Spatially Formed Tenacious Nickel-Supported Bimetallic Catalysts for CO2 Methanation under Conventional and Induction Heating
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Catalysts Design, Preparation, and Structure
2.2. The Catalysts in CO2 Methanation
3. Materials and Methods
3.1. Catalysts Preparation
3.1.1. Ni Support Preparation
3.1.2. Impregnation of Ni Support with Nanometal
3.2. Method of Catalysts Characterization
3.3. Methanation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wulf, C.; Linßen, J.; Zapp, P. Review of Power-to-Gas Projects in Europe. Energy Procedia 2018, 155, 367–378. [Google Scholar] [CrossRef]
- Gao, J.; Wang, Y.; Ping, Y.; Hu, D.; Xu, G.; Gu, F.; Su, F. A Thermodynamic Analysis of Methanation Reactions of Carbon Oxides for the Production of Synthetic Natural Gas. RSC Adv. 2012, 2, 2358. [Google Scholar] [CrossRef]
- Lee, W.J.; Li, C.; Prajitno, H.; Yoo, J.; Patel, J.; Yang, Y.; Lim, S. Recent Trend in Thermal Catalytic Low Temperature CO2 Methanation: A Critical Review. Catal. Today 2021, 368, 2–19. [Google Scholar] [CrossRef]
- Mills, G.A.; Steffgen, F.W. Catalytic Methanation. Catal. Rev. 1974, 8, 159–210. [Google Scholar] [CrossRef]
- Aziz, M.A.A.; Jalil, A.A.; Triwahyono, S.; Ahmad, A. CO2 Methanation over Heterogeneous Catalysts: Recent Progress and Future Prospects. Green Chem. 2015, 17, 2647–2663. [Google Scholar] [CrossRef]
- Tsiotsias, A.I.; Charisiou, N.D.; Yentekakis, I.V.; Goula, M.A. Bimetallic Ni-Based Catalysts for CO2 Methanation: A Review. Nanomaterials 2020, 11, 28. [Google Scholar] [CrossRef]
- Sabatier, P.; Senderens, J.-B. Nouvelles Synthèses Du Méthane. Comptes Rendus Académie Sci. 1902, 134, 514–516. [Google Scholar]
- Choe, S.J.; Kang, H.J.; Park, D.H.; Huh, D.S.; Park, J. Adsorption and Dissociation Reaction of Carbon Dioxide on Ni(111) Surface: Molecular Orbital Study. Appl. Surf. Sci. 2001, 181, 265–276. [Google Scholar] [CrossRef]
- Choe, S.J.; Kang, H.J.; Kim, S.J.; Park, S.B.; Park, D.H.; Huh, D.S. Adsorbed Carbon Formation and Carbon Hydrogenation for CO2 Methanation on the Ni(111) Surface: ASED-MO Study. Bull. Korean Chem. Soc. 2005, 26, 1682–1688. [Google Scholar] [CrossRef] [Green Version]
- Weng, M.H.; Chen, H.-T.; Wang, Y.-C.; Ju, S.-P.; Chang, J.-G.; Lin, M.C. Kinetics and Mechanisms for the Adsorption, Dissociation, and Diffusion of Hydrogen in Ni and Ni/YSZ Slabs: A DFT Study. Langmuir 2012, 28, 5596–5605. [Google Scholar] [CrossRef]
- Le, T.A.; Kim, M.S.; Lee, S.H.; Kim, T.W.; Park, E.D. CO and CO2 Methanation over Supported Ni Catalysts. Catal. Today 2017, 293–294, 89–96. [Google Scholar] [CrossRef]
- Tada, S.; Ikeda, S.; Shimoda, N.; Honma, T.; Takahashi, M.; Nariyuki, A.; Satokawa, S. Sponge Ni Catalyst with High Activity in CO2 Methanation. Int. J. Hydro. Energy 2017, 42, 30126–30134. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Q.; Chai, R.; Zhao, G.; Liu, Y.; Lu, Y.; Cao, F. Ni-Al2O3 /Ni-Foam Catalyst with Enhanced Heat Transfer for Hydrogenation of CO2 to Methane. AIChE J. 2015, 61, 4323–4331. [Google Scholar] [CrossRef]
- Cimino, S.; Cepollaro, E.M.; Lisi, L.; Fasolin, S.; Musiani, M.; Vázquez-Gómez, L. Ru/Ce/Ni Metal Foams as Structured Catalysts for the Methanation of CO2. Catalysts 2020, 11, 13. [Google Scholar] [CrossRef]
- Fukuhara, C.; Hayakawa, K.; Suzuki, Y.; Kawasaki, W.; Watanabe, R. A Novel Nickel-Based Structured Catalyst for CO2 Methanation: A Honeycomb-Type Ni/CeO2 Catalyst to Transform Greenhouse Gas into Useful Resources. Appl. Catal. Gen. 2017, 532, 12–18. [Google Scholar] [CrossRef]
- Moon, D.H.; Lee, S.M.; Ahn, J.Y.; Nguyen, D.D.; Kim, S.S.; Chang, S.W. New Ni-Based Quaternary Disk-Shaped Catalysts for Low-Temperature CO2 Methanation: Fabrication, Characterization, and Performance. J. Environ. Manag. 2018, 218, 88–94. [Google Scholar] [CrossRef]
- Polanski, J.; Siudyga, T.; Bartczak, P.; Kapkowski, M.; Ambrozkiewicz, W.; Nobis, A.; Sitko, R.; Klimontko, J.; Szade, J.; Lelątko, J. Oxide Passivated Ni-Supported Ru Nanoparticles in Silica: A New Catalyst for Low-Temperature Carbon Dioxide Methanation. Appl. Catal. B Environ. 2017, 206, 16–23. [Google Scholar] [CrossRef]
- Siudyga, T.; Kapkowski, M.; Janas, D.; Wasiak, T.; Sitko, R.; Zubko, M.; Szade, J.; Balin, K.; Klimontko, J.; Lach, D.; et al. Nano-Ru Supported on Ni Nanowires for Low-Temperature Carbon Dioxide Methanation. Catalysts 2020, 10, 513. [Google Scholar] [CrossRef]
- Siudyga, T.; Kapkowski, M.; Bartczak, P.; Zubko, M.; Szade, J.; Balin, K.; Antoniotti, S.; Polanski, J. Ultra-Low Temperature Carbon (Di)Oxide Hydrogenation Catalyzed by Hybrid Ruthenium–Nickel Nanocatalysts: Towards Sustainable Methane Production. Green Chem. 2020, 22, 5143–5150. [Google Scholar] [CrossRef]
- Kapkowski, M.; Ambrożkiewicz, W.; Siudyga, T.; Sitko, R.; Szade, J.; Klimontko, J.; Balin, K.; Lelątko, J.; Polanski, J. Nano Silica and Molybdenum Supported Re, Rh, Ru or Ir Nanoparticles for Selective Solvent-Free Glycerol Conversion to Cyclic Acetals with Propanone and Butanone under Mild Conditions. Appl. Catal. B Environ. 2017, 202, 335–345. [Google Scholar] [CrossRef]
- Kapkowski, M.; Popiel, J.; Siudyga, T.; Dzida, M.; Zorębski, E.; Musiał, M.; Sitko, R.; Szade, J.; Balin, K.; Klimontko, J.; et al. Mono- and Bimetallic Nano-Re Systems Doped Os, Mo, Ru, Ir as Nanocatalytic Platforms for the Acetalization of Polyalcohols into Cyclic Acetals and Their Applications as Fuel Additives. Appl. Catal. B Environ. 2018, 239, 154–167. [Google Scholar] [CrossRef]
- Kumar, G.; Nikolla, E.; Linic, S.; Medlin, J.W.; Janik, M.J. Multicomponent Catalysts: Limitations and Prospects. ACS Catal. 2018, 8, 3202–3208. [Google Scholar] [CrossRef]
- Mizuno, N.; Misono, M. Heterogeneous Catalysis. Chem. Rev. 1998, 98, 199–218. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Xiong, S.; Zhu, Y.; Zheng, J.; Huang, L.; Zhou, C.; Deng, J.; Zhang, X. NiCe Bimetallic Nanoparticles Embedded in Hexagonal Mesoporous Silica (HMS) for Reverse Water Gas Shift Reaction. Chin. Chem. Lett. 2022, 33, 2590–2594. [Google Scholar] [CrossRef]
- Guo, J.; Duan, Y.; Liu, Y.; Li, H.; Zhang, Y.; Long, C.; Wang, Z.; Yang, Y.; Zhao, S. The Biomimetic Engineering of Metal–Organic Frameworks with Single-Chiral-Site Precision for Asymmetric Hydrogenation. J. Mater. Chem. A 2022, 10, 6463–6469. [Google Scholar] [CrossRef]
- Ross, J.R.H. Contemporary Catalysis: Fundamentals and Current Applications; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 978-0-444-63474-0. [Google Scholar]
- Lange, F.; Armbruster, U.; Martin, A. Heterogeneously-Catalyzed Hydrogenation of Carbon Dioxide to Methane Using RuNi Bimetallic Catalysts. Energy Technol. 2015, 3, 55–62. [Google Scholar] [CrossRef]
- Polanski, J.; Lach, D.; Kapkowski, M.; Bartczak, P.; Siudyga, T.; Smolinski, A. Ru and Ni—Privileged Metal Combination for Environmental Nanocatalysis. Catalysts 2020, 10, 992. [Google Scholar] [CrossRef]
- Kärger, J.; Goepel, M.; Gläser, R. Diffusion in Nanocatalysis. In Nanotechnology in Catalysis; Van de Voorde, M., Sels, B., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2017; pp. 293–334. ISBN 978-3-527-69982-7. [Google Scholar]
- Tesser, R.; Santacesaria, E. Revisiting the Role of Mass and Heat Transfer in Gas–Solid Catalytic Reactions. Processes 2020, 8, 1599. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, Y.; Yuan, Y.; Huang, H. Metal-based Heterogeneous Electrocatalysts for Electrochemical Reduction of Carbon Dioxide to Methane: Progress and Challenges. ChemNanoMat 2021, 7, 502–514. [Google Scholar] [CrossRef]
- Ghosh, S.; Ourlin, T.; Fazzini, P.; Lacroix, L.; Tricard, S.; Esvan, J.; Cayez, S.; Chaudret, B. Magnetically Induced CO2 Methanation In Continuous Flow over Supported Nickel Catalysts with Improved Energy Efficiency. ChemSusChem 2023, 16, e202201724. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Y. Ultrafast Optical Manipulation of Magnetic Order in Ferromagnetic Materials. Nano Converg. 2020, 7, 35. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, Y.; Shi, L.; Zhu, Y.; Mideksa, M.F.; Hou, K.; Zhao, W.; Wang, D.; Zhao, M.; Zhang, X.; et al. Boosting Hot Electrons in Hetero-Superstructures for Plasmon-Enhanced Catalysis. J. Am. Chem. Soc. 2017, 139, 17964–17972. [Google Scholar] [CrossRef]
No | Support | S Bet [m2/g] |
---|---|---|
1 | Ni-wool | 0.104 |
2 | Ni-ground_wool | 0.338 |
3 | Ni-mesh | 0.280 |
4 | Ni-blasted_mesh | 0.097 |
No. | Catalyst | Lattice Parameters [Å] | D [nm] | ||||
---|---|---|---|---|---|---|---|
Ni | Pd | Au | Ru | Re | |||
1 | 1%Ru/Ni-wool | a = 3.516 (±0.005) for Ni | 40 | - | - | 6 | - |
2 | 1.5%Ru/Ni-wool | a = 3.528 (±0.003) for Ni | 50 | - | - | 10 | - |
3 | 1%Ru/Ni-ground_wool | a = 3.516 (±0.004) for Ni | 20 | - | - | 7 | - |
4 | 1%Ru/Ni-mesh | a = 3.519 (±0.006) for Ni | 40 | - | - | 8 | - |
5 | 1%Ru/Ni-blasted_mesh | a = 3.530 (±0.004) for Ni | 40 | - | - | 9 | - |
6 | 1%Re/Ni-wool | a = 3.520 (±0.003) for Ni | 25 | - | - | - | 6 |
7 | 1%Re/Ni-mesh | a = 3.528 (±0.004) for Ni | 95 | - | - | - | 7 |
8 | 1%Pd/Ni-wool | a = 3.524 (±0.003) for Ni a = 3.886 (±0.006) for Pd | 60 | 12 | - | - | - |
9 | 1%Pd/Ni-mesh | a = 3.516 (±0.004) for Ni a = 3.880 (±0.005) for Pd | 70 | 8 | - | - | - |
10 | 1%Au/Ni-wool | a = 3.523 (±0.004) for Ni a = 4.071 (±0.006) for Au | 55 | - | 6 | - | - |
11 | 1%Au/Ni-mesh | a = 3.533 (±0.004) for Ni a = 4.079 (±0.005) for Au | 60 | - | 6 | - | - |
No. | Catalyst | 1 Support Mass [mg] | 2 Nanometal Mass [mg] | Weight Percentage of a Chemical Element [wt%] | ||||
---|---|---|---|---|---|---|---|---|
Ru | Re | Pd | Au | Ni | ||||
1 | 1%Ru/Ni-wool | 733.42 | 0.211 | 0.94 | - | - | - | 97.03 |
2 | 1.5%Ru/Ni-wool | 726.10 | 0.428 | 1.50 | - | - | - | 96.50 |
3 | 1%Ru/Ni-ground_wool | 726.38 | 0.209 | 0.91 | - | - | - | 91.70 |
4 | 1%Ru/Ni-mesh | 1034.12 | 0.318 | 0.95 | - | - | - | 96.50 |
5 | 1%Ru/Ni-blasted_mesh | 991.11 | 0.132 | 0.69 | - | - | - | 96.34 |
6 | 1%Re/Ni-wool | 731.78 | 1.727 | - | 0.60 | - | - | 97.80 |
7 | 1%Re/Ni-mesh | 842.10 | 2.502 | - | 0.51 | - | - | 98.20 |
8 | 1%Pd/Ni-wool | 716.37 | 0.231 | - | - | 0.76 | - | 97.00 |
9 | 1%Pd/Ni-mesh | 968.40 | 0.214 | - | - | 0.76 | - | 96.60 |
10 | 1%Au/Ni-wool | 702.60 | 0.202 | 0.88 | 96.09 | |||
11 | 1%Au/Ni-mesh | 836.00 | 0.239 | - | - | - | 0.78 | 96.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lach, D.; Tomiczek, B.; Siudyga, T.; Kapkowski, M.; Sitko, R.; Klimontko, J.; Golba, S.; Dercz, G.; Matus, K.; Borek, W.; et al. Spatially Formed Tenacious Nickel-Supported Bimetallic Catalysts for CO2 Methanation under Conventional and Induction Heating. Int. J. Mol. Sci. 2023, 24, 4729. https://doi.org/10.3390/ijms24054729
Lach D, Tomiczek B, Siudyga T, Kapkowski M, Sitko R, Klimontko J, Golba S, Dercz G, Matus K, Borek W, et al. Spatially Formed Tenacious Nickel-Supported Bimetallic Catalysts for CO2 Methanation under Conventional and Induction Heating. International Journal of Molecular Sciences. 2023; 24(5):4729. https://doi.org/10.3390/ijms24054729
Chicago/Turabian StyleLach, Daniel, Błażej Tomiczek, Tomasz Siudyga, Maciej Kapkowski, Rafał Sitko, Joanna Klimontko, Sylwia Golba, Grzegorz Dercz, Krzysztof Matus, Wojciech Borek, and et al. 2023. "Spatially Formed Tenacious Nickel-Supported Bimetallic Catalysts for CO2 Methanation under Conventional and Induction Heating" International Journal of Molecular Sciences 24, no. 5: 4729. https://doi.org/10.3390/ijms24054729
APA StyleLach, D., Tomiczek, B., Siudyga, T., Kapkowski, M., Sitko, R., Klimontko, J., Golba, S., Dercz, G., Matus, K., Borek, W., & Polanski, J. (2023). Spatially Formed Tenacious Nickel-Supported Bimetallic Catalysts for CO2 Methanation under Conventional and Induction Heating. International Journal of Molecular Sciences, 24(5), 4729. https://doi.org/10.3390/ijms24054729