Mechanism of Silylation of Vinyl Arenes by Hydrodisiloxanes Driven by Stoichiometric Amounts of Sodium Triethylborohydride—A Combined DFT and Experimental Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Experimental Results
2.2. Computational Results
2.2.1. Reaction Energy Profiles
2.2.2. O-Si-H 2D Scan
2.2.3. Trialkylborohydride Regeneration
2.2.4. Substituted Styrenes
3. Materials and Methods
3.1. Experimental Methods
3.1.1. General Considerations
3.1.2. General Experimental Procedure of Silylation Using TMDSO as a Me2SiH2 Surrogate
3.2. Identification of the Products
3.2.1. (1-(4-Tert-Butylphenyl)Ethyl)Dimethylsilane, 4b; Colorless Viscous Oil
3.2.2. (1-(4-Methoxyphenyl)Ethyl)Dimethylsilane, 4c; Off-White Viscous Oil
3.2.3. Dimethyl(1-(2-Methylphenyl)Ethyl)Silane, 4d; Colorless Viscous Oil
3.2.4. Dimethyl(1-(Naphthalen-2-yl)Ethyl)Silane, 4e; Colorless Viscous Oil
3.2.5. (1-([1,1′-Biphenyl]-4-yl)Ethyl)Dimethylsilane, 4f; Off-White Solid
3.3. Computational Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gong, Y.; Mou, Q.; Peng, D.; Wang, F.; Qin, J.; Qin, J.; Ding, Y. New Insight into the Mechanism of Pt(0)-Catalyzed Hydrosilylation Reaction of (CH3)3SiH with CH2CHSi(CH3)3. J. Mol. Graph. Model. 2022, 117, 108294. [Google Scholar] [CrossRef]
- Xie, H.; Kuang, J.; Wang, L.; Li, Y.; Huang, L.; Fan, T.; Lei, Q.; Fang, W. A DFT Study on Palladium and Nickel-Catalyzed Regioselective and Stereoselective Hydrosilylation of 1,3-Disubstituted Allenes. Organometallics 2017, 36, 3371–3381. [Google Scholar] [CrossRef]
- Wang, Y.-F.; He, Y.-H.; Su, Y.; Ji, Y.; Li, R. Asymmetric Hydrosilylation of β-Silyl Styrenes Catalyzed by a Chiral Palladium Complex. J. Org. Chem. 2022, 87, 2831–2844. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.; Huang, L.; Yang, X.; Wei, H. The Unexpected Mechanism Underlying the High-Valent Mono-Oxo-Rhenium(V) Hydride Catalyzed Hydrosilylation of C==N Functionalities: Insights from a DFT Study. ChemPhysChem 2015, 16, 1052–1060. [Google Scholar] [CrossRef]
- Hassen, S.; Zouaghi, M.O.; Slimani, I.; Arfaoui, Y.; Özdemir, N.; Özdemir, I.; Gürbüz, N.; Mansour, L.; Gatri, R.; Hamdi, N. Synthesis, Crystal Structures, DFT Calculations, and Catalytic Application in Hydrosilylation of Acetophenone Derivatives with Triethylsilane of Novel Rhoduim-N-Heterocyclic Carbene (NHCs) Complex. J. Mol. Struct. 2022, 1265, 133397. [Google Scholar] [CrossRef]
- Tuttle, T.; Wang, D.; Thiel, W.; Köhler, J.; Hofmann, M.; Weis, J. Mechanism of Olefin Hydrosilylation Catalyzed by RuCl2(CO)2(PPh3)2: A DFT Study. Organometallics 2006, 25, 4504–4513. [Google Scholar] [CrossRef]
- Tuttle, T.; Wang, D.; Thiel, W.; Köhler, J.; Hofmann, M.; Weis, J. Mechanism of Olefin Hydrosilylation Catalyzed by [RuCl(NCCH3)5]+: A DFT Study. J. Organomet. Chem. 2007, 692, 2282–2290. [Google Scholar] [CrossRef]
- Wang, J.; Huang, L.; Yang, X.; Wei, H. Mechanistic Investigation Into Catalytic Hydrosilylation with a High-Valent Ruthenium(VI)–Nitrido Complex: A DFT Study. Organometallics 2015, 34, 212–220. [Google Scholar] [CrossRef]
- Yao, L.; Li, Y.; Huang, L.; Guo, K.; Ren, G.; Wu, Z.; Lei, Q.; Fang, W.; Xie, H. A DFT Study on the Mechanisms of Hydrogenation and Hydrosilylation of Nitrous Oxide Catalyzed by a Ruthenium PNP Pincer Complex. Comput. Theor. Chem. 2018, 1128, 48–55. [Google Scholar] [CrossRef]
- Zhang, X.-H.; Chung, L.W.; Lin, Z.; Wu, Y.-D. A DFT Study on the Mechanism of Hydrosilylation of Unsaturated Compounds with Neutral Hydrido(Hydrosilylene)Tungsten Complex. J. Org. Chem. 2008, 73, 820–829. [Google Scholar] [CrossRef]
- Drees, M.; Strassner, T. Mechanism of the MoO2 Cl2-Catalyzed Hydrosilylation: A DFT Study. Inorg. Chem. 2007, 46, 10850–10859. [Google Scholar] [CrossRef]
- Chen, H.; Wang, W.; Wei, H. DFT Study on Mechanism of Carbonyl Hydrosilylation Catalyzed by High-Valent Molybdenum (IV) Hydrides. Tetrahedron 2018, 74, 3955–3962. [Google Scholar] [CrossRef]
- Itabashi, T.; Arashiba, K.; Tanaka, H.; Yoshizawa, K.; Nishibayashi, Y. Hydroboration and Hydrosilylation of a Molybdenum–Nitride Complex Bearing a PNP-Type Pincer Ligand. Organometallics 2022, 41, 366–373. [Google Scholar] [CrossRef]
- Bories, C.C.; Barbazanges, M.; Derat, E.; Petit, M. Implication of a Silyl Cobalt Dihydride Complex as a Useful Catalyst for the Hydrosilylation of Imines. ACS Catal. 2021, 11, 14262–14273. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, B.; Meng, L.; Li, X. Charge-Regulated Regioselective Mechanism of Bicobalt-Catalyzed Hydrogermylation of Alkynes: DFT Investigation. Mol. Catal. 2022, 526, 112379. [Google Scholar] [CrossRef]
- Fan, G.; Shang, Z.; Li, R.; Shafiei-Haghighi, S.; Peng, Q.; Findlater, M.; Xu, X. Mechanism of the Iron(0)-Catalyzed Hydrosilylation of Aldehydes: A Combined DFT and Experimental Investigation. Organometallics 2019, 38, 4105–4114. [Google Scholar] [CrossRef]
- Li, Q.; Huo, S.; Meng, L.; Li, X. Mechanism and Origin of the Stereoselectivity of Manganese-Catalyzed Hydrosilylation of Alkynes: A DFT Study. Catal. Sci. Technol. 2022, 12, 2649–2658. [Google Scholar] [CrossRef]
- Barros, N.; Eisenstein, O.; Maron, L. Catalytic Hydrosilylation of Olefins with Organolanthanides: A DFT Study. Part I: Hydrosilylation of Propene by SiH4. Dalton Trans. 2010, 39, 10749. [Google Scholar] [CrossRef]
- Chen, W.; Jiang, C.; Zhang, J.; Xu, J.; Xu, L.; Xu, X.; Li, J.; Cui, C. Rare-Earth-Catalyzed Selective 1,4-Hydrosilylation of Branched 1,3-Enynes Giving Tetrasubstituted Silylallenes. J. Am. Chem. Soc. 2021, 143, 12913–12918. [Google Scholar] [CrossRef]
- Gajewy, J.; Gawronski, J.; Kwit, M. Mechanism and Enantioselectivity of [Zinc(Diamine)(Diol)]-Catalyzed Asymmetric Hydrosilylation of Ketones: DFT, NMR and ECD Studies: Asymmetric Hydrosilylation of Ketones. Eur. J. Org. Chem. 2013, 2013, 307–318. [Google Scholar] [CrossRef]
- Sakata, K.; Fujimoto, H. Quantum Chemical Study of B(C 6 F 5 ) 3 -Catalyzed Hydrosilylation of Carbonyl Group. J. Org. Chem. 2013, 78, 12505–12512. [Google Scholar] [CrossRef] [PubMed]
- Nowicki, M.; Zaranek, M.; Pawluć, P.; Hoffmann, M. DFT Study of Trialkylborohydride-Catalysed Hydrosilylation of Alkenes–the Mechanism and Its Implications. Catal. Sci. Technol. 2020, 10, 1066–1072. [Google Scholar] [CrossRef]
- Simonneau, A.; Oestreich, M. Formal SiH4 Chemistry Using Stable and Easy-to-Handle Surrogates. Nat. Chem. 2015, 7, 816–822. [Google Scholar] [CrossRef] [PubMed]
- Simonneau, A.; Oestreich, M. 3-Silylated Cyclohexa-1,4-Dienes as Precursors for Gaseous Hydrosilanes: The B(C6F5)3-Catalyzed Transfer Hydrosilylation of Alkenes. Angew. Chem. Int. Ed. 2013, 52, 11905–11907. [Google Scholar] [CrossRef]
- Oestreich, M. Transfer Hydrosilylation. Angew. Chem. Int. Ed. 2016, 55, 494–499. [Google Scholar] [CrossRef] [Green Version]
- Walker, J.C.L.; Oestreich, M. Ionic Transfer Reactions with Cyclohexadiene-Based Surrogates. Synlett 2019, 30, 2216–2232. [Google Scholar] [CrossRef]
- Yuan, W.; Orecchia, P.; Oestreich, M. Cyclohexa-1,3-Diene-Based Dihydrogen and Hydrosilane Surrogates in B(C6F5)3-Catalysed Transfer Processes. Chem. Commun. 2017, 53, 10390–10393. [Google Scholar] [CrossRef]
- Keess, S.; Simonneau, A.; Oestreich, M. Direct and Transfer Hydrosilylation Reactions Catalyzed by Fully or Partially Fluorinated Triarylboranes: A Systematic Study. Organometallics 2015, 34, 790–799. [Google Scholar] [CrossRef]
- Chauvier, C.; Thuéry, P.; Cantat, T. Silyl Formates as Surrogates of Hydrosilanes and Their Application in the Transfer Hydrosilylation of Aldehydes. Angew. Chem. Int. Ed. 2016, 55, 14096–14100. [Google Scholar] [CrossRef]
- Romero, R.M.; Thyagarajan, N.; Hellou, N.; Chauvier, C.; Godou, T.; Anthore-Dalion, L.; Cantat, T. Silyl Formates as Hydrosilane Surrogates for the Transfer Hydrosilylation of Ketones. Chem. Commun. 2022, 58, 6308–6311. [Google Scholar] [CrossRef]
- Buslov, I.; Keller, S.C.; Hu, X. Alkoxy Hydrosilanes As Surrogates of Gaseous Silanes for Hydrosilylation of Alkenes. Org. Lett. 2016, 18, 1928–1931. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, T.; Shiota, K.; Ishimaru, T.; Yamaguchi, Y. Hydrosilylation of Alkenes Using a Hydrosiloxane as a Surrogate for Me2SiH2 and Catalyzed by a Nickel-Pincer Complex. Eur. J. Org. Chem 2021, 2021, 5449–5452. [Google Scholar] [CrossRef]
- Zaranek, M.; Nowicki, M.; Andruszak, P.; Hoffmann, M.; Pawluć, P. Hydrogermylation Initiated by Trialkylborohydrides: A Living Anionic Mechanism. Chem. Commun. 2022, 58, 13979–13982. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Truhlar, D.G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar] [CrossRef] [Green Version]
- Leszczynski, J.; Shukla, M. Practical Aspects of Computational Chemistry II: An Overview of the Last Two Decades and Current Trends; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; ISBN 978-94-007-0923-2. [Google Scholar]
- Pawłowska, A.; Volle, J.-N.; Virieux, D.; Pirat, J.-L.; Janiak, A.; Nowicki, M.; Hoffmann, M.; Pluskota-Karwatka, D. Perfluorophenyl Phosphonate Analogues of Aromatic Amino Acids: Synthesis, X-Ray and DFT Studies. Tetrahedron 2018, 74, 975–986. [Google Scholar] [CrossRef]
- Macgregor, S.A.; Eisenstein, O. Computational Studies in Organometallic Chemistry; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 978-3-319-31638-3. [Google Scholar]
- Ditchfield, R.; Hehre, W.J.; Pople, J.A. Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. J. Chem. Phys. 1971, 54, 724–728. [Google Scholar] [CrossRef]
- Clark, T.; Chandrasekhar, J.; Spitznagel, G.W.; Schleyer, P.V.R. Efficient Diffuse Function-Augmented Basis Sets for Anion Calculations. III. The 3-21+G Basis Set for First-Row Elements, Li-F. J. Comput. Chem. 1983, 4, 294–301. [Google Scholar] [CrossRef]
- Dill, J.D.; Pople, J.A. Self-consistent Molecular Orbital Methods. XV. Extended Gaussian-type Basis Sets for Lithium, Beryllium, and Boron. J. Chem. Phys. 1975, 62, 2921–2923. [Google Scholar] [CrossRef]
- Hehre, W.J.; Ditchfield, R.; Pople, J.A. Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. J. Chem. Phys. 1972, 56, 2257–2261. [Google Scholar] [CrossRef]
- Gordon, M.S. The Isomers of Silacyclopropane. Chem. Phys. Lett. 1980, 76, 163–168. [Google Scholar] [CrossRef]
- Francl, M.M.; Pietro, W.J.; Hehre, W.J.; Binkley, J.S.; Gordon, M.S.; DeFrees, D.J.; Pople, J.A. Self-consistent Molecular Orbital Methods. XXIII. A Polarization-type Basis Set for Second-row Elements. J. Chem. Phys. 1982, 77, 3654–3665. [Google Scholar] [CrossRef] [Green Version]
- Frisch, M.J.; Pople, J.A.; Binkley, J.S. Self-consistent Molecular Orbital Methods 25. Supplementary Functions for Gaussian Basis Sets. J. Chem. Phys. 1984, 80, 3265–3269. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Rev. C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Peng, C.; Bernhard Schlegel, H. Combining Synchronous Transit and Quasi-Newton Methods to Find Transition States. Isr. J. Chem. 1993, 33, 449–454. [Google Scholar] [CrossRef]
- Miertuš, S.; Scrocco, E.; Tomasi, J. Electrostatic Interaction of a Solute with a Continuum. A Direct Utilizaion of AB Initio Molecular Potentials for the Prevision of Solvent Effects. Chem. Phys. 1981, 55, 117–129. [Google Scholar] [CrossRef]
- Miertuš, S.; Tomasi, J. Approximate Evaluations of the Electrostatic Free Energy and Internal Energy Changes in Solution Processes. Chem. Phys. 1982, 65, 239–245. [Google Scholar] [CrossRef]
- Pascual-ahuir, J.L.; Silla, E.; Tuñon, I. GEPOL: An Improved Description of Molecular Surfaces. III. A New Algorithm for the Computation of a Solvent-Excluding Surface: GEPOL. J. Comput. Chem. 1994, 15, 1127–1138. [Google Scholar] [CrossRef]
- Valtazanos, P.; Ruedenberg, K. Bifurcations and Transition States. Theoret. Chim. Acta 1986, 69, 281–307. [Google Scholar] [CrossRef]
- Ess, D.H.; Wheeler, S.E.; Iafe, R.G.; Xu, L.; Çelebi-Ölçüm, N.; Houk, K.N. Bifurcations on Potential Energy Surfaces of Organic Reactions. Angew. Chem. Int. Ed. 2008, 47, 7592–7601. [Google Scholar] [CrossRef]
Entry | Conditions | Yield of 4 [%] a |
1 | 100 °C, [1a]:[2a]:[3a] = 2:1:0.1; toluene added to 1M in 1a | ~7 b |
2 | [1a]:[2a]:[3a] = 1:1:0.5; otherwise as in 1 | 38 b |
3 | 100 °C, [1a]:[2a]:[3a] = 1:1:1; no additional toluene besides the solution of 3a | 81 b |
4 | [1a]:[2a]:[3a] = 1:2:1.5; otherwise as in 3 | 95 b |
5 | [1b]:[2a]:[3a] = 1:2:1.5; otherwise as in 3 | 97 |
6 | [1c]:[2a]:[3a] = 1:2:1.5; otherwise as in 3 | 98 |
7 | 80 °C, otherwise as in 5 | 94 |
8 | 70 °C, otherwise as in 5 | 73 |
9 | 80 °C; 3b 1M in THF instead of 3a , otherwise as in 6 | 62 c |
10 | 80 °C; 3c 1M in THF instead of 3a , otherwise as in 8 | 47 d |
11 | BEt3 instead of 3a , otherwise as in 6 | - e |
12 | NaH instead of 3a , otherwise as in 6 | - |
13 | 80 °C; [1b]:[2a]:[NaH]:[BEt3] = 1:2:1.5:0.1 | 16% |
14 | As in 12; reaction time 120 h | ~60% f |
15 | 2b instead of 2a , otherwise as in 6 | 93 |
16 | 2c instead of 2a, otherwise as in 6 | - |
Substrate | ΔGI | ΔGII | ΔGIV | ΔΔGI⭢II |
---|---|---|---|---|
Styrene | +7.02 | +29.78 | −11.15 | +22.02 |
4-methoxystyrene | +10.69 | +28.53 | −11.29 | +17.84 |
4-(trifuloromethyl)styrene | +9.29 | +21.47 | −17.38 | +12.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowicki, M.; Zaranek, M.; Grzelak, M.; Pawluć, P.; Hoffmann, M. Mechanism of Silylation of Vinyl Arenes by Hydrodisiloxanes Driven by Stoichiometric Amounts of Sodium Triethylborohydride—A Combined DFT and Experimental Study. Int. J. Mol. Sci. 2023, 24, 4924. https://doi.org/10.3390/ijms24054924
Nowicki M, Zaranek M, Grzelak M, Pawluć P, Hoffmann M. Mechanism of Silylation of Vinyl Arenes by Hydrodisiloxanes Driven by Stoichiometric Amounts of Sodium Triethylborohydride—A Combined DFT and Experimental Study. International Journal of Molecular Sciences. 2023; 24(5):4924. https://doi.org/10.3390/ijms24054924
Chicago/Turabian StyleNowicki, Mateusz, Maciej Zaranek, Magdalena Grzelak, Piotr Pawluć, and Marcin Hoffmann. 2023. "Mechanism of Silylation of Vinyl Arenes by Hydrodisiloxanes Driven by Stoichiometric Amounts of Sodium Triethylborohydride—A Combined DFT and Experimental Study" International Journal of Molecular Sciences 24, no. 5: 4924. https://doi.org/10.3390/ijms24054924
APA StyleNowicki, M., Zaranek, M., Grzelak, M., Pawluć, P., & Hoffmann, M. (2023). Mechanism of Silylation of Vinyl Arenes by Hydrodisiloxanes Driven by Stoichiometric Amounts of Sodium Triethylborohydride—A Combined DFT and Experimental Study. International Journal of Molecular Sciences, 24(5), 4924. https://doi.org/10.3390/ijms24054924