Recent Advances in Green Metallic Nanoparticles for Enhanced Drug Delivery in Photodynamic Therapy: A Therapeutic Approach
Abstract
:1. Introduction
2. Fundamental of Photophysics and Photochemistry of PDT
3. Nanoparticles
Plasmonic Photothermal Effects of Metallic NPs in PDD and PDT
4. Green Nanotechnology in Cancer Treatment
4.1. Encapsulation Framework for Green Metallic NPs
4.2. Functionalization of Encapsulated NPs
5. Green Hybridized Activatable NPs in PDT
Limitations of Green Synthesized Metallic NPs
6. Conclusions, Outlook, and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ji, B.; Wei, M.; Yang, B. Recent Advances in Nanomedicines for Photodynamic Therapy (PDT)-Driven Cancer Immunotherapy. Theranostics 2022, 12, 434–458. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, S.R.G.; Fernandes, R.; Sarmento, B.; Pereira, P.M.R.; Tomé, J.P.C. Photoimmunoconjugates: Novel Synthetic Strategies to Target and Treat Cancer by Photodynamic Therapy. Org. Biomol. Chem. 2019, 17, 2579–2593. [Google Scholar] [CrossRef] [PubMed]
- Lismont, M.; Dreesen, L.; Wuttke, S. Metal-Organic Framework Nanoparticles in Photodynamic Therapy: Current Status and Perspectives. Adv. Funct. Mater. 2017, 27, 1606314. [Google Scholar] [CrossRef]
- Park, J.; Lee, Y.-K.; Park, I.-K.; Hwang, S.R. Current Limitations and Recent Progress in Nanomedicine for Clinically Available Photodynamic Therapy. Biomedicines 2021, 9, 85. [Google Scholar] [CrossRef] [PubMed]
- Adekiya, T.A.; Kondiah, P.P.D.; Choonara, Y.E.; Kumar, P.; Pillay, V. A Review of Nanotechnology for Targeted Anti-Schistosomal Therapy. Front. Bioeng. Biotechnol. 2020, 8, 32. [Google Scholar] [CrossRef]
- Inoue, T.; Ishihara, R. Photodynamic Therapy for Esophageal Cancer. Clin. Endosc. 2020, 54, 494–498. [Google Scholar] [CrossRef] [PubMed]
- Calixto, G.M.F.; Bernegossi, J.; De Freitas, L.M.; Fontana, C.R.; Chorilli, M. Nanotechnology-Based Drug Delivery Systems for Photodynamic Therapy of Cancer: A Review. Molecules 2016, 21, 342. [Google Scholar] [CrossRef]
- Gerbershagen, H.J.; Aduckathil, S.; van Wijck, A.J.M.; Peelen, L.M.; Kalkman, C.J.; Meissner, W. Pain Intensity on the First Day after Surgery: A Prospective Cohort Study Comparing 179 Surgical Procedures. Anesthesiology 2013, 118, 934–944. [Google Scholar] [CrossRef] [Green Version]
- Tohme, S.; Simmons, R.L.; Tsung, A. Surgery for Cancer: A Trigger for Metastases. Cancer Res. 2017, 77, 1548–1552. [Google Scholar] [CrossRef] [Green Version]
- Kothari, G.; Loblaw, A.; Tree, A.C.; van As, N.J.; Moghanaki, D.; Lo, S.S.; Ost, P.; Siva, S. Stereotactic Body Radiotherapy for Primary Prostate Cancer. Technol. Cancer Res. Treat. 2018, 17, 1533033818789633. [Google Scholar] [CrossRef]
- Nardone, V.; D’Ippolito, E.; Grassi, R.; Sangiovanni, A.; Gagliardi, F.; De Marco, G.; Menditti, V.S.; D’Ambrosio, L.; Cioce, F.; Boldrini, L.; et al. Non-Oncological Radiotherapy: A Review of Modern Approaches. J. Pers. Med. 2022, 12, 1677. [Google Scholar] [CrossRef] [PubMed]
- Sekkat, N.; van den Bergh, H.; Nyokong, T.; Lange, N. Like a Bolt from the Blue: Phthalocyanines in Biomedical Optics. Molecules 2011, 17, 98–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamblin, M.R. Photodynamic Therapy for Cancer: What’s Past Is Prologue. Photochem. Photobiol. 2020, 96, 506–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senge, M.O.; Brandt, J.C. Temoporfin (Foscan®, 5,10,15,20-Tetra(m-Hydroxyphenyl)Chlorin)—A Second-Generation Photosensitizer. Photochem. Photobiol. 2011, 87, 1240–1296. [Google Scholar] [CrossRef]
- Yano, S.; Hirohara, S.; Obata, M.; Hagiya, Y.; Ogura, S.; Ikeda, A.; Kataoka, H.; Tanaka, M.; Joh, T. Current States and Future Views in Photodynamic Therapy. J. Photochem. Photobiol. C Photochem. Rev. 2011, 12, 46–67. [Google Scholar] [CrossRef]
- Babič, A.; Herceg, V.; Bastien, E.; Lassalle, H.-P.; Bezdetnaya, L.; Lange, N. 5-Aminolevulinic Acid-Squalene Nanoassemblies for Tumor Photodetection and Therapy: In Vitro Studies. Nanoscale Res. Lett. 2018, 13, 10. [Google Scholar] [CrossRef] [Green Version]
- Ormond, A.B.; Freeman, H.S. Dye Sensitizers for Photodynamic Therapy. Materials 2013, 6, 817–840. [Google Scholar] [CrossRef] [Green Version]
- Crous, A.; Abrahamse, H. Photodynamic Therapy of Lung Cancer, Where Are We? Front. Pharmacol. 2022, 13, 932098. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, Applications and Toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on Nanoparticles and Nanostructured Materials: History, Sources, Toxicity and Regulations. Beilstein J. Nanotechnol. 2018, 9, 1050. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Hossain, M.K. 2—Classification and Properties of Nanoparticles. In Nanoparticle-Based Polymer Composites; Mavinkere Rangappa, S., Parameswaranpillai, J., Yashas Gowda, T.G., Siengchin, S., Seydibeyoglu, M.O., Eds.; Woodhead Publishing Series in Composites Science and Engineering; Woodhead Publishing: Sawston, UK, 2022; pp. 15–54. ISBN 978-0-12-824272-8. [Google Scholar]
- Zhang, H.; Ji, Q.; Huang, C.; Zhang, S.; Yuan, B.; Yang, K.; Ma, Y. Cooperative Transmembrane Penetration of Nanoparticles. Sci. Rep. 2015, 5, 10525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torrano, A.A.; Herrmann, R.; Strobel, C.; Rennhak, M.; Engelke, H.; Reller, A.; Hilger, I.; Wixforth, A.; Bräuchle, C. Cell Membrane Penetration and Mitochondrial Targeting by Platinum-Decorated Ceria Nanoparticles. Nanoscale 2016, 8, 13352–13367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, Y.; Zhou, Y.; Liu, L.; Xu, Y.; Chen, Q.; Wang, Y.; Wu, S.; Deng, Y.; Zhang, J.; Shao, A. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Front. Mol. Biosci. 2020, 7, 193. [Google Scholar] [CrossRef] [PubMed]
- Shim, G.; Jeong, S.; Oh, J.L.; Kang, Y. Lipid-Based Nanoparticles for Photosensitive Drug Delivery Systems. J. Pharm. Investig. 2022, 52, 151–160. [Google Scholar] [CrossRef]
- Braakhuis, H.M.; Park, M.V.; Gosens, I.; De Jong, W.H.; Cassee, F.R. Physicochemical Characteristics of Nanomaterials That Affect Pulmonary Inflammation. Part. Fibre Toxicol. 2014, 11, 18. [Google Scholar] [CrossRef] [Green Version]
- Jeong, M.-J.; Jeon, S.; Yu, H.-S.; Cho, W.-S.; Lee, S.; Kang, D.; Kim, Y.; Kim, Y.-J.; Kim, S.-Y. Exposure to Nickel Oxide Nanoparticles Induces Acute and Chronic Inflammatory Responses in Rat Lungs and Perturbs the Lung Microbiome. Int. J. Environ. Res. Public Health 2022, 19, 522. [Google Scholar] [CrossRef]
- Desai, N. Challenges in Development of Nanoparticle-Based Therapeutics. AAPS J. 2012, 14, 282–295. [Google Scholar] [CrossRef] [Green Version]
- Lee, N.-Y.; Ko, W.-C.; Hsueh, P.-R. Nanoparticles in the Treatment of Infections Caused by Multidrug-Resistant Organisms. Front. Pharmacol. 2019, 10, 1153. [Google Scholar] [CrossRef] [Green Version]
- Ramos, T.I.; Villacis-Aguirre, C.A.; López-Aguilar, K.V.; Santiago Padilla, L.; Altamirano, C.; Toledo, J.R.; Santiago Vispo, N. The Hitchhiker’s Guide to Human Therapeutic Nanoparticle Development. Pharmaceutics 2022, 14, 247. [Google Scholar] [CrossRef]
- Devi, S.; Kumar, M.; Tiwari, A.; Tiwari, V.; Kaushik, D.; Verma, R.; Bhatt, S.; Sahoo, B.M.; Bhattacharya, T.; Alshehri, S.; et al. Quantum Dots: An Emerging Approach for Cancer Therapy. Front. Mater. 2022, 8, 585. [Google Scholar] [CrossRef]
- Rajamanickam, K.; Rajamanickam, K. Application of Quantum Dots in Bio-Sensing, Bio-Imaging, Drug Delivery, Anti-Bacterial Activity, Photo-Thermal, Photo-Dynamic Therapy, and Optoelectronic Devices; IntechOpen: London, UK, 2022; ISBN 978-1-80356-594-1. [Google Scholar]
- Liu, J.; Li, R.; Yang, B. Carbon Dots: A New Type of Carbon-Based Nanomaterial with Wide Applications. ACS Cent. Sci. 2020, 6, 2179–2195. [Google Scholar] [CrossRef] [PubMed]
- Yuan, T.; Meng, T.; He, P.; Shi, Y.; Li, Y.; Li, X.; Fan, L.; Yang, S. Carbon Quantum Dots: An Emerging Material for Optoelectronic Applications. J. Mater. Chem. C 2019, 7, 6820–6835. [Google Scholar] [CrossRef]
- Nie, X.; Jiang, C.; Wu, S.; Chen, W.; Lv, P.; Wang, Q.; Liu, J.; Narh, C.; Cao, X.; Ghiladi, R.A.; et al. Carbon Quantum Dots: A Bright Future as Photosensitizers for in Vitro Antibacterial Photodynamic Inactivation. J. Photochem. Photobiol. B Biol. 2020, 206, 111864. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hu, A. Carbon Quantum Dots: Synthesis, Properties and Applications. J. Mater. Chem. C 2014, 2, 6921–6939. [Google Scholar] [CrossRef] [Green Version]
- Sato, K.; Katakami, R.; Iso, Y.; Isobe, T. Surface-Modified Carbon Dots with Improved Photoluminescence Quantum Yield for Color Conversion in White-Light-Emitting Diodes. ACS Appl. Nano Mater. 2022, 5, 7664–7669. [Google Scholar] [CrossRef]
- Cui, L.; Ren, X.; Sun, M.; Liu, H.; Xia, L. Carbon Dots: Synthesis, Properties and Applications. Nanomaterials 2021, 11, 3419. [Google Scholar] [CrossRef]
- Carvalho, A.; Fernandes, A.R.; Baptista, P.V. Chapter 10—Nanoparticles as Delivery Systems in Cancer Therapy: Focus on Gold Nanoparticles and Drugs. In Applications of Targeted Nano Drugs and Delivery Systems; Mohapatra, S.S., Ranjan, S., Dasgupta, N., Mishra, R.K., Thomas, S., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2019; pp. 257–295. ISBN 978-0-12-814029-1. [Google Scholar]
- Bhardwaj, P.; Singh, B.; Behera, S.P. Chapter 7—Green Approaches for Nanoparticle Synthesis: Emerging Trends. In Nanomaterials; Kumar, R.P., Bharathiraja, B., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 167–193. ISBN 978-0-12-822401-4. [Google Scholar]
- Thomas, S.C.; Kumar Mishra, P.; Talegaonkar, S. Ceramic Nanoparticles: Fabrication Methods and Applications in Drug Delivery. Curr. Pharm. Des. 2015, 21, 6165–6188. [Google Scholar] [CrossRef]
- Montazer, M.; Harifi, T. 2—Nanofinishing: Fundamental Principles. In Nanofinishing of Textile Materials; Montazer, M., Harifi, T., Eds.; The Textile Institute Book Series; Woodhead Publishing: Sawston, UK, 2018; pp. 19–34. ISBN 978-0-08-101214-7. [Google Scholar]
- Cheng, Z.; Li, M.; Dey, R.; Chen, Y. Nanomaterials for Cancer Therapy: Current Progress and Perspectives. J. Hematol. Oncol. 2021, 14, 85. [Google Scholar] [CrossRef]
- Aldewachi, H.; Chalati, T.; Woodroofe, M.N.; Bricklebank, N.; Sharrack, B.; Gardiner, P. Gold Nanoparticle-Based Colorimetric Biosensors. Nanoscale 2017, 10, 18–33. [Google Scholar] [CrossRef] [Green Version]
- Sutriyo; Mutalib, A.; Ristaniah; Anwar, E.; Radji, M.; Pujiyanto, A.; Purnamasari, P.; Joshita, D.; Adang, H.G. Synthesis of Gold Nanoparticles with Polyamidoamine (Pamam) Generation 4 Dendrimer as Stabilizing Agent for CT Scan Contrast Agent. Macromol. Symp. 2015, 353, 96–101. [Google Scholar] [CrossRef]
- Bai, X.; Wang, Y.; Song, Z.; Feng, Y.; Chen, Y.; Zhang, D.; Feng, L. The Basic Properties of Gold Nanoparticles and Their Applications in Tumor Diagnosis and Treatment. Int. J. Mol. Sci. 2020, 21, 2480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Khafaji, M.A.; Gaál, A.; Wacha, A.; Bóta, A.; Varga, Z. Particle Size Distribution of Bimodal Silica Nanoparticles: A Comparison of Different Measurement Techniques. Materials 2020, 13, 3101. [Google Scholar] [CrossRef] [PubMed]
- Selvarajan, V.; Obuobi, S.; Ee, P.L.R. Silica Nanoparticles—A Versatile Tool for the Treatment of Bacterial Infections. Front. Chem. 2020, 8, 602. [Google Scholar] [CrossRef] [PubMed]
- Tessaro, A.L.; Fraix, A.; Pedrozo da Silva, A.C.; Gazzano, E.; Riganti, C.; Sortino, S. “Three-Bullets” Loaded Mesoporous Silica Nanoparticles for Combined Photo/Chemotherapy. Nanomaterials 2019, 9, 823. [Google Scholar] [CrossRef] [Green Version]
- Breznan, D.; Das, D.D.; MacKinnon-Roy, C.; Bernatchez, S.; Sayari, A.; Hill, M.; Vincent, R.; Kumarathasan, P. Physicochemical Properties Can Be Key Determinants of Mesoporous Silica Nanoparticle Potency in Vitro. ACS Nano 2018, 12, 12062–12079. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, E.; Aval, S.F.; Akbarzadeh, A.; Milani, M.; Nasrabadi, H.T.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; Pashaei-Asl, R. Dendrimers: Synthesis, Applications, and Properties. Nanoscale Res. Lett. 2014, 9, 247. [Google Scholar] [CrossRef] [Green Version]
- Lombardo, D.; Kiselev, M.A. Methods of Liposomes Preparation: Formation and Control Factors of Versatile Nanocarriers for Biomedical and Nanomedicine Application. Pharmaceutics 2022, 14, 543. [Google Scholar] [CrossRef]
- Dymek, M.; Sikora, E. Liposomes as Biocompatible and Smart Delivery Systems—The Current State. Adv. Colloid Interface Sci. 2022, 309, 102757. [Google Scholar] [CrossRef]
- Movassaghian, S.; Merkel, O.M.; Torchilin, V.P. Applications of Polymer Micelles for Imaging and Drug Delivery. WIREs Nanomed. Nanobiotechnol. 2015, 7, 691–707. [Google Scholar] [CrossRef]
- Gibot, L.; Demazeau, M.; Pimienta, V.; Mingotaud, A.-F.; Vicendo, P.; Collin, F.; Martins-Froment, N.; Dejean, S.; Nottelet, B.; Roux, C.; et al. Role of Polymer Micelles in the Delivery of Photodynamic Therapy Agent to Liposomes and Cells. Cancers 2020, 12, 384. [Google Scholar] [CrossRef] [Green Version]
- Nkune, N.W.; Abrahamse, H. Nanoparticle-Based Drug Delivery Systems for Photodynamic Therapy of Metastatic Melanoma: A Review. Int. J. Mol. Sci. 2021, 22, 12549. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gao, H.; Zhang, Y.; Liu, G.; Niu, G.; Chen, X. Functional Ferritin Nanoparticles for Biomedical Applications. Front. Chem. Sci. Eng. 2017, 11, 633–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohanty, A.; Parida, A.; Raut, R.K.; Behera, R.K. Ferritin: A Promising Nanoreactor and Nanocarrier for Bionanotechnology. ACS Bio Med Chem Au 2022, 2, 258–281. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Park, J.; Kang, S.; Kim, M. Surface Plasmon Resonance: A Versatile Technique for Biosensor Applications. Sensors 2015, 15, 10481–10510. [Google Scholar] [CrossRef] [Green Version]
- Vachali, P.P.; Li, B.; Bartschi, A.; Bernstein, P.S. Surface Plasmon Resonance (SPR)-Based Biosensor Technology for the Quantitative Characterization of Protein–Carotenoid Interactions. Arch. Biochem. Biophys. 2015, 572, 66–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isabel Pérez-Jiménez, A.; Lyu, D.; Lu, Z.; Liu, G.; Ren, B. Surface-Enhanced Raman Spectroscopy: Benefits, Trade-Offs and Future Developments. Chem. Sci. 2020, 11, 4563–4577. [Google Scholar] [CrossRef] [Green Version]
- Kosuda, K.M.; Bingham, J.M.; Wustholz, K.L.; Van Duyne, R.P. 3.09—Nanostructures and Surface-Enhanced Raman Spectroscopy. In Comprehensive Nanoscience and Technology; Andrews, D.L., Scholes, G.D., Wiederrecht, G.P., Eds.; Academic Press: Amsterdam, The Netherlands, 2011; pp. 263–301. ISBN 978-0-12-374396-1. [Google Scholar]
- Alharbi, R.; Irannejad, M.; Yavuz, M. A Short Review on the Role of the Metal-Graphene Hybrid Nanostructure in Promoting the Localized Surface Plasmon Resonance Sensor Performance. Sensors 2019, 19, 862. [Google Scholar] [CrossRef] [Green Version]
- El-Seedi, H.R.; El-Shabasy, R.M.; Khalifa, S.A.; Saeed, A.; Shah, A.; Shah, R.; Iftikhar, F.J.; Abdel-Daim, M.M.; Omri, A.; Hajrahand, N.H.; et al. Metal Nanoparticles Fabricated by Green Chemistry Using Natural Extracts: Biosynthesis, Mechanisms, and Applications. RSC Adv. 2019, 9, 24539–24559. [Google Scholar] [CrossRef] [Green Version]
- Begum, S.J.P.; Pratibha, S.; Rawat, J.M.; Venugopal, D.; Sahu, P.; Gowda, A.; Qureshi, K.A.; Jaremko, M. Recent Advances in Green Synthesis, Characterization, and Applications of Bioactive Metallic Nanoparticles. Pharmaceuticals 2022, 15, 455. [Google Scholar] [CrossRef]
- Mason, C.; Vivekanandhan, S.; Misra, M.; Mohanty, A.K. Switchgrass (Panicum virgatum) Extract Mediated Green Synthesis of Silver Nanoparticles. World J. Nano Sci. Eng. 2012, 2, 47–52. [Google Scholar] [CrossRef]
- Jamdagni, P.; Khatri, P.; Rana, J.S. Green Synthesis of Zinc Oxide Nanoparticles Using Flower Extract of Nyctanthes Arbor-Tristis and Their Antifungal Activity. J. King Saud Univ. Sci. 2018, 30, 168–175. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Xu, H.; Chen, Z.-S.; Chen, G. Biosynthesis of Nanoparticles by Microorganisms and Their Applications. J. Nanomater. 2011, 2011, e270974. [Google Scholar] [CrossRef] [Green Version]
- Khandel, P.; Yadaw, R.K.; Soni, D.K.; Kanwar, L.; Shahi, S.K. Biogenesis of Metal Nanoparticles and Their Pharmacological Applications: Present Status and Application Prospects. J. Nanostruct. Chem. 2018, 8, 217–254. [Google Scholar] [CrossRef] [Green Version]
- John Owonubi, S.; Malima, N.M.; Revaprasadu, N. Chapter 16—Metal Oxide–Based Nanocomposites as Antimicrobial and Biomedical Agents. In Antibiotic Materials in Healthcare; Kokkarachedu, V., Kanikireddy, V., Sadiku, R., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 287–323. ISBN 978-0-12-820054-4. [Google Scholar]
- Ammulu, M.A.; Vinay Viswanath, K.; Giduturi, A.K.; Vemuri, P.K.; Mangamuri, U.; Poda, S. Phytoassisted Synthesis of Magnesium Oxide Nanoparticles from Pterocarpus Marsupium Rox.b Heartwood Extract and Its Biomedical Applications. J. Genet. Eng. Biotechnol. 2021, 19, 21. [Google Scholar] [CrossRef]
- Plackal Adimuriyil George, B.; Kumar, N.; Abrahamse, H.; Ray, S.S. Apoptotic Efficacy of Multifaceted Biosynthesized Silver Nanoparticles on Human Adenocarcinoma Cells. Sci. Rep. 2018, 8, 14368. [Google Scholar] [CrossRef] [Green Version]
- Krishnaraj, C.; Jagan, E.G.; Rajasekar, S.; Selvakumar, P.; Kalaichelvan, P.T.; Mohan, N. Synthesis of Silver Nanoparticles Using Acalypha Indica Leaf Extracts and Its Antibacterial Activity against Water Borne Pathogens. Colloids Surf. B Biointerfaces 2010, 76, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Sundararajan, B.; Ranjitha Kumari, B.D. Novel Synthesis of Gold Nanoparticles Using Artemisia vulgaris L. Leaf Extract and Their Efficacy of Larvicidal Activity against Dengue Fever Vector Aedes aegypti L. J. Trace Elem. Med. Biol. 2017, 43, 187–196. [Google Scholar] [CrossRef]
- Dipankar, C.; Murugan, S. The Green Synthesis, Characterization and Evaluation of the Biological Activities of Silver Nanoparticles Synthesized from Iresine herbstii Leaf Aqueous Extracts. Colloids Surf. B Biointerfaces 2012, 98, 112–119. [Google Scholar] [CrossRef]
- Padmini, R.; Nallal, V.U.M.; Razia, M.; Sivaramakrishnan, S.; Alodaini, H.A.; Hatamleh, A.A.; Al-Dosary, M.A.; Ranganathan, V.; Chung, W.J. Cytotoxic Effect of Silver Nanoparticles Synthesized from Ethanolic Extract of Allium Sativum on A549 Lung Cancer Cell Line. J. King Saud Univ. Sci. 2022, 34, 102001. [Google Scholar] [CrossRef]
- Mata, R.; Nakkala, J.R.; Sadras, S.R. Biogenic Silver Nanoparticles from Abutilon indicum: Their Antioxidant, Antibacterial and Cytotoxic Effects in Vitro. Colloids Surf. B Biointerfaces 2015, 128, 276–286. [Google Scholar] [CrossRef]
- Vivek, R.; Thangam, R.; Muthuchelian, K.; Gunasekaran, P.; Kaveri, K.; Kannan, S. Green Biosynthesis of Silver Nanoparticles from Annona squamosa Leaf Extract and Its in Vitro Cytotoxic Effect on MCF-7 Cells. Process Biochem. 2012, 47, 2405–2410. [Google Scholar] [CrossRef]
- Vijayashree, I.S.; Niranjana, P.; Prabhu, G.; Sureshbabu, V.V.; Manjanna, J. Conjugation of Au Nanoparticles with Chlorambucil for Improved Anticancer Activity. J. Clust. Sci. 2017, 28, 133–148. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Pei, Q.; Shou, T.; Zhang, W.; Hu, J.; Li, W. Apoptotic Effect of Green Synthesized Gold Nanoparticles from Curcuma wenyujin Extract against Human Renal Cell Carcinoma A498 Cells. Int. J. Nanomed. 2019, 14, 4091–4103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barai, A.C.; Paul, K.; Dey, A.; Manna, S.; Roy, S.; Bag, B.G.; Mukhopadhyay, C. Green Synthesis of Nerium Oleander-Conjugated Gold Nanoparticles and Study of Its in Vitro Anticancer Activity on MCF-7 Cell Lines and Catalytic Activity. Nano Converg. 2018, 5, 10. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xu, J.; Yan, Y.; Liu, H.; Karunakaran, T.; Li, F. Green Synthesis of Gold Nanoparticles from Scutellaria Barbata and Its Anticancer Activity in Pancreatic Cancer Cell (PANC-1). Artif. Cells Nanomed. Biotechnol. 2019, 47, 1617–1627. [Google Scholar] [CrossRef] [Green Version]
- Rajivgandhi, G.N.; Chackaravarthi, G.; Ramachandran, G.; Manoharan, N.; Ragunathan, R.; Siddiqi, M.Z.; Alharbi, N.S.; Khaled, J.M.; Li, W.-J. Synthesis of Silver Nanoparticle (Ag NPs) Using Phytochemical Rich Medicinal Plant Lonicera Japonica for Improve the Cytotoxicity Effect in Cancer Cells. J. King Saud Univ. Sci. 2022, 34, 101798. [Google Scholar] [CrossRef]
- Zhu, B.; Xie, N.; Yue, L.; Wang, K.; Bani-Fwaz, M.Z.; Hussein Osman, H.-E.; El-kott, A.F.; Bai, X. Formulation and Characterization of a Novel Anti-Human Endometrial Cancer Supplement by Gold Nanoparticles Green-Synthesized Using Spinacia oleracea L. Leaf Aqueous Extract. Arab. J. Chem. 2022, 15, 103576. [Google Scholar] [CrossRef]
- Kajani, A.A.; Bordbar, A.-K.; Esfahani, S.H.Z.; Razmjou, A. Gold Nanoparticles as Potent Anticancer Agent: Green Synthesis, Characterization, and in Vitro Study. RSC Adv. 2016, 6, 63973–63983. [Google Scholar] [CrossRef]
- Fong, J.F.Y.; Ng, Y.H.; Ng, S.M. Chapter 7—Carbon Dots as a New Class of Light Emitters for Biomedical Diagnostics and Therapeutic Applications. In Fullerens, Graphenes and Nanotubes; Grumezescu, A.M., Ed.; William Andrew Publishing: Norwich, NY, USA, 2018; pp. 227–295. ISBN 978-0-12-813691-1. [Google Scholar]
- Jølck, R.I.; Feldborg, L.N.; Andersen, S.; Moghimi, S.M.; Andresen, T.L. Engineering Liposomes and Nanoparticles for Biological Targeting. In Biofunctionalization of Polymers and Their Applications; Nyanhongo, G.S., Steiner, W., Gübitz, G., Eds.; Advances in Biochemical Engineering/Biotechnology; Springer: Berlin/Heidelberg, Germany, 2011; pp. 251–280. ISBN 978-3-642-21949-8. [Google Scholar]
- Wu, X.; Chen, J.; Wu, M.; Zhao, J.X. Aptamers: Active Targeting Ligands for Cancer Diagnosis and Therapy. Theranostics 2015, 5, 322–344. [Google Scholar] [CrossRef]
- Guan, J.; Shen, Q.; Zhang, Z.; Jiang, Z.; Yang, Y.; Lou, M.; Qian, J.; Lu, W.; Zhan, C. Enhanced Immunocompatibility of Ligand-Targeted Liposomes by Attenuating Natural IgM Absorption. Nat. Commun. 2018, 9, 2982. [Google Scholar] [CrossRef] [Green Version]
- Singh, S. Liposome Encapsulation of Doxorubicin and Celecoxib in Combination Inhibits Progression of Human Skin Cancer Cells. Int. J. Nanomed. 2018, 13, 11–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borgatti, A. Chapter 44—Chemotherapy. In Canine and Feline Gastroenterology; Washabau, R.J., Day, M.J., Eds.; W.B. Saunders: St. Louis, MO, USA, 2013; pp. 494–499. ISBN 978-1-4160-3661-6. [Google Scholar]
- Zhang, L.; Xu, H.; Wu, X.; Huang, W.; Zhang, T.; Hao, P.; Peng, B.; Zan, X. A Strategy to Fight against Triple-Negative Breast Cancer: PH-Responsive Hexahistidine-Metal Assemblies with High-Payload Drugs. ACS Appl. Bio Mater. 2020, 3, 5331–5341. [Google Scholar] [CrossRef] [PubMed]
- Taymaz-Nikerel, H.; Karabekmez, M.E.; Eraslan, S.; Kırdar, B. Doxorubicin Induces an Extensive Transcriptional and Metabolic Rewiring in Yeast Cells. Sci. Rep. 2018, 8, 13672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flörkemeier, I.; Steinhauer, T.N.; Hedemann, N.; Weimer, J.P.; Rogmans, C.; van Mackelenbergh, M.T.; Maass, N.; Clement, B.; Bauerschlag, D.O. High Antitumor Activity of the Dual Topoisomerase Inhibitor P8-D6 in Breast Cancer. Cancers 2022, 14, 2. [Google Scholar] [CrossRef]
- Abdelatty, A.; Ahmed, M.S.; Abdel-Kareem, M.A.; Dmerdash, M.; Mady, R.; Saad, A.S.; Albrakati, A.; Elmahallawy, E.K.; Elsawak, A.; Abdo, W. Acute and Delayed Doxorubicin-Induced Myocardiotoxicity Associated with Elevation of Cardiac Biomarkers, Depletion of Cellular Antioxidant Enzymes, and Several Histopathological and Ultrastructural Changes. Life 2021, 11, 880. [Google Scholar] [CrossRef]
- Ahmed, K.S.; Changling, S.; Shan, X.; Mao, J.; Qiu, L.; Chen, J. Liposome-Based Codelivery of Celecoxib and Doxorubicin Hydrochloride as a Synergistic Dual-Drug Delivery System for Enhancing the Anticancer Effect. J. Liposome Res. 2020, 30, 285–296. [Google Scholar] [CrossRef]
- Feuser, P.E.; Cordeiro, A.P.; de Bem Silveira, G.; Borges Corrêa, M.E.A.; Lock Silveira, P.C.; Sayer, C.; de Araújo, P.H.H.; Machado-de-Ávila, R.A.; Dal Bó, A.G. Co-Encapsulation of Sodium Diethyldithiocarbamate (DETC) and Zinc Phthalocyanine (ZnPc) in Liposomes Promotes Increases Phototoxic Activity against (MDA-MB 231) Human Breast Cancer Cells. Colloids Surf. B Biointerfaces 2021, 197, 111434. [Google Scholar] [CrossRef]
- Rengan, A.K.; Bukhari, A.B.; Pradhan, A.; Malhotra, R.; Banerjee, R.; Srivastava, R.; De, A. In Vivo Analysis of Biodegradable Liposome Gold Nanoparticles as Efficient Agents for Photothermal Therapy of Cancer. Nano Lett. 2015, 15, 842–848. [Google Scholar] [CrossRef]
- Villaverde, G.; Baeza, A. Targeting Strategies for Improving the Efficacy of Nanomedicine in Oncology. Beilstein J. Nanotechnol. 2019, 10, 168–181. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Yang, T.; Mao, C. Enhancement of Photodynamic Cancer Therapy by Physical and Chemical Factors. Angew. Chem. Int. Ed. 2019, 58, 14066–14080. [Google Scholar] [CrossRef]
- Wang, K.; Yu, B.; Pathak, J.L. An Update in Clinical Utilization of Photodynamic Therapy for Lung Cancer. J. Cancer 2021, 12, 1154–1160. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Li, X.; Yoon, J. Activatable Supramolecular Photosensitizers: Advanced Design Strategies. Mater. Chem. Front. 2021, 5, 1683–1693. [Google Scholar] [CrossRef]
- Luo, L.; Zhong, H.; Liu, S.; Deng, L.; Luo, Y.; Zhang, Q.; Zhu, Y.; Tian, Y.; Sun, Y.; Tian, X. Intracellular “Activated” Two-Photon Photodynamic Therapy by Fluorescent Conveyor and Photosensitizer Co-Encapsulating PH-Responsive Micelles against Breast Cancer. Int. J. Nanomed. 2017, 12, 5189–5201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinstain, R.; Slanina, T.; Kand, D.; Klán, P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem. Rev. 2020, 120, 13135–13272. [Google Scholar] [CrossRef]
- Westphal, D.; Kluck, R.M.; Dewson, G. Building Blocks of the Apoptotic Pore: How Bax and Bak Are Activated and Oligomerize during Apoptosis. Cell Death Differ. 2014, 21, 196–205. [Google Scholar] [CrossRef] [Green Version]
- Carrington, E.M.; Zhan, Y.; Brady, J.L.; Zhang, J.-G.; Sutherland, R.M.; Anstee, N.S.; Schenk, R.L.; Vikstrom, I.B.; Delconte, R.B.; Segal, D.; et al. Anti-Apoptotic Proteins BCL-2, MCL-1 and A1 Summate Collectively to Maintain Survival of Immune Cell Populations Both in Vitro and in Vivo. Cell Death Differ. 2017, 24, 878–888. [Google Scholar] [CrossRef] [Green Version]
- Aniogo, E.C.; George, B.P.A.; Abrahamse, H. Role of Bcl-2 Family Proteins in Photodynamic Therapy Mediated Cell Survival and Regulation. Molecules 2020, 25, 5308. [Google Scholar] [CrossRef]
- Brentnall, M.; Rodriguez-Menocal, L.; De Guevara, R.L.; Cepero, E.; Boise, L.H. Caspase-9, Caspase-3 and Caspase-7 Have Distinct Roles during Intrinsic Apoptosis. BMC Cell Biol. 2013, 14, 32. [Google Scholar] [CrossRef] [Green Version]
- Moldovan, C.S.; Onaciu, A.; Toma, V.; Marginean, R.; Moldovan, A.; Tigu, A.B.; Stiufiuc, G.F.; Lucaciu, C.M.; Stiufiuc, R.I. Quantifying Cytosolic Cytochrome c Concentration Using Carbon Quantum Dots as a Powerful Method for Apoptosis Detection. Pharmaceutics 2021, 13, 1556. [Google Scholar] [CrossRef]
- Juan, C.A.; Pérez de la Lastra, J.M.; Plou, F.J.; Pérez-Lebeña, E. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int. J. Mol. Sci. 2021, 22, 4642. [Google Scholar] [CrossRef]
- Verma, A.; Gautam, S.P.; Bansal, K.K.; Prabhakar, N.; Rosenholm, J.M. Green Nanotechnology: Advancement in Phytoformulation Research. Medicines 2019, 6, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villanueva-Flores, F.; Castro-Lugo, A.; Ramírez, O.T.; Palomares, L.A. Understanding Cellular Interactions with Nanomaterials: Towards a Rational Design of Medical Nanodevices. Nanotechnology 2020, 31, 132002. [Google Scholar] [CrossRef] [PubMed]
- Iavicoli, I.; Leso, V.; Ricciardi, W.; Hodson, L.L.; Hoover, M.D. Opportunities and Challenges of Nanotechnology in the Green Economy. Environ. Health 2014, 13, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pal, K.; Chakroborty, S.; Nath, N. Limitations of Nanomaterials Insights in Green Chemistry Sustainable Route: Review on Novel Applications. Green Process. Synth. 2022, 11, 951–964. [Google Scholar] [CrossRef]
- Ying, S.; Guan, Z.; Ofoegbu, P.C.; Clubb, P.; Rico, C.; He, F.; Hong, J. Green Synthesis of Nanoparticles: Current Developments and Limitations. Environ. Technol. Innov. 2022, 26, 102336. [Google Scholar] [CrossRef]
- Peralta-Videa, J.R.; Huang, Y.; Parsons, J.G.; Zhao, L.; Lopez-Moreno, L.; Hernandez-Viezcas, J.A.; Gardea-Torresdey, J.L. Plant-Based Green Synthesis of Metallic Nanoparticles: Scientific Curiosity or a Realistic Alternative to Chemical Synthesis? Nanotechnol. Environ. Eng. 2016, 1, 4. [Google Scholar] [CrossRef] [Green Version]
- Patra, J.K.; Baek, K.-H. Green Nanobiotechnology: Factors Affecting Synthesis and Characterization Techniques. J. Nanomater. 2014, 2014, e417305. [Google Scholar] [CrossRef] [Green Version]
- Dikshit, P.K.; Kumar, J.; Das, A.K.; Sadhu, S.; Sharma, S.; Singh, S.; Gupta, P.K.; Kim, B.S. Green Synthesis of Metallic Nanoparticles: Applications and Limitations. Catalysts 2021, 11, 902. [Google Scholar] [CrossRef]
- Sargazi, S.; Laraib, U.; Er, S.; Rahdar, A.; Hassanisaadi, M.; Zafar, M.N.; Díez-Pascual, A.M.; Bilal, M. Application of Green Gold Nanoparticles in Cancer Therapy and Diagnosis. Nanomaterials 2022, 12, 1102. [Google Scholar] [CrossRef]
Therapeutic Options | Classification | Advantages | Disadvantages |
---|---|---|---|
Photodynamic therapy | Localized | Non-invasive, short treatment time, can be targeted, can be repeated, immunogenic, with fewer adverse effects post-treatment, and cost-effective | Photosensitivity and sun-shade post-treatment, limited light penetration, photosensitizer, and molecular oxygen dependent |
Surgery | Localized | Quick and effective, light independent, improves the quality of life, and cost-effective when compared to other systemic therapies | Invasive, painful, wound bleeding, numbness, susceptibility to infections, swelling, tissue injury, loss of organ function/or body organ, and induction of secondary metastatic tumors |
Radiotherapy | Localized | Non-invasive when compared to surgery, low toxicity when compared to systemic therapies e.g., chemotherapy and hormone therapy, cost-effective, with greater accessibility, and convivence | Unsuitable for systemic cancers, increased need for imaging techniques such as magnetic resonance imaging (MRI), limited information on adverse effects, greatest chances of inducing the development of secondary cancers |
Chemotherapy | Systemic | Can reach malignant cells in all body sites, light independent, suitable for systemic cancers such as leukemias, testicular cancers, and lymphomas | Increased systemic toxicity, induction of multidrug resistance (MDR), hair loss, weight loss, induction of fertility complications, and can lead to peripheral neuropathy /or other nervous system complications e.g., numbness |
Trade Name/ Photosensitizer | Generation | λmax (nm) | εmax (M−1 cm−1) | 1O2 Quantum Yield (ΦΔ) | Current Indications and Clinical Applications |
---|---|---|---|---|---|
Photofrin® (HpD, Porfimer sodium) | First | 630 | 3.0 × 103 | ~0.01 | Bowen’s disease, bladder, brain, breast, cutaneous Kaposi’s sarcoma, cervical, and lung cancers |
Foscan® (m-THPC, Temoporfin) | Second | 652 | 3.0 × 104 | 0.43 | Advanced head and neck cancers |
Visudyne® (Verteporfin) | Second | 686 | 3.4 × 104 | 0.7 | Subfoveal choroidal neovascularization |
Photochlor® (HPPH, 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-alpha) | Second | 665 | 4.75 × 104 | 0.48 | Basal cell carcinoma, Barrett’s esophagus, non-small lung, and esophageal cancers |
Levulan® (5-Aminolevulinic acid) | Second | 635 | 5 × 103 | 0.56 | Basal cell carcinoma, brain, skin, bladder, and head and neck cancers |
Lutrin® (Lutetium texaphyrin) | Second | 732 | 4.2 × 104 | 0.11 | Kaposi’s sarcoma, melanoma, cervical, prostate, and breast cancers |
Tookad® (Palladium-bacteriopheophorbide) | Second | 762 | 8.85 × 104 | 0.50 | Prostate cancer |
Photosens® (Sulfonated aluminum phthalocyanines) | Second | 675 | 20 × 104 | 0.38 | Breast, cervical, skin, lung, and head and neck cancers |
Purlytin® (Tin ethyl etiopurpurin) | Second | 664 | 3 × 104 | 0.7 | Basal cell carcinoma, breast, and Kaposi’s sarcoma |
Laserphyrin® (Mono-L-aspartylchlorin-e6) | Second | 654 | 4.0 × 104 | 0.77 | Liver, lung, and head and neck cancers |
Nanomaterial Classification | Nanomaterial | Size (nm) | Physicochemical Properties | Medical Applications | Ref. |
---|---|---|---|---|---|
Inorganic nanoparticles (INPs) | Quantum dots | 2–10 | Optoelectronic, higher surface-to-volume ratio, narrow emission spectra, higher quantum yield, and good biocompatibility | Drug delivery systems, bioimaging, biosensing, and PDT | [31,32,33] |
Carbon-based NPs | <10 | Optoelectronic, water soluble, higher light absorption coefficient, biocompatibility, and stable chemical inertness, with excellent photon induced electron transfer | Drug delivery systems, bioimaging, biosensing, and PDT | [34,35,36,37,38] | |
Ceramic NPs | <50 | Optoelectronic, corrosion-resistant, higher biocompatibility, and heat resistance | Drug delivery systems, bioimaging, and PDT | [39,40,41] | |
Gold NPs | 88–252 | Optoelectronic, higher atomic number, localized surface plasmon resonance with a higher X-ray absorption coefficient, and can easily be functionalized with other targeting are moieties | Drug delivery systems, bioimaging, biosensing, radiotherapy and PDT | [42,43,44,45,46] | |
Silica NPs | 50–100 | Optoelectronic, higher stability and biocompatibility, with a large surface area that can easily be functionalized with other targeting are moieties | Catalysts, drug delivery systems, bioimaging, biosensing, and PDT | [47,48,49,50] | |
Organic nanoparticles (ONPs) | Dendrimers | 2–15 | Multivalent surface, low polydispersity, chemically stable, self-assembling, good biocompatibility, and easily functionalized with other targeting are moieties | Drug delivery systems, bioimaging, biosensing, neutron capture therapy, and PDT | [39,45,51] |
Liposomes | ~50 | Consist of one or more phospholipid bilayers, highly biocompatible, with minimized cellular toxicity, and can easily be functionalized with other targeting are moieties | Drug delivery systems, bioimaging, biosensing, diagnostics, theranostic, and PDT | [52,53] | |
Micelles | ~20 | Polar heads and non-polar tails, with high loading capacity, good biocompatibility with minimized cellular toxicity, and can easily be functionalized with other targeting are moieties | Drug delivery systems, bioimaging, biosensing, theranostic, and PDT | [54,55,56] | |
Ferritin | 9.5–32.3 | Composed of 24 protein subunits with mass ranging 450–500 kDa, optoelectronic, chemically stable, highly biocompatible, and can easily be functionalized with other targeting are moieties | Drug delivery systems, bioimaging, biosensing, theranostic, and PDT | [57,58] |
Plant Name | Plant Part | Metal | NP Size (nm) | λ (nm) | Activity | Ref. |
---|---|---|---|---|---|---|
Rubus fairholmianus | Roots | Ag | ~30–150 | 455 | Anticancer activity against human breast cancer (MCF-7) cells | [72] |
Acalypha indica | Leaves | Ag | 20–30 | 420 | Antibacterial activities against Escherichia coli (E. coli), and Vibrio cholerae | [73] |
Artemisia vulgaris | Leaves | Au | 50–100 | 544 | Larvicidal activity against dengue fever vector Aedes aegypti L. | [74] |
Iresine herbstii | Leaves | Ag | 44–64 | 438 | Anticancer activity against human cervical cancer (HeLa) cells | [75] |
Allium sativum | Bulbs | Ag | 20–40 | 452 | Anticancer activity against human lung epithelial (A549) cells | [76] |
Abutilon indicum | Leaves | Ag | 1–300 | 455 | Anticancer activity against colon carcinoma (COLO 205) cells, and antibacterial effects against Bacillus cereus, E. coli, Salmonella typhi, Staphylococcus aureus, Shigella flexneri, and Pseudomonas fluorescence | [77] |
Annona squamosa | Leaves | Ag | 20–100 | 444 | Anticancer activity against human breast cancer (MCF-7) cells | [78] |
Artocarpus hirsutus | Leaves | Au | 5–40 | 540 | Anticancer activities against colon carcinoma (RKO), Hela, and A549 cells | [79] |
Curcuma wenyujin | - | Au | 530 | 200 | Anticancer activity against human renal cancer (A498) cells | [80] |
Nerium oleander | Stem bark | Au | 10–100 | 534–553 | Anticancer activity against human breast cancer (MCF-7) cells | [81] |
Sargassum swartzii | Whole plant | Au | 154 | 525 | Anticancer activity against pancreatic cancer (PANC-1) cells | [82] |
Lonicera japonica | Leaves | Ag | - | 456 | Anticancer activity against human lung epithelial (A549) cells | [83] |
Spinacia oleracea L | Leaves | Au | 16.7 | 549 | Anticancer activities against endometrial cancer (HEC-1-A, HEC-1-B, Ishikawa, and KLE) cell lines | [84] |
Taxus baccata | Needles | Au | 20 | 300–400 and 500–600 | Anticancer activities against MCF-7, Hela, and ovarian (Caov-4) cell lines | [85] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chota, A.; George, B.P.; Abrahamse, H. Recent Advances in Green Metallic Nanoparticles for Enhanced Drug Delivery in Photodynamic Therapy: A Therapeutic Approach. Int. J. Mol. Sci. 2023, 24, 4808. https://doi.org/10.3390/ijms24054808
Chota A, George BP, Abrahamse H. Recent Advances in Green Metallic Nanoparticles for Enhanced Drug Delivery in Photodynamic Therapy: A Therapeutic Approach. International Journal of Molecular Sciences. 2023; 24(5):4808. https://doi.org/10.3390/ijms24054808
Chicago/Turabian StyleChota, Alexander, Blassan P. George, and Heidi Abrahamse. 2023. "Recent Advances in Green Metallic Nanoparticles for Enhanced Drug Delivery in Photodynamic Therapy: A Therapeutic Approach" International Journal of Molecular Sciences 24, no. 5: 4808. https://doi.org/10.3390/ijms24054808
APA StyleChota, A., George, B. P., & Abrahamse, H. (2023). Recent Advances in Green Metallic Nanoparticles for Enhanced Drug Delivery in Photodynamic Therapy: A Therapeutic Approach. International Journal of Molecular Sciences, 24(5), 4808. https://doi.org/10.3390/ijms24054808