLC-A8, ΦiLp84, ΦiLp1308 | <100 MPa | High pressure resistance | [69,70] |
P001, P008 | 0.1–600 MPa 25–80 °C | Structural damage caused by pressure and heat combination. However, over a specific range of pressure and heat, they act antagonistically | [71,72] | |
ΦX174, λ,T4, MS2 | >300 MPa | Structural damage caused by pressure: (1) phage with shrunken envelopes and DNA-containing heads; (2) phage with shrunken envelopes and heads lacking DNA. The ratio of the two types is strongly dependent on temperature used | [67,68,73,108] | |
Irradiation | MS2, S-13, C-36 and Staph-K, ΦX-174, B40-8 | y-rays, X-rays and a-rays | Dose effect dependent on exposure time | [109,110,111] |
Φ6 | IR 0.5 m for 3 h at different humidity levels | Over 90% inactivation at humidity levels above 50% | [112] | |
Microwaves | T4, T7, λ, MS2, E. coli bacteriophage isolated from sewage | Different times from 10 s to 2 min | Thermal inactivation | [45,113,114,115] |
Filtration | MS2 | Modified Al2O3 granular ceramic filter materials Al2O3 or Cu/Ag | Highly porous granular structures play a key role in the removal | [116,117] |
SJC3 | Columns of quartz sand | Filtration strongly dependent on the concentration and valence of the dominant cation in the pore fluid (CaCl2 increased virus removal) | [91] | |
MS2, PRD1,T4 | Carbon nanotubes (CNT) | Both filtration and inactivation of viral aerosols, CaCl2 increased virus removal, likely due to complexation of calcium ions to viral surface | [87,88,89,118] | |
λ, T4, MS2 | Iodinated resin filters | Structural damage to the capsid protein through filter enrichment with iodine | [119,120,121] | |
f2, MS2, T4, T7 | Filtration and UV | [122,123,124,125] | ||
UV | λ, MS2, PRD1, R17, PP7, fd, M13, T4, T7, SP8, ΦX174, B40-8, GA, Qβ, Staphylococcus-phage A994, Φ6, P680, P008, T1, P22, T2, R17 | From 9 mJ/cm2 to 50 mJ/cm2 depending on the phage | Time- and phage-dependent dose. MS2 phage had the greatest resistance | [53,54,55,56,57,110,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143] |
MS2, different coliphages from the treated municipal wastewater | 0.05–0.25 mg/L Cl and 14–22 mWs/cm2 UV | More effective than chlorine alone | [144,145,146] | |
Ozone | MS2 | 0.03 mg min/L and a small O3-Ct value | ROS-mediated oxidative damage. The synergistic effect after the sequential ozone-UV and UV-ozone exposures | [65,147,148] |
Electric field | M13, M18, λ | Pulsed electric field (PEF), 5 or 7 kV | Survival ratios after 12 min PEF treatment were 10−4–10−5 inactivation regardless of the form of the phage particle | [149] |
Ultrasound (US) | Phage of the Bacillus megaterium, bacteriophages in Klip River water, ΦX174, MS2 | 29.10, 582, 862, 1142 kHz | The synergistic effect US and UV | [63,64,150,151] |
Plasma | ΦX174 | One atmosphere uniform glow discharge plasma (OAUGDP) | Titer reduction >106 after 15 min | [152,153] |
ΦX174, MS2, λ | Non-thermal atmospheric pressure plasma | Membrane destruction, inactivation of proteins, and DNA damage | [102,103,154,155,156,157,158] | |
MS2 | Nonthermal plasma jet operated at varying helium/oxygen | Inactivation is a function of oxygen concentration in the carrier gas mixture | [101,156] | |
ΦX174, MS2, T4 | Surface plasma in argon mixed with 1% air and plasma-activated water | ROS-mediated oxidative damage | [104] | |
Energetic femtosecond lasers | MS2, M13 | 400–800 nm lasers | Coats’ proteins disruption through laser-induced excitation of large-amplitude acoustic vibrations | [92,93,94,95,96,97,98,99,100,159,160] |
Visible Light | ΦC31, Φ6 | 405, 455 nm | ROS-mediated oxidative damage | [60,61,62] |
Humidity | MS2, Φ6, T3 | Range from low to high RH | Structure damage | [74,75,76,78,79,80,81] |
3. Bacteriophages Eradication Approaches Using Metals, Ions, and Other Inorganic Materials
3.1. Nanoparticles
3.1.1. Silver Nanoparticles
3.1.2. Gold Nanoparticles
3.1.3. Nanoscale Zero-Valent Iron, iron, and Nickel Nanoparticles
3.2. Surface Coated Metal Inactivation
Agent | Bacteriophage | Remarks/Mechanism | References |
---|---|---|---|
AgNPs | T4, RG2014, MS2, PP7, ΦX174, SP6, 9NA | Electrostatic attraction, ROS-mediated oxidative damage, silver ions release | [178,179,185] |
AgNPs-SiO2 | MS2 | Release of Ag+ ions | [183] |
AuNPs | T1, T4, T7 | Electrostatic attraction and hydrophobic interactions | [187] |
TiO2 NPs | MS2 | ROS-mediated oxidative damage | [203] |
Fe/Ni NPs | F2 | ROS-mediated oxidative damage | [188,189,190] |
NP-CuO, NP-Ag-CuO | T4 | Nucleophilic attack | [184,185] |
nZVI | T4, T7, MS2, M13, F2, φX174 | ROS-mediated oxidative damage, nucleic acids and capsid damage. | [172,188,189,190,191,192,204] |
ZnOMgO, Cu2O CuO | M13, Qβ | Release of metal ions, particle adsorption, ROS-mediated oxidative damage | [165,205,206] |
Cu2O/Al2O3 Cu/Al2O3 | MS2 | Copper ions release | [207] |
IOCS—Iron oxide-coated sand | MS2, ΦX174 | IOCS adsorption of bacteriophage | [168] |
TiO2, CuO | T4, Qβ | Outer viral protein damage, bounding to TiO2 particles, ROS-mediated oxidative damage | [201,208] |
Cu-TiO2 | f2 | ROS-mediated oxidative damage | [202] |
Iron oxide | P22, MS2 | Unknown | [169,171] |
AgNO3, FeSO4, Al2(SO4)3, NiCl2, K2Cr2O7, CuSO4 | Φ6, Qβ | Unknown | [165,195] |
Cu2S CuI, CuCl | Qβ | Direct contact with the solid-state surface | [206] |
SnCl2, SnCl4 | T4 | Inactivation most likely due to the presence of multiple sites of tin reactivity | [209] |
Silver | ΦX174, MS2 | Denaturation of MS2 Loss of capsid spikes in ΦX174 | [164,166,210] |
Ferrum | MS2, P22 | Oxidants generated by iron oxidation, close contact, sorption of ferrous iron | [170,172] |
Copper | Φ6, Φ8, PP7, ΦX174, PM2. MS2 | ROS-mediated oxidative damage | [202] |
Cu2NiSiCr, Cu15Ni8Sn Co28Cr6Mo | Φ6 | Unknown | [195,196] |
Ozone | MS2, ΦX174, Φ6, T7 | Unknown | [161] |
CO2 | MS2, Qβ, T4 | Capsid damage—CO2 uptake at high pressure and bursting of virions by depressurization | [162,163] |
4. Organic Chemicals and Antimicrobials toward Bacteriophage Propagation Control
4.1. Disinfectants
4.2. Phytochemicals
4.2.1. Phenolic Compounds
4.2.2. Isothiocyanates
4.2.3. Plant Extracts
4.3. Antibiotics
Group | Agent | Bacteriophage | Remarks/Mechanism | References |
---|---|---|---|---|
Disinfectants | Ethanol, isopropanol | MS2, K, CYM, 021-4, 021-5, 0BJ, F116 | Capsid denaturation | [211,217,222] |
Glutaraldehyde | F2, MS2 | Alkylation of nucleic acid | [217,218] | |
octenidine dihydrochloride | F2, MS2, Entb_43, Entb_45 | Unknown | [266,267] | |
Peracetic acid | F116, Ib3 | Capsid denaturation | [211,268] | |
Quaternary ammonium | MS2, c2, P008, CB13, AF6, P1532, λ | [212,215,216,253] | ||
Phenol | F116, φX174 | Genome damage, ROS | [222,223,268] | |
Phytochemicals | Caffeic acid | Av-5, MS2, φX174 | Inhibition of replication | [223,225] |
Gallic acid | Av-5, MS2, PL-1, φX174 | Inhibition of replication and infection | [223,225,226,230] | |
Carvacrol | 933 W, MS2 | Inhibition of enzymatic activity of host proteins | [269,270] | |
Tannic acid | λ, MS2 | ROS, capsid denaturation | [231] | |
Epigallocatechin gallate | 933 J | Repression of SOS response and phage gene expression | [228] | |
Catechin | T4D, T7 | Structural damage, modulation of gene expression | [227,229] | |
Cinnamaldehyde | 933 W | Repression of recA | [271,272] | |
Thymol | φC, φEC | Unknown | [273] | |
Chitosan | MS2, φX174, 1–97 A, c2, 933W | Capsid denaturation | [215,274,275,276] | |
Quercetin, myricetin, p-coumaric acid, cinnamic acid, kaempferol | OE33PA | Inhibition of phage adsorption | [224] | |
Isothiocyanates | 933W, φ24B, λ | Stringent response induction | [238,239] | |
Tea extracts | Felix O-1, P22 | Unknown | [277] | |
Pomegranate juice | MS2, S. aureus phage PHAGESTAPH, Felix O-1, NCIMB 9563 | Capsid denaturation | [221,245,246,247,248] | |
Cranberry juice | T2, T4, MS2, φX174 | Capsid denaturation, adsorption prevention | [250,251,278] | |
Propolis | MS2, Av-08 | Capsid denaturation, adsorption and internalization prevention | [279,280,281] | |
Ascorbic acid | δA, φX174, T7, P22, D29, PM2, MS2 | Genome damage | [282,283,284] | |
Antibiotics | Bleomycin | PM2 | DNA damage | [263] |
Apramycin | λ, Alderaan | Replication impairment | [260] | |
Streptomycin | f2, MS2 | Block of genetic material injection step | [257,258] | |
Rugulosin | MS2, GA and δβ | Early steps of development impairing, RNA injection block | [255] | |
Kanamycin, hygromycin, streptomycin | phAE159, D29 | [259] | ||
Quinomycin A | T2 | Block of association of DNA and head protein | [265] | |
Phleomycin | R23, T2 PBS2 | Inhibition of phage-specific RNA synthesis | [261,262] | |
Nalidixic acid | PBS2 | Inhibition of infection | [285] |
5. Perspectives
- The relevant methods of phage eradication should take into account the differences in the structure and virus type.
- The research aimed at developing new methods of phage infection prevention should include not only establishing of novel compounds but also their utilization.
- The standards of disinfection effectiveness should be increased from typically 3-log decrease in the phage titer to 6 log (due to the need to reduce a higher relative titer of viral particles vs. bacterial cells).
- The phage usage in medicine and biotechnology should be under strict monitoring to prevent from uncontrolled spreading in the environment, which is especially important for phages imported from distant ecosystems.
- It should be taken into consideration to establish the rules of monitoring bacteriophage genetic variations and diversity to maintain the safety of phage use, especially in clinical practice.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ofir, G.; Sorek, R. Contemporary Phage Biology: From Classic Models to New Insights. Cell 2018, 172, 1260–1270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shapiro, O.H.; Kushmaro, A. Bacteriophage Ecology in Environmental Biotechnology Processes. Curr. Opin. Biotechnol. 2011, 22, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Santiago-Rodriguez, T.M.; Hollister, E.B. Human Virome and Disease: High-Throughput Sequencing for Virus Discovery, Identification of Phage-Bacteria Dysbiosis and Development of Therapeutic Approaches with Emphasis on the Human Gut. Viruses 2019, 11, 656. [Google Scholar] [CrossRef] [Green Version]
- Al-Hindi, R.R.; Teklemariam, A.D.; Alharbi, M.G.; Alotibi, I.; Azhari, S.A.; Qadri, I.; Alamri, T.; Harakeh, S.; Applegate, B.M.; Bhunia, A.K. Bacteriophage-Based Biosensors: A Platform for Detection of Foodborne Bacterial Pathogens from Food and Environment. Biosensors 2022, 12, 905. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Dharmaraj, T.; Cai, P.C.; Burgener, E.B.; Haddock, N.L.; Spakowitz, A.J.; Bollyky, P.L. Bacteriophage and Bacterial Susceptibility, Resistance, and Tolerance to Antibiotics. Pharmaceutics 2022, 14, 1425. [Google Scholar] [CrossRef]
- Fernández, L.; Escobedo, S.; Gutiérrez, D.; Portilla, S.; Martínez, B.; García, P.; Rodríguez, A. Bacteriophages in the Dairy Environment: From Enemies to Allies. Antibiotics 2017, 6, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Briggiler Marcó, M.; Mercanti, D.J. Bacteriophages in Dairy Plants. Adv. Food Nutr. Res. 2021, 97, 1–54. [Google Scholar] [CrossRef]
- Simmonds, P.; Aiewsakun, P. Virus Classification—Where Do You Draw the Line? Arch. Virol. 2018, 163, 2037. [Google Scholar] [CrossRef] [Green Version]
- Sulakvelidze, A.; Alavidze, Z.; Morris, J. Bacteriophage Therapy. Antimicrob. Agents Chemother. 2001, 45, 649–659. [Google Scholar] [CrossRef] [Green Version]
- Loś, J.M.; Loś, M.; Wegrzyn, G. Bacteriophages Carrying Shiga Toxin Genes: Genomic Variations, Detection and Potential Treatment of Pathogenic Bacteria. Future Microbiol. 2011, 6, 909–924. [Google Scholar] [CrossRef]
- Düzgüneş, N.; Sessevmez, M.; Yildirim, M. Bacteriophage Therapy of Bacterial Infections: The Rediscovered Frontier. Pharmaceuticals 2021, 14, 34. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Du, F.; Long, M.; Li, P. Limitations of Phage Therapy and Corresponding Optimization Strategies: A Review. Molecules 2022, 27, 1857. [Google Scholar] [CrossRef] [PubMed]
- Bao, Q.; Li, X.; Han, G.; Zhu, Y.; Mao, C.; Yang, M. Phage-Based Vaccines. Adv. Drug Deliv. Rev. 2019, 145, 40–56. [Google Scholar] [CrossRef] [PubMed]
- Nagano, K.; Tsutsumi, Y. Phage Display Technology as a Powerful Platform for Antibody Drug Discovery. Viruses 2021, 13, 178. [Google Scholar] [CrossRef] [PubMed]
- Harada, L.K.; Silva, E.C.; Campos, W.F.; del Fiol, F.S.; Vila, M.; Dąbrowska, K.; Krylov, V.N.; Balcão, V.M. Biotechnological Applications of Bacteriophages: State of the Art. Microbiol. Res. 2018, 212–213, 38–58. [Google Scholar] [CrossRef]
- Colavecchio, A.; Cadieux, B.; Lo, A.; Goodridge, L.D. Bacteriophages Contribute to the Spread of Antibiotic Resistance Genes among Foodborne Pathogens of the Enterobacteriaceae Family—A Review. Front. Microbiol. 2017, 8, 1108. [Google Scholar] [CrossRef] [Green Version]
- Jebri, S.; Rahmani, F.; Hmaied, F. Bacteriophages as Antibiotic Resistance Genes Carriers in Agro-Food Systems. J. Appl. Microbiol. 2021, 130, 688–698. [Google Scholar] [CrossRef]
- Chiang, Y.N.; Penadés, J.R.; Chen, J. Genetic Transduction by Phages and Chromosomal Islands: The New and Noncanonical. PLoS Pathog. 2019, 15, e1007878. [Google Scholar] [CrossRef] [Green Version]
- Penadés, J.R.; Chen, J.; Quiles-Puchalt, N.; Carpena, N.; Novick, R.P. Bacteriophage-Mediated Spread of Bacterial Virulence Genes. Curr. Opin. Microbiol. 2015, 23, 171–178. [Google Scholar] [CrossRef]
- Boyd, E.F. Bacteriophage-Encoded Bacterial Virulence Factors and Phage-Pathogenicity Island Interactions. Adv. Virus Res. 2012, 82, 91–118. [Google Scholar] [CrossRef]
- Castillo, D.; Kauffman, K.; Hussain, F.; Kalatzis, P.; Rørbo, N.; Polz, M.F.; Middelboe, M. Widespread Distribution of Prophage-Encoded Virulence Factors in Marine Vibrio Communities. Sci. Rep. 2018, 8, 9973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, N.L.; Taylor, E.J.; Lindsay, A.M.; Charnock, S.J.; Turkenburg, J.P.; Dodson, E.J.; Davies, G.J.; Black, G.W. Structure of a Group A Streptococcal Phage-Encoded Virulence Factor Reveals a Catalytically Active Triple-Stranded β-Helix. Proc. Natl. Acad. Sci. USA 2005, 102, 17652–17657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Guo, Y.; Qiu, T.; Gao, M.; Wang, X. Bacteriophages: Underestimated Vehicles of Antibiotic Resistance Genes in the Soil. Front. Microbiol. 2022, 13. [Google Scholar] [CrossRef] [PubMed]
- Alavidze, Z.; Aminov, R.; Betts, A.; Bardiau, M.; Bretaudeau, L.; Caplin, J.; Chanishvili, N.; Coffey, A.; Cooper, I.; de Vos, D.; et al. Silk Route to the Acceptance and Re-Implementation of Bacteriophage Therapy. Biotechnol. J. 2016, 11, 595–600. [Google Scholar] [CrossRef] [Green Version]
- Pirnay, J.P.; Blasdel, B.G.; Bretaudeau, L.; Buckling, A.; Chanishvili, N.; Clark, J.R.; Corte-Real, S.; Debarbieux, L.; Dublanchet, A.; de Vos, D.; et al. Quality and Safety Requirements for Sustainable Phage Therapy Products. Pharm. Res. 2015, 32, 2173–2179. [Google Scholar] [CrossRef] [Green Version]
- Bertrand, I.; Schijven, J.F.; Sánchez, G.; Wyn-Jones, P.; Ottoson, J.; Morin, T.; Muscillo, M.; Verani, M.; Nasser, A.; de Roda Husman, A.M.; et al. The Impact of Temperature on the Inactivation of Enteric Viruses in Food and Water: A Review. J. Appl. Microbiol. 2012, 112, 1059–1074. [Google Scholar] [CrossRef]
- Müller-Merbach, M.; Neve, H.; Hinrichs, J. Kinetics of the Thermal Inactivation of the Lactococcus lactis Bacteriophage P008. J. Dairy Res. 2005, 72, 281–286. [Google Scholar] [CrossRef]
- Şanlibaba, P.; Buzrul, S.; Akkoç, N.; Alpas, H.; Akçlik, M. Thermal Inactivation Kinetics of Lactococcus lactis Subsp. Lactis Bacteriophage Pll98-22. Acta Biol. Hung. 2009, 60, 127–136. [Google Scholar] [CrossRef]
- Sadat Hosseini, S.R.; Edalatian Dovom, M.R.; Yavarmanesh, M.; Abbaszadegan, M. Thermal Inactivation of MS2 Bacteriophage as a Surrogate of Enteric Viruses in Cow Milk. J. Verbrauch. Lebensm. 2017, 12, 341–347. [Google Scholar] [CrossRef]
- García Fontán, M.C.; Martínez, S.; Franco, I.; Carballo, J. Microbiological and Chemical Changes during the Manufacture of Kefir Made from Cows’ Milk, Using a Commercial Starter Culture. Int. Dairy J. 2006, 16, 762–767. [Google Scholar] [CrossRef]
- Atamer, Z.; Hinrichs, J. Thermal Inactivation of the Heat-Resistant Lactococcus lactis Bacteriophage P680 in Modern Cheese Processing. Int. Dairy J. 2010, 3, 163–168. [Google Scholar] [CrossRef]
- Buzrul, S.; Öztürk, P.; Alpas, H.; Akcelik, M. Thermal and Chemical Inactivation of Lactococcal Bacteriophages. LWT Food Sci. Technol. 2007, 40, 1671–1677. [Google Scholar] [CrossRef]
- Atamer, Z.; Dietrich, J.; Müller-Merbach, M.; Neve, H.; Heller, K.J.; Hinrichs, J. Screening for and Characterization of Lactococcus lactis Bacteriophages with High Thermal Resistance. Int. Dairy J. 2009, 19, 228–235. [Google Scholar] [CrossRef]
- Madera, C.; Monjardín, C.; Suárez, J.E. Milk Contamination and Resistance to Processing Conditions Determine the Fate of Lactococcus lactis Bacteriophages in Dairies. Appl. Environ. Microbiol. 2004, 70, 7365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, N.; Samtlebe, M.; Franz, C.M.A.P.; Neve, H.; Heller, K.J.; Hinrichs, J.; Atamer, Z. Dairy Bacteriophages Isolated from Whey Powder: Thermal Inactivation and Kinetic Characterisation. Int. Dairy J. 2017, 68, 95–104. [Google Scholar] [CrossRef]
- Wagner, N.; Matzen, S.; Walte, H.G.; Neve, H.; Franz, C.M.A.P.; Heller, K.J.; Hammer, P. Extreme Thermal Stability of Lactococcus lactis Bacteriophages: Evaluation of Phage Inactivation in a Pilot-Plant Pasteurizer. LWT 2018, 92, 412–415. [Google Scholar] [CrossRef]
- Charles, K.J.; Shore, J.; Sellwood, J.; Laverick, M.; Hart, A.; Pedley, S. Assessment of the Stability of Human Viruses and Coliphage in Groundwater by PCR and Infectivity Methods. J. Appl. Microbiol. 2009, 106, 1827–1837. [Google Scholar] [CrossRef] [PubMed]
- Blazanin, M.; Lam, W.T.; Vasen, E.; Chan, B.K.; Turner, P.E. Decay and Damage of Therapeutic Phage OMKO1 by Environmental Stressors. PLoS ONE 2022, 17, e0263887. [Google Scholar] [CrossRef]
- Qiu, X. Heat Induced Capsid Disassembly and DNA Release of Bacteriophage λ. PLoS ONE 2012, 7, e39793. [Google Scholar] [CrossRef] [Green Version]
- Duda, R.L.; Ross, P.D.; Cheng, N.; Firek, B.A.; Hendrix, R.W.; Conway, J.F.; Steven, A.C. Structure and Energetics of Encapsidated DNA in Bacteriophage HK97 Studied by Scanning Calorimetry and Cryo-Electron Microscopy. J. Mol. Biol. 2009, 391, 471. [Google Scholar] [CrossRef] [Green Version]
- Sanchis, A.G. Thermal Inactivation of Viruses and Bacteria with Hot Air Bubbles in Different Electrolyte Solutions. Substantia 2021, 4, 69–77. [Google Scholar] [CrossRef]
- Caldeira, J.C.; Peabody, D.S. Stability and Assembly in Vitro of Bacteriophage PP7 Virus-like Particles. J. Nanobiotechnol. 2007, 5, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cele, N. Strategies to Control Bacteriophage Infection in a Threonine Bioprocess. 2009. Available online: http://hdl.handle.net/10321/451 (accessed on 15 November 2022).
- Hazem, A. Effects of Temperatures, PH-Values, Ultra-Violet Light, Ethanol and Chloroform on the Growth of Isolated Thermophilic Bacillus Phages. New Microbiol. 2002, 25, 469–476. [Google Scholar] [PubMed]
- Baines, B. A Comparison of the Effects of Microwave Irradiation and Heat Treatment of T4 and T7 Bacteriophage. J. Exp. Microbiol. Immunol. 2005, 7, 57–61. [Google Scholar]
- Atamer, Z.; Dietrich, J.; Neve, H.; Heller, K.J.; Hinrichs, J. Influence of the Suspension Media on the Thermal Treatment of Mesophilic Lactococcal Bacteriophages. Int. Dairy J. 2010, 20, 408–414. [Google Scholar] [CrossRef]
- Chopin, M.C. Resistance of 17 Mesophilic Lactic Streptococcus Bacteriophages to Pasteurization and Spray-Drying. J. Dairy Res. 1980, 47, 131–139. [Google Scholar] [CrossRef]
- Kowalski, W. Ultraviolet Germicidal Irradiation Handbook: UVGI for Air and Surface Disinfection. In Ultraviolet Germicidal Irradiation Handbook: UVGI for Air and Surface Disinfection; Springer Science & Business Media: Berlin, Germany, 2009; pp. 1–501. [Google Scholar] [CrossRef]
- Qureshi, Z.; Yassin, M. Role of Ultraviolet (UV) Disinfection in Infection Control and Environmental Cleaning. Infect. Disord. Drug Targets 2013, 13, 191–195. [Google Scholar] [CrossRef]
- Tseng, C.C.; Li, C.S. Inactivation of Virus-Containing Aerosols by Ultraviolet Germicidal Irradiation. Aerosol Sci. Technol. 2007, 39, 1136–1142. [Google Scholar] [CrossRef]
- Rauth, A.M. The Physical State of Viral Nucleic Acid and the Sensitivity of Viruses to Ultraviolet Light. Biophys. J. 1965, 5, 257. [Google Scholar] [CrossRef] [Green Version]
- Battigelli, D.A.; Sobsey, M.D.; Lobe, D.C. The Inactivation of Hepatitis a Virus and Other Model Viruses by UV Irradiation. Water Sci. Technol. 1993, 27, 339–342. [Google Scholar] [CrossRef]
- Nuanualsuwan, S.; Mariam, T.; Himathongkham, S.; Cliver, D.O. Ultraviolet Inactivation of Feline Calicivirus, Human EntericViruses and Coliphages¶. Photochem. Photobiol. 2002, 76, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.K.; Kim, S.J.; Kang, D.H. Inactivation Modeling of Human Enteric Virus Surrogates, MS2, Qβ, and ΦX174, in Water Using UVC-LEDs, a Novel Disinfecting System. Food Res. Int. 2017, 91, 115–123. [Google Scholar] [CrossRef]
- Rodriguez, R.A.; Bounty, S.; Beck, S.; Chan, C.; McGuire, C.; Linden, K.G. Photoreactivation of Bacteriophages after UV Disinfection: Role of Genome Structure and Impacts of UV Source. Water Res. 2014, 55, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Aoyagi, Y.; Takeuchi, M.; Yoshida, K.; Kurouchi, M.; Yasui, N.; Kamiko, N.; Araki, T.; Nanishi, Y. Inactivation of Bacterial Viruses in Water Using Deep Ultraviolet Semiconductor Light-Emitting Diode. J. Environ. Eng. 2011, 137, 1215–1218. [Google Scholar] [CrossRef]
- Bartolomeu, M.; Braz, M.; Costa, P.; Duarte, J.; Pereira, C.; Almeida, A. Evaluation of UV-C Radiation Efficiency in the Decontamination of Inanimate Surfaces and Personal Protective Equipment Contaminated with Phage Φ6. Microorganisms 2022, 10, 593. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.S.; Gerba, C.P. Comparative Inactivation of Enteric Adenoviruses, Poliovirus and Coliphages by Ultraviolet Irradiation. Water Res. 1996, 30, 2665–2668. [Google Scholar] [CrossRef]
- Pinon, A.; Vialette, M. Survival of Viruses in Water. Intervirology 2018, 61, 214–222. [Google Scholar] [CrossRef]
- Vatter, P.; Hoenes, K.; Hessling, M. Blue Light Inactivation of the Enveloped RNA Virus Phi6. BMC Res. Notes 2021, 14, 187. [Google Scholar] [CrossRef]
- Tomb, R.M.; Maclean, M.; Herron, P.R.; Hoskisson, P.A.; MacGregor, S.J.; Anderson, J.G. Inactivation of Streptomyces Phage ΦC31 by 405 Nm Light: Requirement for Exogenous Photosensitizers? Bacteriophage 2014, 4, e32129. [Google Scholar] [CrossRef] [Green Version]
- Vatter, P.; Hoenes, K.; Hessling, M. Photoinactivation of the Coronavirus Surrogate Phi6 by Visible Light. Photochem. Photobiol. 2021, 97, 122–125. [Google Scholar] [CrossRef]
- Chrysikopoulos, C.v.; Manariotis, I.D.; Syngouna, V.I. Virus Inactivation by High Frequency Ultrasound in Combination with Visible Light. Colloids Surf. B Biointerfaces 2013, 107, 174–179. [Google Scholar] [CrossRef] [PubMed]
- van der Walt, E.; Grundling, M. The Use of Ultraviolet Light Alone, or in Combination with Cavitational Flow and Ultrasonic Devices, to Inactivate Protozoan Cysts and Oocysts in the Small and Large Scale Treatment of Drinking Water Final Report. 2004. Available online: https://www.wrc.org.za/wp-content/uploads/mdocs/K5-1224%20f1.pdf (accessed on 15 November 2022).
- Fang, J.; Liu, H.; Shang, C.; Zeng, M.; Ni, M.; Liu, W. E. coli and Bacteriophage MS2 Disinfection by UV, Ozone and the Combined UV and Ozone Processes. Front. Environ. Sci. Eng. 2013, 8, 547–552. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lee, C.; Cho, M.; Yoon, J. Enhanced Inactivation of E. coli and MS-2 Phage by Silver Ions Combined with UV-A and Visible Light Irradiation. Water Res. 2008, 42, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Brauch, G.; Hansler, U.; Ludwia, H. The Effect of Pressure on Bacteriophages. High Press. Sci. Technol. 2006, 5, 767–769. [Google Scholar] [CrossRef]
- D’Souza, D.H.; Xiaowei, S.U.; Adrienne, R.; Harte, F. High-Pressure Homogenization for the Inactivation of Human Enteric Virus Surrogates. J. Food Prot. 2009, 72, 2418–2422. [Google Scholar] [CrossRef]
- Mercanti, D.J.; Guglielmotti, D.M.; Patrignani, F.; Reinheimer, J.A.; Quiberoni, A. Resistance of Two Temperate Lactobacillus Paracasei Bacteriophages to High Pressure Homogenization, Thermal Treatments and Chemical Biocides of Industrial Application. Food Microbiol. 2012, 29, 99–104. [Google Scholar] [CrossRef]
- Capra, M.L.; Patrignani, F.; del Lujan Quiberoni, A.; Reinheimer, J.A.; Lanciotti, R.; Guerzoni, M.E. Effect of High Pressure Homogenization on Lactic Acid Bacteria Phages and Probiotic Bacteria Phages. Int. Dairy J. 2009, 19, 336–341. [Google Scholar] [CrossRef]
- Müller-Merbach, M.; Rauscher, T.; Hinrichs, J. Inactivation of Bacteriophages by Thermal and High-Pressure Treatment. Int. Dairy J. 2005, 15, 777–784. [Google Scholar] [CrossRef]
- Moroni, O.; Jean, J.; Autret, J.; Fliss, I. Inactivation of Lactococcal Bacteriophages in Liquid Media Using Dynamic High Pressure. Int. Dairy J. 2002, 12, 907–913. [Google Scholar] [CrossRef]
- Solomon, L.; Zeegen, P.; Eiserling, F.A. The Effects of High Hydrostatic Pressure on Coliphage T-4. Biochim. Biophys. Acta Biophys. Incl. Photosynth. 1966, 112, 102–109. [Google Scholar] [CrossRef]
- Lin, K.; Schulte, C.R.; Marr, L.C. Survival of MS2 and Φ6 Viruses in Droplets as a Function of Relative Humidity, PH, and Salt, Protein, and Surfactant Concentrations. PLoS ONE 2020, 15, e0243505. [Google Scholar] [CrossRef] [PubMed]
- Kormuth, K.A.; Lin, K.; Prussin, A.J.; Vejerano, E.P.; Tiwari, A.J.; Cox, S.S.; Myerburg, M.M.; Lakdawala, S.S.; Marr, L.C. Influenza Virus Infectivity Is Retained in Aerosols and Droplets Independent of Relative Humidity. J. Infect. Dis. 2018, 218, 739–747. [Google Scholar] [CrossRef] [PubMed]
- Prussin, A.J.; Schwake, D.O.; Lin, K.; Gallagher, D.L.; Buttling, L.; Marr, L.C. Survival of the Enveloped Virus Phi6 in Droplets as a Function of Relative Humidity, Absolute Humidity, and Temperature. Appl. Environ. Microbiol. 2018, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Songer, J.R. Influence of Relative Humidity on the Survival of Some Airborne Viruses. Appl. Microbiol. 1967, 15, 35. [Google Scholar] [CrossRef] [PubMed]
- Darimani, H.S.; Ito, R.; Funamizu, N.; Maiga, A.H.; Darimani, H.S.; Ito, R.; Funamizu, N.; Maiga, A.H. Effect of Post-Treatment Conditions on the Inactivation of MS2 Bacteriophage as Indicator for Pathogenic Viruses after the Composting Process. J. Agric. Chem. Environ. 2018, 7, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Rockey, N.; Arts, P.J.; Li, L.; Harrison, K.R.; Langenfeld, K.; Fitzsimmons, W.J.; Lauring, A.S.; Love, N.G.; Kaye, K.S.; Raskin, L.; et al. Humidity and Deposition Solution Play a Critical Role in Virus Inactivation by Heat Treatment of N95 Respirators. mSphere 2020, 5. [Google Scholar] [CrossRef]
- Casanova, L.M.; Waka, B. Survival of a Surrogate Virus on N95 Respirator Material. Infect. Control Hosp. Epidemiol. 2013, 34, 1334–1335. [Google Scholar] [CrossRef] [Green Version]
- Lin, K.; Marr, L.C. Humidity-Dependent Decay of Viruses, but Not Bacteria, in Aerosols and Droplets Follows Disinfection Kinetics. Environ. Sci. Technol. 2020, 54, 1024–1032. [Google Scholar] [CrossRef]
- Ezugbe, E.O.; Rathilal, S. Membrane Technologies in Wastewater Treatment: A Review. Membranes 2020, 10, 89. [Google Scholar] [CrossRef]
- Fane, A.G.; Wang, R.; Jia, Y. Membrane Technology: Past, Present and Future. Membr. Desalin. Technol. 2011, 1–45. [Google Scholar] [CrossRef]
- Kang, S.; Pinault, M.; Pfefferle, L.D.; Elimelech, M. Single-Walled Carbon Nanotubes Exhibit Strong Antimicrobial Activity. Langmuir 2007, 23, 8670–8673. [Google Scholar] [CrossRef]
- Al-Jumaili, A.; Alancherry, S.; Bazaka, K.; Jacob, M.v. Review on the Antimicrobial Properties of Carbon Nanostructures. Materials 2017, 10, 1066. [Google Scholar] [CrossRef]
- Li, Q.; Mahendra, S.; Lyon, D.Y.; Brunet, L.; Liga, M.V.; Li, D.; Alvarez, P.J.J. Antimicrobial Nanomaterials for Water Disinfection and Microbial Control: Potential Applications and Implications. Water Res. 2008, 42, 4591–4602. [Google Scholar] [CrossRef]
- Brady-Estévez, A.S.; Kang, S.; Elimelech, M. A Single-Walled-Carbon-Nanotube Filter for Removal of Viral and Bacterial Pathogens. Small 2008, 4, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Brady-Estévez, A.S.; Schnoor, M.H.; Vecitis, C.D.; Saleh, N.B.; Elimelech, M. Multiwalled Carbon Nanotube Filter: Improving Viral Removal at Low Pressure. Langmuir 2010, 26, 14975–14982. [Google Scholar] [CrossRef] [PubMed]
- Brady-Estévez, A.S.; Schnoor, M.H.; Kang, S.; Elimelech, M. SWNT-MWNT Hybrid Filter Attains High Viral Removal and Bacterial Inactivation. Langmuir 2010, 26, 19153–19158. [Google Scholar] [CrossRef] [PubMed]
- Brady-Estévez, A.S.; Nguyen, T.H.; Gutierrez, L.; Elimelech, M. Impact of Solution Chemistry on Viral Removal by a Single-Walled Carbon Nanotube Filter. Water Res. 2010, 44, 3773–3780. [Google Scholar] [CrossRef] [PubMed]
- Redman, J.A.; Grant, S.B.; Olson, T.M.; Adkins, J.M.; Jackson, J.L.; Castillo, M.S.; Yanko, W.A. Physicochemical Mechanisms Responsible for the Filtration and Mobilization of a Filamentous Bacteriophage in Quartz Sand. Water Res. 1999, 33, 43–52. [Google Scholar] [CrossRef]
- Tsen, K.T.; Tsen, S.W.D.; Chang, C.L.; Hung, C.F.; Wu, T.C.; Kiang, J.G. Inactivation of Viruses with a Very Low Power Visible Femtosecond Laser. J. Phys. Condens. Matter 2007, 19, 322102. [Google Scholar] [CrossRef]
- Tsen, K.T.; Tsen, S.W.D.; Chang, C.L.; Hung, C.F.; Wu, T.C.; Kiang, J.G. Inactivation of Viruses by Coherent Excitations with a Low Power Visible Femtosecond Laser. Virol. J. 2007, 4, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Tsen, K.-T.; Tsen, S.-W.D.; Chang, C.-L.; Hung, C.-F.; Wu, T.-C.; Kiang, J.G. Inactivation of Viruses by Laser-Driven Coherent Excitations via Impulsive Stimulated Raman Scattering Process. J. Biomed. Opt. 2007, 12, 064030. [Google Scholar] [CrossRef] [PubMed]
- Tsen, K.-T.; Tsen, S.-W.D.; Fu, Q.; Lindsay, S.M.; Kibler, K.; Jacobs, B.; Wu, T.-C.; Karanam, B.; Jagu, S.; Roden, R.B.S.; et al. Photonic Approach to the Selective Inactivation of Viruses with a Near-Infrared Subpicosecond Fiber Laser. J. Biomed. Opt. 2009, 14, 064042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsen, S.W.D.; Wu, T.C.; Kiang, J.G.; Tsen, K.T. Prospects for a Novel Ultrashort Pulsed Laser Technology for Pathogen Inactivation. J. Biomed. Sci. 2012, 19, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsen, S.W.D.; Kingsley, D.H.; Poweleit, C.; Achilefu, S.; Soroka, D.S.; Wu, T.C.; Tsen, K.T. Studies of Inactivation Mechanism of Non-Enveloped Icosahedral Virus by a Visible Ultrashort Pulsed Laser. Virol. J. 2014, 11. [Google Scholar] [CrossRef]
- Tsen, K.T.; Tsen, S.-W.D.; Fu, Q.; Lindsay, S.M.; Li, Z.; Cope, S.; Vaiana, S.; Kiang, J.G. Studies of Inactivation of Encephalomyocarditis Virus, M13 Bacteriophage, and Salmonella Typhimurium by Using a Visible Femtosecond Laser: Insight into the Possible Inactivation Mechanisms. J. Biomed. Opt. 2011, 16, 078003. [Google Scholar] [CrossRef]
- Tsen, S.W.D.; Tsen, Y.S.D.; Tsen, K.T.; Wu, T.C. Selective Inactivation of Viruses with Femtosecond Laser Pulses and Its Potential Use for in Vitro Therapy. J. Healthc. Eng. 2010, 1, 185–196. [Google Scholar] [CrossRef] [Green Version]
- Berchtikou, A.; Greschner, A.A.; Tijssen, P.; Gauthier, M.A.; Ozaki, T. Accelerated Inactivation of M13 Bacteriophage Using Millijoule Femtosecond Lasers. J. Biophotonics 2020, 13, e201900001. [Google Scholar] [CrossRef]
- Alshraiedeh, N.H.; Alkawareek, M.Y.; Gorman, S.P.; Graham, W.G.; Gilmore, B.F. Atmospheric Pressure, Nonthermal Plasma Inactivation of MS2 Bacteriophage: Effect of Oxygen Concentration on Virucidal Activity. J. Appl. Microbiol. 2013, 115, 1420–1426. [Google Scholar] [CrossRef]
- Venezia, R.A.; Orrico, M.; Houston, E.; Yin, S.-M.; Naumova, Y.Y. Lethal Activity of Nonthermal Plasma Sterilization against Microorganisms. Infect. Control Hosp. Epidemiol. 2008, 29, 430–436. [Google Scholar] [CrossRef]
- Yasuda, H.; Miura, T.; Kurita, H.; Takashima, K.; Mizuno, A. Biological Evaluation of DNA Damage in Bacteriophages Inactivated by Atmospheric Pressure Cold Plasma. Plasma Process. Polym. 2010, 7, 301–308. [Google Scholar] [CrossRef]
- Guo, L.; Xu, R.; Gou, L.; Liu, Z.; Zhao, Y.; Liu, D.; Zhang, L.; Chen, H.; Kong, M.G. Mechanism of Virus Inactivation by Cold Atmospheric-Pressure Plasma and Plasma-Activated Water. Appl. Environ. Microbiol. 2018, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guha, G. Temperature Tolerance and Kinetics of Thermal Inactivation in E. coli Communior Phage of Various Concentrations. Proc. Soc. Exp. Biol. Med. 1959, 100, 487–489. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Si, J.; Yun, H.S.; Ko, G.P. Effect of Temperature and Relative Humidity on the Survival of Foodborne Viruses during Food Storage. Appl. Environ. Microbiol. 2015, 81, 2075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.J.; Si, J.; Lee, J.E.; Ko, G. Temperature and Humidity Influences on Inactivation Kinetics of Enteric Viruses on Surfaces. Environ. Sci. Technol. 2012, 46, 13303–13310. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Joerger, R.D.; Kingsley, D.H.; Hoover, D.G. Pressure Inactivation Kinetics of Phage Lambda CI 857. J. Food Prot. 2004, 67, 505–511. [Google Scholar] [CrossRef]
- Lea, D.E.; Salaman, M.H.; Lea, D.E.; Salaman, M.H. Experiments on the Inactivation of Bacteriophage by Radiations, and Their Bearing on the Nature of Bacteriophage. RSPSB 1946, 133, 434–444. [Google Scholar] [CrossRef] [Green Version]
- Sommer, R.; Pribil, W.; Appelt, S.; Gehringer, P.; Eschweiler, H.; Leth, H.; Cabaj, A.; Haider, T. Inactivation of Bacteriophages in Water by Means of Non-Ionizing (UV-253.7 Nm) and Ionizing (Gamma) Radiation: A Comparative Approach. Water Res. 2001, 35, 3109–3116. [Google Scholar] [CrossRef]
- Thompson, J.E.; III, E.R.B. Gamma Irradiation for Inactivation of C. parvum, E. coli, and Coliphage MS-2. J. Environ. Eng. 2000, 126, 761–768. [Google Scholar] [CrossRef]
- Karaböce, B.; Saban, E.; Aydın Böyük, A.; Okan Durmuş, H.; Hamid, R.; Baş, A. Inactivation of Viruses on Surfaces by Infrared Techniques. Int. J. Therm. Sci. 2022, 179. [Google Scholar] [CrossRef]
- Bryant, S.; Rahmanian, R.; Tam, H.; Zabetian, S. Effects Of Microwave Irradiation And Heat On T4 Bacteriophage Inactivation. J. Exp. Microbiol. Immunol. (JEMI) 2007, 11, 66–72. [Google Scholar]
- Nikolić, B.; Milojević, N.; Stanisavljev, D.; Knežević-Vukčević, J. Different Effects of Microwaves and Conventional Heating on Bacteriophage and Proliferation in E. coli. Arch. Biol. Sci. 2014, 66, 721–728. [Google Scholar] [CrossRef] [Green Version]
- Park, D.-K.; Bitton, G.; Melker, R. Microbial Inactivation by Microwave Radiation in the Home Environment. J. Environ. Health 2006, 69, 17–25. [Google Scholar] [PubMed]
- Yüzbasi, N.S.; Krawczyk, P.A.; Domagała, K.W.; Englert, A.; Burkhardt, M.; Stuer, M.; Graule, T. Removal of MS2 and Fr Bacteriophages Using MgAl2O4-Modified, Al2O3-Stabilized Porous Ceramic Granules for Drinking Water Treatment. Membranes 2022, 12, 471. [Google Scholar] [CrossRef] [PubMed]
- Jackson, K.N.; Kahler, D.M.; Kucharska, I.; Rekosh, D.; Hammarskjold, M.-L.; Smith, J.A. Inactivation of MS2 Bacteriophage and Adenovirus with Silver and Copper in Solution and Embedded in Ceramic Water Filters. J. Environ. Eng. 2019, 146, 04019130. [Google Scholar] [CrossRef]
- Park, K.T.; Hwang, J. Filtration and Inactivation of Aerosolized Bacteriophage MS2 by a CNT Air Filter Fabricated Using Electro-Aerodynamic Deposition. Carbon N. Y. 2014, 75, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Fina, L.R.; Hassouna, N.; Horacek, G.L.; Lambert, J.P.; Lambert, J.L. Viricidal Capability of Resin-Triiodide Demand-Type Disinfectant. Appl. Environ. Microbiol. 1982, 44, 1370–1373. [Google Scholar] [CrossRef] [Green Version]
- Marchin, G.L.; Silverstein, J.; Brion, G.M. Effect of Microgravity on Escherichia coli and MS-2 Bacteriophage Disinfection by Iodinated Resins. Acta Astronaut. 1997, 40, 65–68. [Google Scholar] [CrossRef]
- Lee, J.H.; Wu, C.Y.; Lee, C.N.; Anwar, D.; Wysocki, K.M.; Lundgren, D.A.; Farrah, S.; Wander, J.; Heimbuch, B.K. Assessment of Iodine-Treated Filter Media for Removal and Inactivation of MS2 Bacteriophage Aerosols. J. Appl. Microbiol. 2009, 107, 1912–1923. [Google Scholar] [CrossRef]
- Shang, M.; Kong, Y.; Yang, Z.; Cheng, R.; Zheng, X.; Liu, Y.; Chen, T. Removal of Virus Aerosols by the Combination of Filtration and UV-C Irradiation. Front. Environ. Sci. Eng. 2023, 17. [Google Scholar] [CrossRef]
- Mamane, H.; Shemer, H.; Linden, K.G. Inactivation of E. coli, B. subtilis Spores, and MS2, T4, and T7 Phage Using UV/H2O2 Advanced Oxidation. J. Hazard. Mater. 2007, 146, 479–486. [Google Scholar] [CrossRef]
- Templeton, M.R.; Andrews, R.C.; Hofmann, R. Removal of Particle-Associated Bacteriophages by Dual-Media Filtration at Different Filter Cycle Stages and Impacts on Subsequent UV Disinfection. Water Res. 2007, 41, 2393–2406. [Google Scholar] [CrossRef] [PubMed]
- Jolis, D.; Hirano, R.; Pitt, P. Tertiary Treatment Using Microfiltration and UV Disinfection for Water Reclamation. Water Environ. Res. 1999, 71, 224–231. [Google Scholar] [CrossRef]
- Clark, E.M.; Wright, H.; Lennon, K.A.; Craik, V.A.; Clark, J.R.; March, J.B. Inactivation of Recombinant Bacteriophage Lambda by Use of Chemical Agents and UV Radiation. Appl. Environ. Microbiol. 2012, 78, 3033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mamane-Gravetz, H.; Linden, K.G.; Cabaj, A.; Sommer, R. Spectral Sensitivity of Bacillus Subtilis Spores and MS2 Coliphage for Validation Testing of Ultraviolet Reactors for Water Disinfection. Environ. Sci. Technol. 2005, 39, 7845–7852. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, S.; Kauling, J. Process and Laboratory Scale UV Inactivation of Viruses and Bacteria Using an Innovative Coiled Tube Reactor. Chem. Eng. Technol. 2007, 30, 945–950. [Google Scholar] [CrossRef]
- Fallon, K.S.; Hargy, T.M.; Mackey, E.D.; Wright, H.B.; Clancy, J.L. Development and Characterization of Nonpathogenic Surrogates for UV Reactor Validation. J. Am. Water Works Assoc. 2007, 99, 73–82. [Google Scholar] [CrossRef]
- Sommer, R.; Haider, T.; Cabaj, A.; Pribil, W.; Lhotsky, M. Time Dose Reciprocity in UV Disinfection of Water. Water Sci. Technol. 1998, 38, 145–150. [Google Scholar] [CrossRef]
- Malley, J.P. Inactivation of Pathogens with Innovative UV Technologies; American Water Works Association: Denver, CO, USA, 2004. [Google Scholar]
- Mamane-Gravetz, H.; Linden, K.G. Impact of Particle Aggregated Microbes and Particle Scattering on UV Disinfection. Proc. Water Environ. Fed. 2005, 2005, 13–22. [Google Scholar] [CrossRef]
- Bae, K.S.; Shin, G.A. Inactivation of Various Bacteriophages by Different Ultraviolet Technologies: Development of a Reliable Virus Indicator System for Water Reuse. Environ. Eng. Res. 2016, 21, 350–354. [Google Scholar] [CrossRef]
- Los, M.; Czyz, A.; Sell, E.; Wegrzyn, A.; Neubauer, P.; Wegrzyn, G. Bacteriophage Contamination: Is There a Simple Method to Reduce Its Deleterious Effects in Laboratory Cultures and Biotechnological Factories? J. Appl. Genet. 2004, 45, 111–120. [Google Scholar]
- Simonet, J.; Gantzer, C. Inactivation of Poliovirus 1 and F-Specific RNA Phages and Degradation of Their Genomes by UV Irradiation at 254 Nanometers. Appl. Environ. Microbiol. 2006, 72, 7671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thurston-Enriquez, J.A.; Haas, C.N.; Jacangelo, J.; Riley, K.; Gerba, C.P. Inactivation of Feline Calicivirus and Adenovirus Type 40 by UV Radiation. Appl. Environ. Microbiol. 2003, 69, 577–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sommer, R.; Weber, G.; Cabaj, A.; Wekerle, J.; Keck, G.; Schauberger, G. UV-Inaktivierung von Mikroorganismen in Wasser [UV-Inactivation of Microorganisms in Water]. Zent. Hyg. Umweltmed. Int. J. Hyg. Environ. Med. 1989, 189, 214–224. [Google Scholar]
- Rudhart, S.A.; Günther, F.; Dapper, L.; Stuck, B.A.; Hoch, S. UV-C Light-Based Surface Disinfection: Analysis of Its Virucidal Efficacy Using a Bacteriophage Model. Int. J. Environ. Res. Public Health 2022, 19, 3246. [Google Scholar] [CrossRef] [PubMed]
- Vitzilaiou, E.; Liang, Y.; Castro-Mejía, J.L.; Franz, C.M.A.P.; Neve, H.; Vogensen, F.K.; Knøchel, S. UV Tolerance of Lactococcus lactis 936-Type Phages: Impact of Wavelength, Matrix, and PH. Int. J. Food Microbiol. 2022, 378, 109824. [Google Scholar] [CrossRef] [PubMed]
- Beck, S.E.; Ryu, H.; Boczek, L.A.; Cashdollar, J.L.; Jeanis, K.M.; Rosenblum, J.S.; Lawal, O.R.; Linden, K.G. Evaluating UV-C LED Disinfection Performance and Investigating Potential Dual-Wavelength Synergy. Water Res. 2017, 109, 207–216. [Google Scholar] [CrossRef]
- Martino, V.; Ochsner, K.; Peters, P.; Zitomer, D.H.; Mayer, B.K. Virus and Bacteria Inactivation Using Ultraviolet Light-Emitting Diodes. Environ. Eng. Sci. 2021, 38, 458–468. [Google Scholar] [CrossRef]
- de Roda Husman, A.M.; Bijkerk, P.; Lodder, W.; van den Berg, H.; Pribil, W.; Cabaj, A.; Gehringer, P.; Sommer, R.; Duizer, E. Calicivirus Inactivation by Nonionizing (253.7-Nanometer-Wavelength [UV]) and Ionizing (Gamma) Radiation. Appl. Environ. Microbiol. 2004, 70, 5089. [Google Scholar] [CrossRef] [Green Version]
- Tom, E.F.; Molineux, I.J.; Paff, M.L.; Bull, J.J. Experimental Evolution of UV Resistance in a Phage. PeerJ 2018, 6. [Google Scholar] [CrossRef]
- Zyara, A.M.; Torvinen, E.; Veijalainen, A.M.; Heinonen-Tanski, H. The Effect of Chlorine and Combined Chlorine/UV Treatment on Coliphages in Drinking Water Disinfection. J. Water Health 2016, 14, 640–649. [Google Scholar] [CrossRef] [Green Version]
- Shang, C.; Cheung, L.M.; Liu, W. MS2 Coliphage Inactivation with UV Irradiation and Free Chlorine/Monochloramine. Environ. Eng. Sci. 2007, 24, 1321–1332. [Google Scholar] [CrossRef]
- Rattanakul, S.; Oguma, K.; Sakai, H.; Takizawa, S. Inactivation of Viruses by Combination Processes of UV and Chlorine. J. Water Environ. Technol. 2014, 12, 511–523. [Google Scholar] [CrossRef] [Green Version]
- Oh, B.S.; Jang, H.Y.; Jung, Y.J.; Kang, J.W. Microfiltration of MS2 Bacteriophage: Effect of Ozone on Membrane Fouling. J. Memb. Sci. 2007, 306, 244–252. [Google Scholar] [CrossRef]
- Gyürék, L.L.; Finch, G.R. Modeling Water Treatment Chemical Disinfection Kinetics. J. Environ. Eng. 1998, 124, 783–793. [Google Scholar] [CrossRef]
- Tanino, T.; Yoshida, T.; Sakai, K.; Bing, S.; Ohshima, T. Inactivation of Escherichia coli Phages by PEF Treatment and Analysis of Inactivation Mechanism. J. Electrost. 2015, 73, 151–155. [Google Scholar] [CrossRef]
- Fadeeva, N.P.; Rautenshtein, Y.I.; El' Piner, I.E. Effect of Ultrasonic Waves on Some Actinophages and Bacteriophages. Mikrobiol. Transl. 1959, 28, 368–373. [Google Scholar]
- Versoza, M.; Jung, W.; Barabad, M.L.; Lee, Y.; Choi, K.; Park, D. Inactivation of Filter Bound Aerosolized MS2 Bacteriophages Using a Non-Conductive Ultrasound Transducer. J. Virol. Methods 2018, 255, 76–81. [Google Scholar] [CrossRef]
- Kelly-Wintenberg, K.; Hodge, A.; Montie, T.C.; Deleanu, L.; Sherman, D.; Roth, J.R.; Tsai, P.; Wadsworth, L. Use of a One Atmosphere Uniform Glow Discharge Plasma to Kill a Broad Spectrum of Microorganisms. J. Vac. Sci. Technol. A Vac. Surf. Film. 1999, 17, 1539. [Google Scholar] [CrossRef]
- Kelly-Wintenberg, K.; Sherman, D.M.; Tsai, P.P.Y.; Gadri, R.B.; Karakaya, F.; Chen, Z.; Reece Roth, J.; Montie, T.C. Air Filter Sterilization Using a One Atmosphere Uniform Glow Discharge Plasma (the Volfilter). IEEE Trans. Plasma Sci. 2000, 28, 64–71. [Google Scholar] [CrossRef]
- Tanaka, Y.; Yasuda, H.; Kurita, H.; Takashima, K.; Mizuno, A. Analysis of the Inactivation Mechanism of Bacteriophage ΦX174 by Atmospheric Pressure Discharge Plasma. In Proceedings of the Conference Record—IAS Annual Meeting (IEEE Industry Applications Society), Las Vegas, NV, USA, 7–11 October 2012. [Google Scholar] [CrossRef]
- Nagar, V.; Kar, R.; Pansare-Godambe, L.; Chand, N.; Bute, A.; Bhale, D.; Rao, A.V.S.S.N.; Shashidhar, R.; Maiti, N. Evaluation of Virucidal Efficacy of Cold Plasma on Bacteriophage Inside a Three-Layered Sterilization Chamber. Plasma Chem. Plasma Process. 2022, 42, 1115–1126. [Google Scholar] [CrossRef]
- Wu, Y.; Liang, Y.; Wei, K.; Li, W.; Yao, M.; Zhang, J.; Grinshpun, S.A. MS2 Virus Inactivation by Atmospheric-Pressure Cold Plasma Using Different Gas Carriers and Power Levels. Appl. Environ. Microbiol. 2015, 81, 996–1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, T.; Kleinheksel, A.; Lee, E.M.; Qiao, Z.; Wigginton, K.R.; Clack, H.L. Inactivation of Airborne Viruses Using a Packed Bed Non-Thermal Plasma Reactor. J. Phys. D Appl. Phys. 2019, 52, 255201. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, H.; Hashimoto, M.; Rahman, M.M.; Takashima, K.; Mizuno, A. States of Biological Components in Bacteria and Bacteriophages during Inactivation by Atmospheric Dielectric Barrier Discharges. Plasma Process. Polym. 2008, 5, 615–621. [Google Scholar] [CrossRef]
- Berchtikou, A.; Sokullu, E.; Nahar, S.; Tijssen, P.; Gauthier, M.A.; Ozaki, T. Comparative Study on the Inactivation of MS2 and M13 Bacteriophages Using Energetic Femtosecond Lasers. J. Biophotonics 2020, 13. [Google Scholar] [CrossRef] [PubMed]
- Dykeman, E.C.; Sankey, O.F. Vibrational Energy Funneling in Viruses-Simulations of Impulsive Stimulated Raman Scattering in M13 Bacteriophage. J. Phys. Condens. Matter. 2009, 21, 505102. [Google Scholar] [CrossRef] [PubMed]
- Dubuis, M.E.; Dumont-Leblond, N.; Laliberté, C.; Veillette, M.; Turgeon, N.; Jean, J.; Duchaine, C. Ozone Efficacy for the Control of Airborne Viruses: Bacteriophage and Norovirus Models. PLoS ONE 2020, 15, e0231164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, X.; Imai, T.; Teeka, J.; Yamaguchi, J.; Hirose, M.; Higuchi, T.; Sekine, M. Inactivation of Escherichia coli and Bacteriophage T4 by High Levels of Dissolved CO2. Appl. Microbiol. Biotechnol. 2011, 90, 1493–1500. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Imai, T.; Teeka, J.; Hirose, M.; Higuchi, T.; Sekine, M. Inactivation of Bacteriophages by High Levels of Dissolved CO2. Environ. Technol. 2013, 34, 539–544. [Google Scholar] [CrossRef]
- Swathy, J.R.; Udhaya Sankar, M.; Chaudhary, A.; Aigal, S.; Anshup; Pradeep, T. Antimicrobial Silver: An Unprecedented Anion Effect. Sci. Rep. 2014, 4. [Google Scholar] [CrossRef] [Green Version]
- Minoshima, M.; Lu, Y.; Kimura, T.; Nakano, R.; Ishiguro, H.; Kubota, Y.; Hashimoto, K.; Sunada, K. Comparison of the Antiviral Effect of Solid-State Copper and Silver Compounds. J. Hazard. Mater. 2016, 312, 1–7. [Google Scholar] [CrossRef]
- Soliman, M.Y.M.; Medema, G.; Bonilla, B.E.; Brouns, S.J.J.; van Halem, D. Inactivation of RNA and DNA Viruses in Water by Copper and Silver Ions and Their Synergistic Effect. Water Res. X 2020, 9. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Dennehy, J.J. Differential Bacteriophage Mortality on Exposure to Copper. Appl. Environ. Microbiol. 2011, 77, 6878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pecson, B.M.; Decrey, L.; Kohn, T. Photoinactivation of Virus on Iron-Oxide Coated Sand: Enhancing Inactivation in Sunlit Waters. Water Res. 2012, 46, 1763–1770. [Google Scholar] [CrossRef] [PubMed]
- Fidalgo De Cortalezzi, M.M.; Gallardo, M.V.; Yrazu, F.; Gentile, G.J.; Opezzo, O.; Pizarro, R.; Poma, H.R.; Rajal, V.B. Virus Removal by Iron Oxide Ceramic Membranes. J. Environ. Chem. Eng. 2014, 2, 1831–1840. [Google Scholar] [CrossRef]
- Heffron, J.; McDermid, B.; Mayer, B.K. Bacteriophage Inactivation as a Function of Ferrous Iron Oxidation. Environ. Sci. 2019, 5, 1309–1317. [Google Scholar] [CrossRef]
- Giannakis, S.; Liu, S.; Carratalà, A.; Rtimi, S.; Talebi Amiri, M.; Bensimon, M.; Pulgarin, C. Iron Oxide-Mediated Semiconductor Photocatalysis vs. Heterogeneous Photo-Fenton Treatment of Viruses in Wastewater. Impact of the Oxide Particle Size. J. Hazard. Mater. 2017, 339, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Lee, C.; Love, D.C.; Sedlak, D.L.; Yoon, J.; Nelson, K.L. Inactivation of MS2 Coliphage by Ferrous Ion and Zero-Valent Iron Nanoparticles. Environ. Sci. Technol. 2011, 45, 6978–6984. [Google Scholar] [CrossRef]
- Salata, O.V. Applications of Nanoparticles in Biology and Medicine. J. Nanobiotechnol. 2004, 2, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, Applications and Toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Tian, H.; He, B.; Yin, Y.; Liu, L.; Shi, J.; Hu, L.; Jiang, G. Chemical Nature of Metals and Metal-Based Materials in Inactivation of Viruses. Nanomaterials 2022, 12, 2345. [Google Scholar] [CrossRef]
- Choudhury, H.; Pandey, M.; Lim, Y.Q.; Low, C.Y.; Lee, C.T.; Marilyn, T.C.L.; Loh, H.S.; Lim, Y.P.; Lee, C.F.; Bhattamishra, S.K.; et al. Silver Nanoparticles: Advanced and Promising Technology in Diabetic Wound Therapy. Mater. Sci. Eng. C 2020, 112, 110925. [Google Scholar] [CrossRef] [PubMed]
- Bekele, A.Z.; Gokulan, K.; Williams, K.M.; Khare, S. Dose and Size-Dependent Antiviral Effects of Silver Nanoparticles on Feline Calicivirus, a Human Norovirus Surrogate. Foodborne Pathog. Dis. 2016, 13, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Gilcrease, E.; Williams, R.; Goel, R. Evaluating the Effect of Silver Nanoparticles on Bacteriophage Lytic Infection Cycle-a Mechanistic Understanding. Water Res. 2020, 181, 115900. [Google Scholar] [CrossRef] [PubMed]
- Gokulan, K.; Bekele, A.Z.; Drake, K.L.; Khare, S. Responses of Intestinal Virome to Silver Nanoparticles: Safety Assessment by Classical Virology, Whole-Genome Sequencing and Bioinformatics Approaches. Int. J. Nanomed. 2018, 13, 2857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, Y.S.; Joe, Y.H.; Seo, M.; Lim, K.; Hwang, J.; Woo, K. Prompt and Synergistic Antibacterial Activity of Silver Nanoparticle-Decorated Silica Hybrid Particles on Air Filtration. J. Mater. Chem. B 2014, 2, 6714–6722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.X.; Li, C.M.; Huang, C.Z. Curcumin Modified Silver Nanoparticles for Highly Efficient Inhibition of Respiratory Syncytial Virus Infection. Nanoscale 2016, 8, 3040–3048. [Google Scholar] [CrossRef] [PubMed]
- Gahlawat, G.; Shikha, S.; Chaddha, B.S.; Chaudhuri, S.R.; Mayilraj, S.; Choudhury, A.R. Microbial Glycolipoprotein-Capped Silver Nanoparticles as Emerging Antibacterial Agents against Cholera. Microb. Cell Fact. 2016, 15, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Park, S.J.; Ko, Y.S.; Jung, H.; Lee, C.; Woo, K.; Ko, G.P. Disinfection of Waterborne Viruses Using Silver Nanoparticle-Decorated Silica Hybrid Composites in Water Environments. Sci. Total Environ. 2018, 625, 477–485. [Google Scholar] [CrossRef]
- Shimabuku, Q.L.; Ueda-Nakamura, T.; Bergamasco, R.; Fagundes-Klen, M.R. Chick-Watson Kinetics of Virus Inactivation with Granular Activated Carbon Modified with Silver Nanoparticles and/or Copper Oxide. Process Saf. Environ. Prot. 2018, 117, 33–42. [Google Scholar] [CrossRef]
- Shimabuku, Q.L.; Arakawa, F.S.; Fernandes Silva, M.; Ferri Coldebella, P.; Ueda-Nakamura, T.; Fagundes-Klen, M.R.; Bergamasco, R. Water Treatment with Exceptional Virus Inactivation Using Activated Carbon Modified with Silver (Ag) and Copper Oxide (CuO) Nanoparticles. Environ. Technol. 2017, 38, 2058–2069. [Google Scholar] [CrossRef]
- Hijnen, W.A.M.; Suylen, G.M.H.; Bahlman, J.A.; Brouwer-Hanzens, A.; Medema, G.J. GAC Adsorption Filters as Barriers for Viruses, Bacteria and Protozoan (Oo)Cysts in Water Treatment. Water Res. 2010, 44, 1224–1234. [Google Scholar] [CrossRef] [PubMed]
- Richter, Ł.; Paszkowska, K.; Cendrowska, U.; Olgiati, F.; Silva, P.J.; Gasbarri, M.; Guven, Z.P.; Paczesny, J.; Stellacci, F. Broad-Spectrum Nanoparticles against Bacteriophage Infections. Nanoscale 2021, 13, 18684–18694. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.; Li, G.; Cheng, C.; Liu, P.; Shi, L.; Ma, Z.; Zheng, X. Removal of Bacteriophage F2 in Water by Nanoscale Zero-Valent Iron and Parameters Optimization Using Response Surface Methodology. Chem. Eng. J. 2014, 252, 150–158. [Google Scholar] [CrossRef]
- Cheng, R.; Li, G.; Shi, L.; Xue, X.; Kang, M.; Zheng, X. The Mechanism for Bacteriophage F2 Removal by Nanoscale Zero-Valent Iron. Water Res. 2016, 105, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.; Kang, M.; Zhuang, S.; Wang, S.; Zheng, X.; Pan, X.; Shi, L.; Wang, J. Removal of Bacteriophage F2 in Water by Fe/Ni Nanoparticles: Optimization of Fe/Ni Ratio and Influencing Factors. Sci. Total Environ. 2018, 649, 995–1003. [Google Scholar] [CrossRef]
- Cheng, R.; Zhang, Y.; Zhang, T.; Hou, F.; Cao, X.; Shi, L.; Jiang, P.; Zheng, X.; Wang, J. The Inactivation of Bacteriophages MS2 and PhiX174 by Nanoscale Zero-Valent Iron: Resistance Difference and Mechanisms. Front. Environ. Sci. Eng. 2022, 16, 1–10. [Google Scholar] [CrossRef]
- Raza, S.; Folga, M.; Łoś, M.; Foltynowicz, Z.; Paczesny, J. The Effect of Zero-Valent Iron Nanoparticles (NZVI) on Bacteriophages. Viruses 2022, 14, 867. [Google Scholar] [CrossRef]
- Yap, C.Y.; Chua, C.K.; Dong, Z.L.; Liu, Z.H.; Zhang, D.Q.; Loh, L.E.; Sing, S.L. Review of Selective Laser Melting: Materials and Applications. Appl. Phys. Rev. 2015, 2, 041101. [Google Scholar] [CrossRef]
- Guillon, O.; Gonzalez-Julian, J.; Dargatz, B.; Kessel, T.; Schierning, G.; Räthel, J.; Herrmann, M. Field-Assisted Sintering Technology/Spark Plasma Sintering: Mechanisms, Materials, and Technology Developments. Adv. Eng. Mater. 2014, 16, 830–849. [Google Scholar] [CrossRef] [Green Version]
- Molan, K.; Rahmani, R.; Krklec, D.; Brojan, M.; Stopar, D. Phi 6 Bacteriophage Inactivation by Metal Salts, Metal Powders, and Metal Surfaces. Viruses 2022, 14, 204. [Google Scholar] [CrossRef]
- Rahmani, R.; Molan, K.; Brojan, M.; Prashanth, K.G.; Stopar, D. High Virucidal Potential of Novel Ceramic–Metal Composites Fabricated via Hybrid Selective Laser Melting and Spark Plasma Sintering Routes. Int. J. Adv. Manuf. Technol. 2022, 120, 975–988. [Google Scholar] [CrossRef] [PubMed]
- Malato, S.; Fernández-Ibáñez, P.; Maldonado, M.I.; Blanco, J.; Gernjak, W. Decontamination and Disinfection of Water by Solar Photocatalysis: Recent Overview and Trends. Catal. Today 2009, 147, 1–59. [Google Scholar] [CrossRef]
- Kumar, S.G.; Devi, L.G. Review on Modified TiO2 Photocatalysis under UV/Visible Light: Selected Results and Related Mechanisms on Interfacial Charge Carrier Transfer Dynamics. J. Phys. Chem. A 2011, 115, 13211–13241. [Google Scholar] [CrossRef] [PubMed]
- Pelaez, M.; Nolan, N.T.; Pillai, S.C.; Seery, M.K.; Falaras, P.; Kontos, A.G.; Dunlop, P.S.M.; Hamilton, J.W.J.; Byrne, J.A.; O’Shea, K.; et al. A Review on the Visible Light Active Titanium Dioxide Photocatalysts for Environmental Applications. Appl. Catal. B 2012, 125, 331–349. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Huang, G.; Yu, J.C.; Wong, P.K. Advances in Photocatalytic Disinfection of Bacteria: Development of Photocatalysts and Mechanisms. J. Environ. Sci. 2015, 34, 232–247. [Google Scholar] [CrossRef]
- Ditta, I.B.; Steele, A.; Liptrot, C.; Tobin, J.; Tyler, H.; Yates, H.M.; Sheel, D.W.; Foster, H.A. Photocatalytic Antimicrobial Activity of Thin Surface Films of TiO(2), CuO and TiO(2)/CuO Dual Layers on Escherichia coli and Bacteriophage T4. Appl. Microbiol. Biotechnol. 2008, 79, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Shen, Z.P.; Cheng, C.; Shi, L.; Cheng, R.; Yuan, D.H. Photocatalytic Disinfection Performance in Virus and Virus/Bacteria System by Cu-TiO2 Nanofibers under Visible Light. Environ. Pollut. 2018, 237, 452–459. [Google Scholar] [CrossRef]
- Syngouna, V.I.; Chrysikopoulos, C.V. Inactivation of MS2 Bacteriophage by Titanium Dioxide Nanoparticles in the Presence of Quartz Sand with and without Ambient Light. J. Colloid Interface Sci. 2017, 497, 117–125. [Google Scholar] [CrossRef]
- You, Y.; Han, J.; Chiu, P.C.; Jin, Y. Removal and Inactivation of Waterborne Viruses Using Zerovalent Iron. Environ. Sci. Technol. 2005, 39, 9263–9269. [Google Scholar] [CrossRef]
- Jin, S.E.; Jin, H.E. Multiscale Metal Oxide Particles to Enhance Photocatalytic Antimicrobial Activity against Escherichia coli and M13 Bacteriophage under Dual Ultraviolet Irradiation. Pharmaceutics 2021, 13, 222. [Google Scholar] [CrossRef]
- Sunada, K.; Minoshima, M.; Hashimoto, K. Highly Efficient Antiviral and Antibacterial Activities of Solid-State Cuprous Compounds. J. Hazard. Mater. 2012, 235–236, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Mazurkow, J.M.; Yüzbasi, N.S.; Domagala, K.W.; Pfeiffer, S.; Kata, D.; Graule, T. Nano-Sized Copper (Oxide) on Alumina Granules for Water Filtration: Effect of Copper Oxidation State on Virus Removal Performance. Environ. Sci. Technol. 2020, 54, 1214–1222. [Google Scholar] [CrossRef] [PubMed]
- Ishiguro, H.; Nakano, R.; Yao, Y.; Kajioka, J.; Fujishima, A.; Sunada, K.; Minoshima, M.; Hashimoto, K.; Kubota, Y. Photocatalytic Inactivation of Bacteriophages by TiO2-Coated Glass Plates under Low-Intensity, Long-Wavelength UV Irradiation. Photochem. Photobiol. Sci. 2011, 10, 1825–1829. [Google Scholar] [CrossRef] [PubMed]
- Doolittle, M.M.; Cooney, J.J. Inactivation of Bacteriophage T4 by Organic and Inorganic Tin Compounds. J. Ind. Microbiol. 1992, 10, 221–228. [Google Scholar] [CrossRef]
- You, J.; Zhang, Y.; Hu, Z. Bacteria and Bacteriophage Inactivation by Silver and Zinc Oxide Nanoparticles. Colloids Surf. B Biointerfaces 2011, 85, 161–167. [Google Scholar] [CrossRef]
- Guglielmotti, D.M.; Mercanti, D.J.; Reinheimer, J.A.; del Quiberoni, A.L.; Gänzle, M.; de Souza Sant, A. Review: Efficiency of Physical and Chemical Treatments on the Inactivation of Dairy Bacteriophages. Front. Microbiol. 2012, 2, 282. [Google Scholar] [CrossRef] [Green Version]
- Campagna, C.; Villion, M.; Labrie, S.J.; Duchaine, C.; Moineau, S. Inactivation of Dairy Bacteriophages by Commercial Sanitizers and Disinfectants. Int. J. Food Microbiol. 2014, 171, 41–47. [Google Scholar] [CrossRef]
- Maillard, J.Y. Damage to Pseudomonas Aeruginosa PAO1 Bacteriophage F116 DNA by Biocides. J. Appl. Bacteriol. 1996, 80, 540–544. [Google Scholar] [CrossRef]
- Halfhide, D.E.; Gannon, B.W.; Hayes, C.M.; Roe, J.M. Wide Variation in Effectiveness of Laboratory Disinfectants against Bacteriophages. Lett. Appl. Microbiol. 2008, 47, 608–612. [Google Scholar] [CrossRef]
- Ly-Chatain, M.H.; Moussaoui, S.; Vera, A.; Rigobello, V.; Demarigny, Y.; del Luján Quiberoni, A. Antiviral Effect of Cationic Compounds on Bacteriophages. Front. Microbiol. 2013, 4, 46. [Google Scholar] [CrossRef] [Green Version]
- Sands, J.A. Virucidal Activity of Cetyltrimethylammonium Bromide below the Critical Micelle Concentration. FEMS Microbiol. Lett. 1986, 36, 261–263. [Google Scholar] [CrossRef]
- Maillard, J.Y.; Beggs, T.S.; Day, M.J.; Hudson, R.A.; Russell, A.D. Effect of Biocides on MS2 and K Coliphages. Appl. Environ. Microbiol. 1994, 60, 2205. [Google Scholar] [CrossRef] [Green Version]
- Jetté, L.P.; Ringuette, L.; Ishak, M.; Miller, M.; Saint-Antoine, P. Evaluation of Three Glutaraldehyde-Based Disinfectants Used in Endoscopy. J. Hosp. Infect. 1995, 30, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Ben-Shabat, S.; Yarmolinsky, L.; Porat, D.; Dahan, A. Antiviral Effect of Phytochemicals from Medicinal Plants: Applications and Drug Delivery Strategies. Drug Deliv. Transl. Res. 2020, 10, 354–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badshah, S.L.; Faisal, S.; Muhammad, A.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Antiviral Activities of Flavonoids. Biomed. Pharmacother. 2021, 140. [Google Scholar] [CrossRef]
- Su, X.; Sangster, M.Y.; D’Souza, D.H. Time-Dependent Effects of Pomegranate Juice and Pomegranate Polyphenols on Foodborne Viral Reduction. Foodborne Pathog. Dis. 2011, 8, 1177–1183. [Google Scholar] [CrossRef]
- Maillard, J.-Y.; Beggs, T.S.; Day, M.J.; Hudson, R.A.; Russell, A.D. Effects of Biocides on the Transduction of Pseudomonas Aeruginosa PAO by F116 Bacteriophage. Lett. Appl. Microbiol. 1995, 21, 215–218. [Google Scholar] [CrossRef]
- Morita, J. Inactivation of Bacteriophages by Polyphenols in the Presence of Cupric Ion. Agric. Biol. Chem. 1988, 52, 1669–1673. [Google Scholar] [CrossRef]
- Philippe, C.; Chaïb, A.; Jaomanjaka, F.; Cluzet, S.; Lagarde, A.; Ballestra, P.; Decendit, A.; Petrel, M.; Claisse, O.; Goulet, A.; et al. Wine Phenolic Compounds Differently Affect the Host-Killing Activity of Two Lytic Bacteriophages Infecting the Lactic Acid Bacterium Oenococcus Oeni. Viruses 2020, 12, 1316. [Google Scholar] [CrossRef]
- Silva-Beltrán, N.P.; Ruiz-Cruz, S.; Chaidez, C.; Ornelas-Paz, J.D.J.; López-Mata, M.A.; Márquez-Riós, E.; Estrada, M.I. Chemical Constitution and Effect of Extracts of Tomato Plants Byproducts on the Enteric Viral Surrogates. Int. J. Environ. Health Res. 2014, 25, 299–311. [Google Scholar] [CrossRef]
- Lee, A.; Eschenbruch, R.; Waller, J. Effect of Phenolic Compounds, Ethyl Alcohol, and Sodium Metabisulphite on the Lytic Activity of Phage PL-1 on a Lactobacillus Casei S Strain. Can. J. Microbiol. 2011, 31, 873–875. [Google Scholar] [CrossRef] [PubMed]
- Shinozuka, K.; Kikuchi, Y.; Nishino, C.; Mori, A.; Tawata, S. Inhibitory Effect of Flavonoids on DNA-Dependent DNA and RNA Polymerases. Experientia 1988, 44, 882–885. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Tang, C.B.; Xiao, J.; Du, W.F.; Li, R. Influences of Epigallocatechin Gallate and Citric Acid on Escherichia coli O157:H7 Toxin Gene Expression and Virulence-Associated Stress Response. Lett. Appl. Microbiol. 2018, 67, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Catel-Ferreira, M.; Tnani, H.; Hellio, C.; Cosette, P.; Lebrun, L. Antiviral Effects of Polyphenols: Development of Bio-Based Cleaning Wipes and Filters. J. Virol. Methods 2015, 212, 1–7. [Google Scholar] [CrossRef]
- Su, X.; D’Souza, D.H. Inactivation of Human Norovirus Surrogates by Benzalkonium Chloride, Potassium Peroxymonosulfate, Tannic Acid, and Gallic Acid. Foodborne Pathog. Dis. 2012, 9, 829–834. [Google Scholar] [CrossRef]
- Bhat, R.; Hadi, S.M. DNA Breakage by Tannic Acid and Cu(II): Generation of Active Oxygen Species and Biological Activity of the Reaction. Mutat. Res. Environ. Mutagen. Relat. Subj. 1994, 313, 49–55. [Google Scholar] [CrossRef]
- Karlsson, I.; Samuelsson, K.; Ponting, D.J.; Törnqvist, M.; Ilag, L.L.; Nilsson, U. Peptide Reactivity of Isothiocyanates--Implications for Skin Allergy. Sci. Rep. 2016, 6, 21203. [Google Scholar] [CrossRef]
- Lin, C.M.; Preston, J.F., 3rd; Wei, C.I. Antibacterial Mechanism of Allyl Isothiocyanate. J. Food Prot. 2000, 63, 727–734. [Google Scholar] [CrossRef]
- Romeo, L.; Iori, R.; Rollin, P.; Bramanti, P.; Mazzon, E. Molecules Isothiocyanates: An Overview of Their Antimicrobial Activity against Human Infections. Molecules 2018, 23, 624. [Google Scholar] [CrossRef] [Green Version]
- Drobnica, L.; Zemanová, M.; Nemec, P.; Antos, K.; Kristián, P.; Stullerová, A.; Knoppová, V.; Nemec, P. Antifungal Activity of Isothiocyanates and Related Compounds. I. Naturally Occurring Isothiocyanates and Their Analogues. Appl. Microbiol. 1967, 15, 701–709. [Google Scholar] [CrossRef]
- Wiczk, A.; Hofman, D.; Konopa, G.; Herman-Antosiewicz, A. Sulforaphane, a Cruciferous Vegetable-Derived Isothiocyanate, Inhibits Protein Synthesis in Human Prostate Cancer Cells. Biochim. Biophys. Acta 2012, 1823, 1295–1305. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.V.; Singh, K. Cancer Chemoprevention with Dietary Isothiocyanates Mature for Clinical Translational Research. Carcinogenesis 2012, 33, 1833–1842. [Google Scholar] [CrossRef] [Green Version]
- Nowicki, D.; Rodzik, O.; Herman-Antosiewicz, A.; Szalewska-Pałasz, A. Isothiocyanates as Effective Agents against Enterohemorrhagic Escherichia coli: Insight to the Mode of Action. Sci. Rep. 2016, 6, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Nowicki, D.; Macia̧g-Dorszyńska, M.; Kobiela, W.; Herman-Antosiewicz, A.; Wȩgrzyn, A.; Szalewska-Pałasz, A.; Wȩgrzyn, G. Phenethyl Isothiocyanate Inhibits Shiga Toxin Production in Enterohemorrhagic Escherichia coli by Stringent Response Induction. Antimicrob. Agents Chemother. 2014, 58, 2304–2315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potrykus, K.; Cashel, M. (P)PpGpp: Still Magical? Annu. Rev. Microbiol. 2008, 62, 35–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Łoś, M.; Golec, P.; Łoś, J.M.; Weglewska-Jurkiewicz, A.; Czyz, A.; Wegrzyn, A.; Wegrzyn, G.; Neubauer, P. Effective Inhibition of Lytic Development of Bacteriophages λ, P1 and T4 by Starvation of Their Host, Escherichia coli. BMC Biotechnol. 2007, 7, 13. [Google Scholar] [CrossRef] [Green Version]
- Potrykus, K.; Wegrzyn, G.; Hernandez, V.J. Multiple Mechanisms of Transcription Inhibition by PpGpp at the Lambdap(R) Promoter. J. Biol. Chem. 2002, 277, 43785–43791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nowicki, D.; Kobiela, W.; Wegrzyn, A.; Wegrzyn, G.; Szalewska-Palasz, A. PpGpp-Dependent Negative Control of DNA Replication of Shiga Toxin-Converting Bacteriophages in Escherichia coli. J. Bacteriol. 2013, 195, 5007–5015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexandre, E.M.C.; Silva, S.; Santos, S.A.O.; Silvestre, A.J.D.; Duarte, M.F.; Saraiva, J.A.; Pintado, M. Antimicrobial Activity of Pomegranate Peel Extracts Performed by High Pressure and Enzymatic Assisted Extraction. Food Res. Int. 2019, 115, 167–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tayyarcan, E.K.; Acar Soykut, E.; Menteş Yılmaz, O.; Boyaci, I.H.; Khaaladi, M.; Fattouch, S. Investigation of Different Interactions between Staphylococcus Aureus Phages and Pomegranate Peel, Grape Seed, and Black Cumin Extracts. J. Food Saf. 2019, 39, e12679. [Google Scholar] [CrossRef]
- Su, X.; Sangster, M.Y.; D’Souza, D.H. In Vitro Effects of Pomegranate Juice and Pomegranate Polyphenols on Foodborne Viral Surrogates. Foodborne Pathog. Dis. 2010, 7, 1473–1479. [Google Scholar] [CrossRef]
- Su, X.; D’Souza, D.H. Grape Seed Extract for Control of Human Enteric Viruses. Appl. Environ. Microbiol. 2011, 77, 3982–3987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, S.; Jassim, J.; Denyer, D.; Newby, N.; Linley, L.; Dhir, D. The Specific and Sensitive Detection of Bacterial Pathogens within 4 h Using Bacteriophage Amplification. J. Appl. Microbiol. 1998, 84, 777–783. [Google Scholar] [CrossRef]
- Kamimoto, M.; Nakai, Y.; Tsuji, T.; Shimamoto, T.; Shimamoto, T. Antiviral Effects of Persimmon Extract on Human Norovirus and Its Surrogate, Bacteriophage MS2. J. Food Sci. 2014, 79, M941–M946. [Google Scholar] [CrossRef] [PubMed]
- Lipson, S.M.; Sethi, L.; Cohen, P.; Gordon, R.E.; Tan, I.P.; Burdowski, A.; Stotzky, G. Antiviral Effects on Bacteriophages and Rotavirus by Cranberry Juice. Phytomedicine 2007, 14, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Howell, A.B.; D’Souza, D.H. Antiviral Effects of Cranberry Juice and Cranberry Proanthocyanidins on Foodborne Viral Surrogates—A Time Dependence Study in Vitro. Food Microbiol. 2010, 27, 985–991. [Google Scholar] [CrossRef]
- Silva-Beltrán, N.P.; Chaidez-Quiroz, C.; López-Cuevas, O.; Ruiz-Cruz, S.; López-Mata, M.A.; Del-Toro-sánchez, C.L.; Marquez-Rios, E.; Ornelas-Paz, J.D.J. Phenolic Compounds of Potato Peel Extracts: Their Antioxidant Activity and Protection against Human Enteric Viruses. J. Microbiol. Biotechnol. 2017, 27, 234–241. [Google Scholar] [CrossRef] [Green Version]
- Kronheim, S.; Daniel-Ivad, M.; Duan, Z.; Hwang, S.; Wong, A.I.; Mantel, I.; Nodwell, J.R.; Maxwell, K.L. A Chemical Defence against Phage Infection. Nature 2018, 564, 283–286. [Google Scholar] [CrossRef] [PubMed]
- Hardy, A.; Kever, L.; Frunzke, J. Antiphage Small Molecules Produced by Bacteria—Beyond Protein-Mediated Defenses. Trends Microbiol. 2022, 31, 92–106. [Google Scholar] [CrossRef]
- Nakamura, S.; Nii, F.; Shimizu, M.; Watanabe, I. Inhibition of Phage Growth by an Antibiotic Rugulosin Isolated from Myrothecium Verucaria I. Properties of the Anti-Phage Effect1. J. Microbiol. 1971, 15, 113–120. [Google Scholar]
- Zuo, P.; Yu, P.; Alvarez, P.J.J. Aminoglycosides Antagonize Bacteriophage Proliferation, Attenuating Phage Suppression of Bacterial Growth, Biofilm Formation, and Antibiotic Resistance. Appl. Environ. Microbiol. 2021, 87, 1–11. [Google Scholar] [CrossRef]
- Brock, T.D. The Inhibition of an RNA Bacteriophage by Streptomycin, Using Host Bacteria Resistant to the Antibiotic. Biochem. Biophys. Res. Commun. 1962, 9, 184–187. [Google Scholar] [CrossRef] [PubMed]
- Brock, T.D.; Mosser, J.; Peacher, B. The Inhibition by Streptomycin of Certain Streptococcus Bacteriophages, Using Host Bacteria Resistant to the Antibiotic. Microbiology 1963, 33, 9–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Z.; Wei, J.; Liang, Y.; Peng, N.; Li, Y. Aminoglycoside Antibiotics Inhibit Mycobacteriophage Infection. Antibiotics 2020, 9, 714. [Google Scholar] [CrossRef] [PubMed]
- Kever, L.; Hardy, A.; Luthe, T.; Hünnefeld, M.; Gätgens, C.; Milke, L.; Wiechert, J.; Wittmann, J.; Moraru, C.; Marienhagen, J.; et al. Aminoglycoside Antibiotics Inhibit Phage Infection by Blocking an Early Step of the Infection Cycle. mBio 2022, 13, e00783-22. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; August, J.T. Replication of RNA Bacteriophage R23: II. Inhibition of Phage-Specific RNA Synthesis by Phleomycin. J. Mol. Biol. 1968, 33, 21–33. [Google Scholar] [CrossRef]
- Post, L.; Price, A.R. Inhibition of Bacteriophage PBS2 Replication in Bacillus Subtilis by Phleomycin. J. Virol. 1975, 15, 363–371. [Google Scholar] [CrossRef] [Green Version]
- Cloos, J.; Gille, J.J.P.; Steen, I.; Lafleur, M.V.M.; Retèl, J.; Snow, G.B.; Braakhuis, B.J.M. Influence of the Antioxidant N-Acetylcysteine and Its Metabolites on Damage Induced by Bleomycin in PM2 Bacteriophage DNA. Carcinogenesis 1996, 17, 327–331. [Google Scholar] [CrossRef] [Green Version]
- Haidle, C.W.; Weiss, K.K.; Mace, M.L. Induction of Bacteriophage by Bleomycin. Biochem. Biophys. Res. Commun. 1972, 48, 1179–1184. [Google Scholar] [CrossRef]
- Sato, K.; Niinomi, Y.; Katagiri, K.; Matsukage, A.; Minagawa, T. Prevention of Phage Multiplication by Quinomycin A. Biochim. Biophys. Acta Nucleic Acids Protein Synth. 1969, 174, 230–238. [Google Scholar] [CrossRef]
- Cieślik, M.; Harhala, M.; Orwat, F.; Dąbrowska, K.; Górski, A.; Jończyk-Matysiak, E. Two Newly Isolated Enterobacter-Specific Bacteriophages: Biological Properties and Stability Studies. Viruses 2022, 14, 1518. [Google Scholar] [CrossRef] [PubMed]
- Hübner, N.O.; Siebert, J.; Kramer, A. Octenidine Dihydrochloride, a Modern Antiseptic for Skin, Mucous Membranes and Wounds. Skin Pharmacol. Physiol. 2010, 23, 244–258. [Google Scholar] [CrossRef] [PubMed]
- Maillard, J.-Y.; Beggs, T.S.; Day, M.J.; Hudson, R.A.; Russell, A.D. Effect of Biocides on Pseudomonas Aeruginosa Phage F116. Lett. Appl. Microbiol. 1993, 17, 167–170. [Google Scholar] [CrossRef]
- Khatibi, S.A.; Misaghi, A.; Moosavy, M.H.; Akhondzadeh Basti, A.; Mohamadian, S.; Khanjari, A. Effect of Nanoliposomes Containing Zataria Multiflora Boiss. Essential Oil on Gene Expression of Shiga Toxin 2 in Escherichia coli O157:H7. J. Appl. Microbiol. 2018, 124, 389–397. [Google Scholar] [CrossRef]
- Kim, S.S.; Kang, D.H. Synergistic Effect of Carvacrol and Ohmic Heating for Inactivation of E. coli O157:H7, S. Typhimurium, L. Monocytogenes, and MS-2 Bacteriophage in Salsa. Food Control 2017, 73, 300–305. [Google Scholar] [CrossRef]
- Sheng, L.; Rasco, B.; Zhu, M.J. Cinnamon Oil Inhibits Shiga Toxin Type 2 Phage Induction and Shiga Toxin Type 2 Production in Escherichia coli O157:H7. Appl. Environ. Microbiol. 2016, 82, 6531–6540. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.G.; Lee, J.H.; Kim, S.I.; Baek, K.H.; Lee, J. Cinnamon Bark Oil and Its Components Inhibit Biofilm Formation and Toxin Production. Int. J. Food Microbiol. 2015, 195, 30–39. [Google Scholar] [CrossRef]
- Brownell, G.H.; Crockett, J.K. Inactivation of Nocardiophages ΦC and ΦEC by Extracts of Bacteriophage-Attachable Cells. J. Virol. 1971, 8, 894–899. [Google Scholar] [CrossRef] [Green Version]
- Davis, R.; Zivanovic, S.; Michael Davidson, P.; D’Souza, D.H. Enteric Viral Surrogate Reduction by Chitosan. Food Environ. Virol. 2015, 7, 359–365. [Google Scholar] [CrossRef]
- Kochkina, Z.; Mikrobiologiia, S.C. Effect of Chitosan Derivatives on the Development of Phage Infection in Cultured Bacillus Thuringiensis. Mikrobiologiia 2000, 69, 266–269. [Google Scholar]
- Amorim, J.H.; del Cogliano, M.E.; Fernandez-Brando, R.J.; Bilen, M.F.; Jesus, M.R.; Luiz, W.B.; Palermo, M.S.; Ferreira, R.C.C.; Servat, E.G.; Ghiringhelli, P.D.; et al. Role of Bacteriophages in STEC Infections: New Implications for the Design of Prophylactic and Treatment Approaches. F1000Research 2014, 3, 74. [Google Scholar] [CrossRef] [PubMed]
- de Siqueira, R.S.; Dodd, C.E.R.; Rees, C.E.D. Evaluation of the Natural Virucidal Activity of Teas for Use in the Phage Amplification Assay. Int. J. Food Microbiol. 2006, 111, 259–262. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Howell, A.B.; D’Souza, D.H. The Effect of Cranberry Juice and Cranberry Proanthocyanidins on the Infectivity of Human Enteric Viral Surrogates. Food Microbiol. 2010, 27, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Liao, N.; Sun, L.; Wang, D.; Chen, L.; Wang, J.; Qi, X.; Zhang, H.; Tang, M.; Wu, G.; Chen, J.; et al. Antiviral Properties of Propolis Ethanol Extract against Norovirus and Its Application in Fresh Juices. LWT 2021, 152, 112169. [Google Scholar] [CrossRef]
- Magnavacca, A.; Sangiovanni, E.; Racagni, G.; Dell’Agli, M. The Antiviral and Immunomodulatory Activities of Propolis: An Update and Future Perspectives for Respiratory Diseases. Med. Res. Rev. 2022, 42, 897–945. [Google Scholar] [CrossRef]
- Silva-Beltrán, N.P.; Balderrama-Carmona, A.P.; Umsza-Guez, M.A.; Souza Machado, B.A. Antiviral Effects of Brazilian Green and Red Propolis Extracts on Enterovirus Surrogates. Environ. Sci. Pollut. Res. Int. 2020, 27, 28510–28517. [Google Scholar] [CrossRef]
- Richter, H.E.; Loewen, P.C. Rapid Inactivation of Bacteriophage T7 by Ascorbic Acid Is Repairable. Biochim. Biophys. Acta Gene Struct. Expr. 1982, 697, 25–30. [Google Scholar] [CrossRef]
- Kobayashi, S.; Ueda, K.; Morita, J.; Sakai, H.; Komano, T. DNA Damage Induced by Ascorbate in the Presence of Cu2+. Biochim. Biophys. Acta Gene Struct. Expr. 1988, 949, 143–147. [Google Scholar] [CrossRef]
- Murata, A.; Oyadomari, R.; Ohashi, T.; Kitagawa, K. Mechanism of Inactivation of Bacteriophage DeltaA Containing Single-Stranded DNA by Ascorbic Acid. J. Nutr. Sci. Vitaminol. 1975, 21, 261–269. [Google Scholar] [CrossRef] [Green Version]
- Price, A.R.; Fogt, S.M. Effect of Nalidixic Acid on PBS2 Bacteriophage Infection of Bacillus Subtilis. J. Virol. 1973, 12, 405–407. [Google Scholar] [CrossRef] [Green Version]
Phylum | Class | Order | Family | Details | Genome | Phages | Structure |
---|---|---|---|---|---|---|---|
Uroviricota | Caudoviricetes | Contractile tail | dsDNA (L) | T2, T4, T6, P1, K, PBS2, Entb_43 | With tail | ||
Non-contractile tail | λ, T1, T5, HK97, 933W, Φ24B, C-36, P680, P22 | ||||||
Autographiviridae | Encode their own single subunit RNA polymerase | T7, T3, SP6 | |||||
Phixviricota | Malgrandaviricetes | Petitvirales | Microviridae | Non-enveloped, round | ssDNA (C) | ΦX174 | Polyhedral |
Preplasmiviricota | Tectiliviricetes | Linavirales | Corticoviridae | Complex capsid, lipids | dsDNA (C, S) | PM2 | |
Kalamavirales | Tectiviridae | Double capsid, lipids, pseudo-tail | dsDNA (L) | PRD1 | |||
Belfryvirales | Turriviridae | Icosahedron with protrude protein turrets | dsDNA (C) | STIV | |||
Dividoviricota | Laserviricetes | Halopanivirales | Sphaerolipoviridae | Double capsid, lipids | dsDNA (L) | SH1 | |
Lenarviricota | Leviviricetes | Fiersviridae | Like poliovirus | ssRNA (L) | MS2, PP7, R17, R23, f2, Qβ | ||
Duplornaviricota | Vidaverviricetes | Mindivirales | Cystoviridae | Envelope, lipids | dsRNA (L, M) | Φ6 | |
Hofneiviricota | Faserviricetes | Tubulavirales | Inoviridae | Long filamentous, short stem | ssDNA (C) | M13, SJC3, δA | Filamentous |
Taleaviricota | Tokiviricetes | Ligamenvirales | Ungulaviridae | Envelope, lipids | dsDNA (L) | AFV1 | |
Rudiviridae | Rigid rods type, TMV | dsDNA (L) | SIRV-2 | ||||
Plasmaviridae | Envelope, without lipid capsid | dsDNA (C, S) | L2 | Pleomorphic | |||
Fuselloviridae | Lemon shape, envelope | dsDNA (C, S) | SSV1, ASV1 | ||||
Halspiviridae | Spindle-shaped, envelope | dsDNA (L, S) | His1 | ||||
Guttaviridae | Drop shape | dsDNA (C, S) | APOV1 | ||||
Ampullaviridae | Bottle shape, NC helical | dsDNA (L) | ABV | ||||
Portogloboviridae | Icosahedral, outer protein shell, inner lipid layer | dsDNA (C) | SPV1 | Icosahedral |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karczewska, M.; Strzelecki, P.; Szalewska-Pałasz, A.; Nowicki, D. How to Tackle Bacteriophages: The Review of Approaches with Mechanistic Insight. Int. J. Mol. Sci. 2023, 24, 4447. https://doi.org/10.3390/ijms24054447
Karczewska M, Strzelecki P, Szalewska-Pałasz A, Nowicki D. How to Tackle Bacteriophages: The Review of Approaches with Mechanistic Insight. International Journal of Molecular Sciences. 2023; 24(5):4447. https://doi.org/10.3390/ijms24054447
Chicago/Turabian StyleKarczewska, Monika, Patryk Strzelecki, Agnieszka Szalewska-Pałasz, and Dariusz Nowicki. 2023. "How to Tackle Bacteriophages: The Review of Approaches with Mechanistic Insight" International Journal of Molecular Sciences 24, no. 5: 4447. https://doi.org/10.3390/ijms24054447
APA StyleKarczewska, M., Strzelecki, P., Szalewska-Pałasz, A., & Nowicki, D. (2023). How to Tackle Bacteriophages: The Review of Approaches with Mechanistic Insight. International Journal of Molecular Sciences, 24(5), 4447. https://doi.org/10.3390/ijms24054447