Real-Time PCR Quantification of 87 miRNAs from Cerebrospinal Fluid: miRNA Dynamics and Association with Extracellular Vesicles after Severe Traumatic Brain Injury
Abstract
:1. Introduction
2. Results
2.1. Patients with Severe Traumatic Brain Injury and Four Pools of Consecutive CSF Samples from the Acute Phase of Treatment
2.2. Cerebrospinal Fluid after sTBI Contains miRNA during the First 12 Days after the Injury but Is Also Compromised by Haemolysis
2.3. Targeted miRNAs Are Present in Post-TBI CSF with Quantities Differing up to a Million-Fold
2.4. CD81-Enriched Extracellular Vesicles Present in CSF Samples Contain miRNA and Have Increased Size at Days 7–12 after sTBI
2.5. Only a Smaller Portion of Targeted miRNAs Are Potential Cargo of Extracellular Vesicles
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. CSF Collection and Sample Pooling
4.3. Western Blot
4.4. Size-Exclusion Chromatography
4.5. Slot blot
4.6. Tunable Resistive Pulse Sensing Analysis
4.7. RNA Isolation
4.8. cDNA Synthesis and Real-Time PCR
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pinchi, E.; Luigi, C.; Paola, S.; Gianpietro, V.; Raoul, T.; Mauro, A.; Paola, F. MicroRNAs: The New Challenge for Traumatic Brain Injury Diagnosis. Curr. Neuropharmacol. 2020, 18, 319–331. [Google Scholar] [CrossRef]
- Adlakha, Y.K.; Saini, N. Brain MicroRNAs and Insights into Biological Functions and Therapeutic Potential of Brain Enriched MiRNA-128. Mol. Cancer 2014, 13, 33. [Google Scholar] [CrossRef] [Green Version]
- Galgano, M.; Toshkezi, G.; Qiu, X.; Russell, T.; Chin, L.; Zhao, L.-R. Traumatic Brain Injury: Current Treatment Strategies and Future Endeavors. Cell Transplant. 2017, 26, 1118–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, S.Y.; Lee, A.Y.W. Traumatic Brain Injuries: Pathophysiology and Potential Therapeutic Targets. Front. Cell. Neurosci. 2019, 13, 528. [Google Scholar] [CrossRef] [PubMed]
- Bodien, Y.G.; Barra, A.; Temkin, N.R.; Barber, J.; Foreman, B.; Vassar, M.; Robertson, C.; Taylor, S.R.; Markowitz, A.J.; Manley, G.T.; et al. Diagnosing Level of Consciousness: The Limits of the Glasgow Coma Scale Total Score. J. Neurotrauma 2021, 38, 3295–3305. [Google Scholar] [CrossRef]
- Smith, M. Monitoring Intracranial Pressure in Traumatic Brain Injury. Anesth. Analg. 2008, 106, 240–248. [Google Scholar] [CrossRef]
- Di Pietro, V.; Yakoub, K.M.; Scarpa, U.; Di Pietro, C.; Belli, A. MicroRNA Signature of Traumatic Brain Injury: From the Biomarker Discovery to the Point-of-Care. Front. Neurol. 2018, 9, 429. [Google Scholar] [CrossRef] [Green Version]
- Huibregtse, M.E.; Bazarian, J.J.; Shultz, S.R.; Kawata, K. The Biological Significance and Clinical Utility of Emerging Blood Biomarkers for Traumatic Brain Injury. Neurosci. Biobehav. Rev. 2021, 130, 433–447. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Yin, J.; Wang, Y.; Zhuang, X.; He, Z.; Chen, Z.; Yang, X. MicroRNAs as Potential Biomarkers for the Diagnosis of Traumatic Brain Injury: A Systematic Review and Meta-Analysis. Int. J. Med. Sci. 2021, 18, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Retel Helmrich, I.R.A.; Lingsma, H.F.; Turgeon, A.F.; Yamal, J.-M.; Steyerberg, E.W. Prognostic Research in Traumatic Brain Injury: Markers, Modeling, and Methodological Principles. J. Neurotrauma 2021, 38, 2502–2513. [Google Scholar] [CrossRef]
- Chen, W.; Qin, C. General Hallmarks of MicroRNAs in Brain Evolution and Development. RNA Biol. 2015, 12, 701–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redell, J.B.; Moore, A.N.; Ward, N.H.; Hergenroeder, G.W.; Dash, P.K. Human Traumatic Brain Injury Alters Plasma MicroRNA Levels. J. Neurotrauma 2010, 27, 2147–2156. [Google Scholar] [CrossRef] [PubMed]
- Schober, K.; Ondruschka, B.; Dreßler, J.; Abend, M. Detection of Hypoxia Markers in the Cerebellum after a Traumatic Frontal Cortex Injury: A Human Postmortem Gene Expression Analysis. Int. J. Legal. Med. 2015, 129, 701–707. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Song, J.; Bu, X.; Wang, C.; Wu, J.; Cai, J.; Wan, S.; Fan, C.; Zhang, C.; Wang, J. Elevated Serum MiR-93, MiR-191, and MiR-499 Are Noninvasive Biomarkers for the Presence and Progression of Traumatic Brain Injury. J. Neurochem. 2016, 137, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Di Pietro, V.; Ragusa, M.; Davies, D.; Su, Z.; Hazeldine, J.; Lazzarino, G.; Hill, L.J.; Crombie, N.; Foster, M.; Purrello, M.; et al. MicroRNAs as Novel Biomarkers for the Diagnosis and Prognosis of Mild and Severe Traumatic Brain Injury. J. Neurotrauma 2017, 34, 1948–1956. [Google Scholar] [CrossRef]
- O’Connell, G.C.; Smothers, C.G.; Winkelman, C. Bioinformatic Analysis of Brain-Specific MiRNAs for Identification of Candidate Traumatic Brain Injury Blood Biomarkers. Brain Inj. 2020, 34, 965–974. [Google Scholar] [CrossRef]
- Yan, J.; Bu, X.; Li, Z.; Wu, J.; Wang, C.; Li, D.; Song, J.; Wang, J. Screening the Expression of Several MiRNAs from TaqMan Low Density Array in Traumatic Brain Injury: MiR-219a-5p Regulates Neuronal Apoptosis by Modulating CCNA2 and CACUL1. J. Neurochem. 2019, 150, 202–217. [Google Scholar] [CrossRef]
- Bhomia, M.; Balakathiresan, N.S.; Wang, K.K.; Papa, L.; Maheshwari, R.K. A Panel of Serum MiRNA Biomarkers for the Diagnosis of Severe to Mild Traumatic Brain Injury in Humans. Sci. Rep. 2016, 6, 28148. [Google Scholar] [CrossRef]
- Qin, X.; Li, L.; Lv, Q.; Shu, Q.; Zhang, Y.; Wang, Y. Expression Profile of Plasma MicroRNAs and Their Roles in Diagnosis of Mild to Severe Traumatic Brain Injury. PLoS ONE 2018, 13, e0204051. [Google Scholar] [CrossRef]
- Hiskens, M.I.; Mengistu, T.S.; Li, K.M.; Fenning, A.S. Systematic Review of the Diagnostic and Clinical Utility of Salivary MicroRNAs in Traumatic Brain Injury (TBI). Int. J. Mol. Sci. 2022, 23, 13160. [Google Scholar] [CrossRef]
- Budnik, V.; Ruiz-Cañada, C.; Wendler, F. Extracellular Vesicles Round off Communication in the Nervous System. Nat. Rev. Neurosci. 2016, 17, 160–172. [Google Scholar] [CrossRef] [Green Version]
- Phillips, W.; Willms, E.; Hill, A.F. Understanding Extracellular Vesicle and Nanoparticle Heterogeneity: Novel Methods and Considerations. Proteomics 2021, 21, 2000118. [Google Scholar] [CrossRef] [PubMed]
- Abels, E.R.; Breakefield, X.O. Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and Uptake. Cell Mol. Neurobiol. 2016, 36, 301–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciferri, M.C.; Quarto, R.; Tasso, R. Extracellular Vesicles as Biomarkers and Therapeutic Tools: From Pre-Clinical to Clinical Applications. Biology 2021, 10, 359. [Google Scholar] [CrossRef]
- Kuharić, J.; Grabušić, K.; Tokmadžić, V.S.; Štifter, S.; Tulić, K.; Shevchuk, O.; Lučin, P.; Šustić, A. Severe Traumatic Brain Injury Induces Early Changes in the Physical Properties and Protein Composition of Intracranial Extracellular Vesicles. J. Neurotrauma 2019, 36, 190–200. [Google Scholar] [CrossRef]
- Patz, S.; Trattnig, C.; Grünbacher, G.; Ebner, B.; Gülly, C.; Novak, A.; Rinner, B.; Leitinger, G.; Absenger, M.; Tomescu, O.A.; et al. More than Cell Dust: Microparticles Isolated from Cerebrospinal Fluid of Brain Injured Patients Are Messengers Carrying MRNAs, MiRNAs, and Proteins. J. Neurotrauma 2013, 30, 1232–1242. [Google Scholar] [CrossRef]
- Guedes, V.A.; Devoto, C.; Leete, J.; Sass, D.; Acott, J.D.; Mithani, S.; Gill, J.M. Extracellular Vesicle Proteins and MicroRNAs as Biomarkers for Traumatic Brain Injury. Front. Neurol. 2020, 11, 663. [Google Scholar] [CrossRef]
- Ko, J.; Hemphill, M.; Yang, Z.; Beard, K.; Sewell, E.; Shallcross, J.; Schweizer, M.; Sandsmark, D.K.; Diaz-Arrastia, R.; Kim, J.; et al. Multi-Dimensional Mapping of Brain-Derived Extracellular Vesicle MicroRNA Biomarker for Traumatic Brain Injury Diagnostics. J. Neurotrauma 2020, 37, 2424–2434. [Google Scholar] [CrossRef] [PubMed]
- Santacruz, C.A.; Vincent, J.-L.; Bader, A.; Rincón-Gutiérrez, L.A.; Dominguez-Curell, C.; Communi, D.; Taccone, F.S. Association of Cerebrospinal Fluid Protein Biomarkers with Outcomes in Patients with Traumatic and Non-Traumatic Acute Brain Injury: Systematic Review of the Literature. Crit. Care 2021, 25, 278. [Google Scholar] [CrossRef]
- Blondal, T.; Jensby Nielsen, S.; Baker, A.; Andreasen, D.; Mouritzen, P.; Wrang Teilum, M.; Dahlsveen, I.K. Assessing Sample and MiRNA Profile Quality in Serum and Plasma or Other Biofluids. Methods 2013, 59, S1–S6. [Google Scholar] [CrossRef]
- Pizzamiglio, S.; Zanutto, S.; Ciniselli, C.M.; Belfiore, A.; Bottelli, S.; Gariboldi, M.; Verderio, P. A Methodological Procedure for Evaluating the Impact of Hemolysis on Circulating MicroRNAs. Oncol. Lett. 2017, 13, 315–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tavender, T.J.; Sheppard, A.M.; Bulleid, N.J. Peroxiredoxin IV Is an Endoplasmic Reticulum-Localized Enzyme Forming Oligomeric Complexes in Human Cells. Biochem. J. 2008, 411, 191–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV2018): A Position Statement of the International Society for Extracellular Vesicles and Update of the MISEV2014 Guidelines. J. Extracell. Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef] [Green Version]
- Krušić Alić, V.; Malenica, M.; Biberić, M.; Zrna, S.; Valenčić, L.; Šuput, A.; Kalagac Fabris, L.; Wechtersbach, K.; Kojc, N.; Kurtjak, M.; et al. Extracellular Vesicles from Human Cerebrospinal Fluid Are Effectively Separated by Sepharose CL-6B—Comparison of Four Gravity-Flow Size Exclusion Chromatography Methods. Biomedicines 2022, 10, 785. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.-X.; Springer, J.E.; Xie, K.; Fardo, D.W.; Hatton, K.W. A Highly Predictive MicroRNA Panel for Determining Delayed Cerebral Vasospasm Risk Following Aneurysmal Subarachnoid Hemorrhage. Front. Mol. Biosci. 2021, 8, 657258. [Google Scholar] [CrossRef]
- Koopaei, N.N.; Chowdhury, E.A.; Jiang, J.; Noorani, B.; da Silva, L.; Bulut, G.; Hakimjavadi, H.; Chamala, S.; Bickel, U.; Schmittgen, T.D. Enrichment of the Erythrocyte MiR-451a in Brain Extracellular Vesicles Following Impairment of the Blood-Brain Barrier. Neurosci. Lett. 2021, 751, 135829. [Google Scholar] [CrossRef]
- Chakraborty, S.; Basu, A. MiR-451a Regulates Neuronal Apoptosis by Modulating 14-3-3ζ-JNK Axis upon Flaviviral Infection. mSphere 2022, 7, e00208–e00222. [Google Scholar] [CrossRef]
- Trattnig, C.; Üçal, M.; Tam-Amersdorfer, C.; Bucko, A.; Zefferer, U.; Grünbacher, G.; Absenger-Novak, M.; Öhlinger, K.A.; Kraitsy, K.; Hamberger, D.; et al. MicroRNA-451a Overexpression Induces Accelerated Neuronal Differentiation of Ntera2/D1 Cells and Ablation Affects Neurogenesis in MicroRNA-451a-/- Mice. PLoS ONE 2018, 13, e0207575. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.; Yang, X.; Liang, S.; Xu, Q.; Miller, M.R.; Duan, J.; Sun, Z. Silica Nanoparticles Trigger the Vascular Endothelial Dysfunction and Prethrombotic State via MiR-451 Directly Regulating the IL6R Signaling Pathway. Part. Fibre Toxicol. 2019, 16, 16. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-J.; Kim, S.H.; Park, Y.; Park, J.; Lee, J.H.; Kim, B.C.; Song, W.K. MiR-16-5p Is Upregulated by Amyloid β Deposition in Alzheimer’s Disease Models and Induces Neuronal Cell Apoptosis through Direct Targeting and Suppression of BCL-2. Exp. Gerontol. 2020, 136, 110954. [Google Scholar] [CrossRef]
- Ma, F.; Sun, P.; Zhang, X.; Hamblin, M.H.; Yin, K.-J. Endothelium-Targeted Deletion of the MiR-15a/16-1 Cluster Ameliorates Blood-Brain Barrier Dysfunction in Ischemic Stroke. Sci. Signal. 2020, 13, eaay5686. [Google Scholar] [CrossRef]
- Yin, K.J.; Deng, Z.; Hamblin, M.; Xiang, Y.; Huang, H.; Zhang, J.; Jiang, X.; Wang, Y.; Chen, Y.E. Peroxisome Proliferator-Activated Receptor Regulation of MiR-15a in Ischemia-Induced Cerebral Vascular Endothelial Injury. J. Neurosci. 2010, 30, 6398–6408. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Zhao, M.; Zhang, J.; Liu, A.; Ji, W.; Li, Y.; Yang, X.; Wu, Z. MiR-144 Promotes β-Amyloid Accumulation-Induced Cognitive Impairments by Targeting ADAM10 Following Traumatic Brain Injury. Oncotarget 2017, 8, 59181–59203. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Zhao, L.; Zheng, J.; Wang, K.; Deng, H.; Liu, P.; Chen, L.; Mu, H. MicroRNA-144 Modulates Oxidative Stress Tolerance in SH-SY5Y Cells by Regulating Nuclear Factor Erythroid 2-Related Factor 2-Glutathione Axis. Neurosci. Lett. 2017, 655, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Yan, J.; Li, H.; Meng, L. HDAC9 Silencing Exerts Neuroprotection Against Ischemic Brain Injury via MiR-20a-Dependent Downregulation of NeuroD1. Front. Cell. Neurosci. 2021, 14, 544285. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.C.; Tang, Z.; Song, J.; Yao, J.; Sheng, X.; Su, Z. HIF-1α Protects PC12 Cells from OGD/R-induced Cell Injury by Regulating Autophagy Flux through the MiR-20a-5p/KIF5A Axis. Acta Neurobiol. Exp (Wars) 2022. [Google Scholar] [CrossRef] [PubMed]
- Branyan, T.E.; Selvamani, A.; Park, M.J.; Korula, K.E.; Kosel, K.F.; Srinivasan, R.; Sohrabji, F. Functional Assessment of Stroke-Induced Regulation of MiR-20a-3p and Its Role as a Neuroprotectant. Transl. Stroke Res. 2022, 13, 432–448. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Duan, C.; Luo, Z.; Xiao, W.; Tian, F. Silencing MiR-20a-5p Inhibits Axonal Growth and Neuronal Branching and Prevents Epileptogenesis through RGMa-RhoA-mediated Synaptic Plasticity. J. Cell. Mol. Med. 2020, 24, 10573–10588. [Google Scholar] [CrossRef]
- Zhao, L.; Gong, L.; Li, P.; Qin, J.; Xu, L.; Wei, Q.; Xie, H.; Mao, S.; Yu, B.; Gu, X.; et al. MiR-20a Promotes the Axon Regeneration of DRG Neurons by Targeting Nr4a3. Neurosci. Bull. 2021, 37, 569–574. [Google Scholar] [CrossRef]
- Tang, J.; Yan, B.; Tang, Y.; Zhou, X.; Ji, Z.; Xu, F. Baicalein Ameliorates Oxidative Stress and Brain Injury after Intracerebral Hemorrhage by Activating the Nrf2/ARE Pathway via MiR-106a-5p/PHLPP2 Axis. Int. J. Neurosci. 2022, 1–14. [Google Scholar] [CrossRef]
- Yang, Z.; Zhong, L.; Xian, R.; Yuan, B. MicroRNA-223 Regulates Inflammation and Brain Injury via Feedback to NLRP3 Inflammasome after Intracerebral Hemorrhage. Mol. Immunol. 2015, 65, 267–276. [Google Scholar] [CrossRef]
- Liu, Y.; Li, W.; Liu, Y.; Jiang, Y.; Wang, Y.; Xu, Z.; Cui, D.; Gao, L. MicroRNA-223 Attenuates Stretch-Injury-Induced Apoptosis in Brain Microvascular Endothelial Cells by Regulating RhoB Expression. Brain Sci. 2022, 12, 1157. [Google Scholar] [CrossRef]
- Ludwig, N.; Leidinger, P.; Becker, K.; Backes, C.; Fehlmann, T.; Pallasch, C.; Rheinheimer, S.; Meder, B.; Stähler, C.; Meese, E.; et al. Distribution of MiRNA Expression across Human Tissues. Nucleic Acids Res. 2016, 44, 3865–3877. [Google Scholar] [CrossRef]
- Lehmann, S.M.; Krüger, C.; Park, B.; Derkow, K.; Rosenberger, K.; Baumgart, J.; Trimbuch, T.; Eom, G.; Hinz, M.; Kaul, D.; et al. An Unconventional Role for MiRNA: Let-7 Activates Toll-like Receptor 7 and Causes Neurodegeneration. Nat. Neurosci. 2012, 15, 827–835. [Google Scholar] [CrossRef]
- Mukherjee, S.; Akbar, I.; Kumari, B.; Vrati, S.; Basu, A.; Banerjee, A. Japanese Encephalitis Virus-induced Let-7a/b Interacted with the NOTCH—TLR 7 Pathway in Microglia and Facilitated Neuronal Death via Caspase Activation. J. Neurochem. 2019, 149, 518–534. [Google Scholar] [CrossRef]
- Keller, A.; Gröger, L.; Tschernig, T.; Solomon, J.; Laham, O.; Schaum, N.; Wagner, V.; Kern, F.; Schmartz, G.P.; Li, Y.; et al. MiRNATissueAtlas2: An Update to the Human MiRNA Tissue Atlas. Nucleic Acids Res. 2022, 50, D211–D221. [Google Scholar] [CrossRef] [PubMed]
- Knoops, B.; Argyropoulou, V.; Becker, S.; Ferté, L.; Kuznetsova, O. Multiple Roles of Peroxiredoxins in Inflammation. Mol. Cells 2016, 39, 60–64. [Google Scholar] [CrossRef] [Green Version]
- Das, M.; Mohapatra, S.; Mohapatra, S.S. New Perspectives on Central and Peripheral Immune Responses to Acute Traumatic Brain Injury. J. Neuroinflammation 2012, 9, 236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, Y.; Mahmood, A.; Chopp, M. Current Understanding of Neuroinflammation after Traumatic Brain Injury and Cell-Based Therapeutic Opportunities. Chin. J. Traumatol. 2018, 21, 137–151. [Google Scholar] [CrossRef]
- Michell, D.L.; Vickers, K.C. Lipoprotein Carriers of MicroRNAs. Biochim. Et Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2016, 1861, 2069–2074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashby, J.; Flack, K.; Jimenez, L.A.; Duan, Y.; Khatib, A.-K.; Somlo, G.; Wang, S.E.; Cui, X.; Zhong, W. Distribution Profiling of Circulating MicroRNAs in Serum. Anal. Chem. 2014, 86, 9343–9349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kakarla, R.; Hur, J.; Kim, Y.J.; Kim, J.; Chwae, Y.-J. Apoptotic Cell-Derived Exosomes: Messages from Dying Cells. Exp. Mol. Med. 2020, 52, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mol, E.A.; Goumans, M.-J.; Doevendans, P.A.; Sluijter, J.P.G.; Vader, P. Higher Functionality of Extracellular Vesicles Isolated Using Size-Exclusion Chromatography Compared to Ultracentrifugation. Nanomed. Nanotechnol. Biol. Med. 2017, 13, 2061–2065. [Google Scholar] [CrossRef] [PubMed]
- Kopkova, A.; Sana, J.; Fadrus, P.; Machackova, T.; Vecera, M.; Vybihal, V.; Juracek, J.; Vychytilova-Faltejskova, P.; Smrcka, M.; Slaby, O. MicroRNA Isolation and Quantification in Cerebrospinal Fluid: A Comparative Methodical Study. PLoS ONE 2018, 13, e0208580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Patient | Age | Gender | Mechanism of Injury | Intracranial Pathology | GCS 1 | GOS 2 |
---|---|---|---|---|---|---|
1 | 44 | M | fall from height | epidural haematoma | 5 | 4 |
2 | 49 | F | motor vehicle accident | intracerebral haematoma, subdural haematoma | 5 | 4 |
3 | 33 | M | pedestrian in car accident | subdural haematoma, focal brain injury (frontal, temporal, occipital) | 3 | 4 |
4 | 24 | M | motor vehicle accident | diffuse axonal injury | 5 | 5 |
5 | 19 | M | fall from height | subdural haematoma, subarachnoid haemorrhage | 3 | 1 |
CSF | EV-Enriched (Fold) | FP-Enriched (Fold) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
d1–2 | miR-30b-5p miR-92b-3p | (9) (5) | miR-20a-5p miR-29b-3p miR-424-5p miR-451a miR-106a-5p miR-148a-3p let-7i-5p let-7b-5p miR-93-5p miR-144-3p miR-106b-5p miR-101-3p miR-148b-3p miR-29c-3p miR-652-3p | (269) (253) (196) (179) (166) (159) (139) (110) (96) (82) (81) (80) (71) (67) (65) | miR-18a-5p miR-29a-3p miR-15a-5p miR-194-5p miR-192-5p miR-100-5p miR-132-3p miR-26b-5p miR-32-5p miR-107 let-7g-5p miR-15b-5p miR-23a-3p miR-143-3p miR-103a-3p | (64) (53) (40) (40) (36) (33) (32) (31) (29) (29) (28) (28) (27) (23) (22) | let-7d-5p miR-142-5p miR-21-5p miR-532-5p let-7e-5p miR-425-5p mir-9-5p miR-25-3p miR-99b-5p miR-320a miR-124-3p miR-27b-3p let-7f-5p miR-338-3p miR-146b-5p | (22) (22) (22) (22) (20) (18) (18) (16) (16) (14) (14) (14) (13) (13) (13) | miR-34a-5p miR-16-5p miR-19b-3p miR-99a-5p miR-590-5p miR-27a-3p let-7c-5p let-7a-5p miR-23b-3p miR-222-3p miR-146a-5p miR-140-3p miR-126-3p miR-486-5p | (13) (12) (10) (10) (10) (9) (9) (9) (9) (9) (7) (6) (6) (5) |
d3–4 | miR-204-5p miR-22-3p miR-99a-5p | (55) (6) (5) | let-7b-5p miR-20a-5p miR-106a-5p miR-451a let-7g-5p miR-101-3p miR-148a-3p miR-93-5p miR-26b-5p | (336) (181) (123) (56) (51) (49) (44) (39) (39) | miR-107 let-7f-5p miR-106b-5p miR-103a-3p let-7a-5p let-7i-5p miR-148b-3p miR-486-5p let-7d-5p | (36) (35) (28) (27) (25) (22) (20) (19) (18) | miR-15b-5p miR-425-5p miR-142-5p miR-23a-3p miR-16-5p miR-18a-5p miR-25-3p miR-32-5p miR-92a-3p | (18) (16) (15) (15) (15) (14) (14) (12) (12) | miR-320a miR-144-3p miR-191-5p miR-26a-5p miR-15a-5p let-7c-5p miR-192-5p miR-140-3p | (11) (10) (9) (9) (7) (7) (7) (5) |
d5–6 | miR-142-3p miR-204-5p miR-223-3p miR-92a-3p miR-338-3p miR-103a-3p miR-486-5p miR-125b-5p miR-25-3p miR-124-3p miR-22-3p miR-16-5p let-7c-5p miR-27a-3p miR-19b-3p miR-27b-3p miR-191-5p | (54) (42) (26) (22) (18) (11) (11) (9) (9) (9) (8) (7) (7) (6) (7) (6) (6) | miR-20a-5p let-7b-5p miR-106a-5p | (12) (11) (6) | ||||||
d7–12 | miR-223-3p | (16) | let-7b-5p miR-20a-5p miR-106a-5p | (14) (11) (8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seršić, L.V.; Alić, V.K.; Biberić, M.; Zrna, S.; Jagoić, T.; Tarčuković, J.; Grabušić, K. Real-Time PCR Quantification of 87 miRNAs from Cerebrospinal Fluid: miRNA Dynamics and Association with Extracellular Vesicles after Severe Traumatic Brain Injury. Int. J. Mol. Sci. 2023, 24, 4751. https://doi.org/10.3390/ijms24054751
Seršić LV, Alić VK, Biberić M, Zrna S, Jagoić T, Tarčuković J, Grabušić K. Real-Time PCR Quantification of 87 miRNAs from Cerebrospinal Fluid: miRNA Dynamics and Association with Extracellular Vesicles after Severe Traumatic Brain Injury. International Journal of Molecular Sciences. 2023; 24(5):4751. https://doi.org/10.3390/ijms24054751
Chicago/Turabian StyleSeršić, Lara Valenčić, Vedrana Krušić Alić, Maša Biberić, Siniša Zrna, Tin Jagoić, Janja Tarčuković, and Kristina Grabušić. 2023. "Real-Time PCR Quantification of 87 miRNAs from Cerebrospinal Fluid: miRNA Dynamics and Association with Extracellular Vesicles after Severe Traumatic Brain Injury" International Journal of Molecular Sciences 24, no. 5: 4751. https://doi.org/10.3390/ijms24054751
APA StyleSeršić, L. V., Alić, V. K., Biberić, M., Zrna, S., Jagoić, T., Tarčuković, J., & Grabušić, K. (2023). Real-Time PCR Quantification of 87 miRNAs from Cerebrospinal Fluid: miRNA Dynamics and Association with Extracellular Vesicles after Severe Traumatic Brain Injury. International Journal of Molecular Sciences, 24(5), 4751. https://doi.org/10.3390/ijms24054751