Characterization of Ly108-H1 Signaling Reveals Ly108-3 Expression and Additional Strain-Specific Differences in Lupus Prone Mice
Abstract
:1. Introduction
2. Results
2.1. Alignment of Isoforms Illustrates Sequence Homology, but also Potential Signaling Differences
2.2. Ly108-H1 Binds SAP Regardless of Low Levels of Phosphorylation
2.3. Suppression of Cytokine Production by Ly108-H1
2.4. Detection of Phosphorylated Isoforms, including Ly108-3, in Primary Cells
3. Discussion
4. Materials and Methods
4.1. Expression Vectors
4.2. Transfection
4.3. Mice
4.4. Cell Stimulation
4.5. Immunoprecipitation and Western Blotting
4.6. RT-PCR and Sequencing
4.7. Sequence Alignment and Annotation
4.8. Stastical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, N.; Veillette, A. SLAM Family Receptors in Normal Immunity and Immune Pathologies. Curr. Opin. Immunol. 2016, 38, 45–51. [Google Scholar] [CrossRef]
- Cannons, J.L.; Tangye, S.G.; Schwartzberg, P.L. SLAM Family Receptors and SAP Adaptors in Immunity. Annu. Rev. Immunol. 2011, 29, 665–705. [Google Scholar] [CrossRef]
- Yigit, B.; Wang, N.; Herzog, R.W.; Terhorst, C. SLAMF6 in Health and Disease: Implications for Therapeutic Targeting. Clin. Immunol. 2019, 204, 3–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calpe, S.; Wang, N.; Romero, X.; Berger, S.B.; Lanyi, A.; Engel, P.; Terhorst, C. The SLAM and SAP Gene Families Control Innate and Adaptive Immune Responses. Adv. Immunol. 2008, 97, 177–250. [Google Scholar] [CrossRef]
- Bahal, D.; Hashem, T.; Nichols, K.E.; Das, R. SLAM-SAP-Fyn: Old Players with New Roles in iNKT Cell Development and Function. Int. J. Mol. Sci. 2019, 20, 4797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latour, S.; Veillette, A. The SAP Family of Adaptors in Immune Regulation. Semin. Immunol. 2004, 16, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Calpe, S.; Erdos, E.; Liao, G.; Wang, N.; Rietdijk, S.; Simarro, M.; Scholtz, B.; Mooney, J.; Chang, H.L.; Min, S.S.; et al. Identification and Characterization of Two Related Murine Genes, Eat2a and Eat2b, Encoding Single SH2-Domain Adapters. Immunogenetics 2006, 58, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Veillette, A.; Dong, Z.; Pérez-Quintero, L.-A.; Zhong, M.-C.; Cruz-Munoz, M.-E. Importance and Mechanism of ‘Switch’ Function of SAP Family Adapters. Immunol. Rev. 2009, 232, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Sayos, J.; Wu, C.; Morra, M.; Wang, N.; Zhang, X.; Allen, D.; Van Schaik, S.; Notarangelo, L.; Geha, R.; Roncarolo, M.G.; et al. The X-Linked Lymphoproliferative-Disease Gene Product SAP Regulates Signals Induced through the Co-Receptor SLAM. Nature 1998, 395, 462–469. [Google Scholar] [CrossRef]
- Coffey, A.J.; Brooksbank, R.A.; Brandau, O.; Oohashi, T.; Howell, G.R.; Bye, J.M.; Cahn, A.P.; Durham, J.; Heath, P.; Wray, P.; et al. Host Response to EBV Infection in X-Linked Lymphoproliferative Disease Results from Mutations in an SH2-Domain Encoding Gene. Nat. Genet. 1998, 20, 129–135. [Google Scholar] [CrossRef]
- Tangye, S.G. XLP: Clinical Features and Molecular Etiology Due to Mutations in SH2D1A Encoding SAP. J. Clin. Immunol. 2014, 34, 772–779. [Google Scholar] [CrossRef] [PubMed]
- Panchal, N.; Booth, C.; Cannons, J.L.; Schwartzberg, P.L. X-Linked Lymphoproliferative Disease Type 1: A Clinical and Molecular Perspective. Front. Immunol. 2018, 9, 666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crotty, S.; Kersh, E.N.; Cannons, J.; Schwartzberg, P.L.; Ahmed, R. Nature 2003 Crotty. Nature 2003, 421, 2–7. [Google Scholar] [CrossRef]
- Hron, J.D.; Caplan, L.; Gerth, A.J.; Schwartzberg, P.L.; Peng, S.L. SH2D1A Regulates T-Dependent Humoral Autoimmunity. J. Exp. Med. 2004, 200, 261–266. [Google Scholar] [CrossRef] [Green Version]
- Morra, M.; Barrington, R.A.; Abadia-Molina, A.C.; Okamoto, S.; Julien, A.; Gullo, C.; Kalsy, A.; Edwards, M.J.; Chen, G.; Spolski, R.; et al. Defective B Cell Responses in the Absence of SH2D1A. Proc. Natl. Acad. Sci. USA 2005, 102, 4819–4823. [Google Scholar] [CrossRef] [Green Version]
- Chung, B.; Aoukaty, A.; Dutz, J.; Terhorst, C.; Tan, R. Cutting Edge: Signaling Lymphocytic Activation Molecule-Associated Protein Controls NKT Cell Functions. J. Immunol. 2005, 174, 3153–3157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nichols, K.E.; Hom, J.; Gong, S.Y.; Ganguly, A.; Ma, C.S.; Cannons, J.L.; Tangye, S.G.; Schwartzberg, P.L.; Koretzky, G.A.; Stein, P.L. Regulation of NKT Cell Development by SAP, the Protein Defective in XLP. Nat. Med. 2005, 11, 340–345. [Google Scholar] [CrossRef]
- Pasquier, B.; Yin, L.; Fondanèche, M.C.; Relouzat, F.; Bloch-Queyrat, C.; Lambert, N.; Fischer, A.; De Saint-Basile, G.; Latour, S. Defective NKT Cell Development in Mice and Humans Lacking the Adapter SAP, the X-Linked Lymphoproliferative Syndrome Gene Product. J. Exp. Med. 2005, 201, 695–701. [Google Scholar] [CrossRef]
- Griewank, K.; Borowski, C.; Rietdijk, S.; Wang, N.; Julien, A.; Wei, D.G.; Mamchak, A.A.A.; Terhorst, C.; Bendelac, A. Homotypic Interactions Mediated by Slamf1 and Slamf6 Receptors Control NKT Cell Lineage Development. Immunity 2007, 27, 751–762. [Google Scholar] [CrossRef] [Green Version]
- Kageyama, R.; Cannons, J.L.; Zhao, F.; Yusuf, I.; Lao, C.; Locci, M.; Schwartzberg, P.L.; Crotty, S. The Receptor Ly108 Functions as a SAP Adaptor-Dependent On-Off Switch for T Cell Help to B Cells and NKT Cell Development. Immunity 2012, 36, 986–1002. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Zhong, M.C.; Qian, J.; Calderon, V.; Cruz Tleugabulova, M.; Mallevaey, T.; Veillette, A. SLAM Receptors Foster INKT Cell Development by Reducing TCR Signal Strength after Positive Selection. Nat. Immunol. 2019, 20, 447–457. [Google Scholar] [CrossRef]
- Zhong, M.C.; Veillette, A. Control of T Lymphocyte Signaling by Ly108, a Signaling Lymphocytic Activation Molecule Family Receptor Implicated in Autoimmunity. J. Biol. Chem. 2008, 283, 19255–19264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, Z.; Cruz-Munoz, M.E.; Zhong, M.C.; Chen, R.; Latour, S.; Veillette, A. Essential Function for SAP Family Adaptors in the Surveillance of Hematopoietic Cells by Natural Killer Cells. Nat. Immunol. 2009, 10, 973–980. [Google Scholar] [CrossRef] [PubMed]
- Valdez, P.A.; Wang, H.; Seshasayee, D.; Van Lookeren Campagne, M.; Gurney, A.; Lee, W.P.; Grewal, I.S. NTB-A, a New Activating Receptor in T Cells That Regulates Autoimmune Disease. J. Biol. Chem. 2004, 279, 18662–18669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cannons, J.L.; Qi, H.; Lu, K.T.; Dutta, M.; Gomez-Rodriguez, J.; Cheng, J.; Wakeland, E.K.; Germain, R.N.; Schwartzberg, P.L. Optimal Germinal Center Responses Require a Multistage T Cell:B Cell Adhesion Process Involving Integrins, SLAM-Associated Protein, and CD84. Immunity 2010, 32, 253–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, F.; Cannons, J.L.; Dutta, M.; Griffiths, G.M.; Schwartzberg, P.L. Positive and Negative Signaling through SLAM Receptors Regulate Synapse Organization and Thresholds of Cytolysis. Immunity 2012, 36, 1003–1016. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Dong, Z. NK Cell Recognition of Hematopoietic Cells by SLAM-SAP Families. Cell. Mol. Immunol. 2019, 16, 452–459. [Google Scholar] [CrossRef]
- Dong, Z.; Davidson, D.; Pérez-Quintero, L.A.; Kurosaki, T.; Swat, W.; Veillette, A. The Adaptor SAP Controls NK Cell Activation by Regulating the Enzymes Vav-1 and SHIP-1 and by Enhancing Conjugates with Target Cells. Immunity 2012, 36, 974–985. [Google Scholar] [CrossRef] [Green Version]
- Wu, N.; Zhong, M.C.; Roncagalli, R.; Pérez-Quintero, L.A.; Guo, H.; Zhang, Z.; Lenoir, C.; Dong, Z.; Latour, S.; Veillette, A. A Hematopoietic Cell-Driven Mechanism Involving SLAMF6 Receptor, SAP Adaptors and SHP-1 Phosphatase Regulates NK Cell Education. Nat. Immunol. 2016, 17, 387–396. [Google Scholar] [CrossRef]
- Bottino, C.; Falco, M.; Parolini, S.; Marcenaro, E.; Augugliaro, R.; Sivori, S.; Landi, E.; Biassoni, R.; Notarangelo, L.D.; Moretta, L.; et al. GNTB-A, a Novel SH2D1A-Associated Surface Molecule Contributing to the Inability of Natural Killer Cells to Kill Epstein-Barr Virus-Infected B Cells in X-Linked Lymphoproliferative Disease. J. Exp. Med. 2001, 194, 235–246. [Google Scholar] [CrossRef]
- Radomir, L.; Cohen, S.; Kramer, M.P.; Bakos, E.; Lewinsky, H.; Barak, A.; Porat, Z.; Bucala, R.; Stepensky, P.; Becker-Herman, S.; et al. T Cells Regulate Peripheral Naive Mature B Cell Survival by Cell–Cell Contact Mediated through SLAMF6 and SAP. J. Immunol. 2017, 199, 2745–2757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dragovich, M.A.; Adam, K.; Strazza, M.; Tocheva, A.S.; Peled, M.; Mor, A. SLAMF6 Clustering Is Required to Augment T Cell Activation. PLoS ONE 2019, 14, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Carmona, N.; Farré, D.; Martínez-Vicente, P.; Terhorst, C.; Engel, P.; Angulo, A. Signaling Lymphocytic Activation Molecule Family Receptor Homologs in New World Monkey Cytomegaloviruses. J. Virol. 2015, 89, 11323–11336. [Google Scholar] [CrossRef] [Green Version]
- Wandstrat, A.E.; Nguyen, C.; Limaye, N.; Chan, A.Y.; Subramanian, S.; Tian, X.H.; Yim, Y.S.; Pertsemlidis, A.; Garner, H.R.; Morel, L.; et al. Association of Extensive Polymorphisms in the SLAM/CD2 Gene Cluster with Murine Lupus. Immunity 2004, 21, 769–780. [Google Scholar] [CrossRef] [Green Version]
- Keszei, M.; Detre, C.; Rietdijk, S.T.; Muñoz, P.; Romero, X.; Berger, S.B.; Calpe, S.; Liao, G.; Castro, W.; Julien, A.; et al. A Novel Isoform of the Ly108 Gene Ameliorates Murine Lupus. J. Exp. Med. 2011, 208, 811–822. [Google Scholar] [CrossRef] [Green Version]
- Dutta, M.; Schwartzberg, P.L. Characterization of Ly108 in the Thymus: Evidence for Distinct Properties of a Novel Form of Ly108. J. Immunol. 2012, 188, 3031–3041. [Google Scholar] [CrossRef] [Green Version]
- Peck, S.R.; Earl Ruley, H. Ly108: A New Member of the Mouse CD2 Family of Cell Surface Proteins. Immunogenetics 2000, 52, 63–72. [Google Scholar] [CrossRef]
- Morel, L.; Blenman, K.R.; Croker, B.P.; Wakeland, E.K. The Major Murine Systemic Lupus Erythematosus Susceptibility Locus, Sle1, Is a Cluster of Functionally Related Genes. Proc. Natl. Acad. Sci. USA 2001, 98, 1787–1792. [Google Scholar] [CrossRef]
- Tsao, B.P.; Cantor, R.M.; Kalunian, K.C.; Chen, C.J.; Badsha, H.; Singh, R.; Wallace, D.J.; Kitridou, R.C.; Chen, S.L.; Shen, N.; et al. Evidence for Linkage of a Candidate Chromosome I Region to Human Systemic Lupus Erythematosus. J. Clin. Investig. 1997, 99, 725–731. [Google Scholar] [CrossRef]
- Wong, E.B.; Soni, C.; Chan, A.Y.; Domeier, P.P.; Shwetank; Abraham, T.; Limaye, N.; Khan, T.N.; Elias, M.J.; Chodisetti, S.B.; et al. B Cell–Intrinsic CD84 and Ly108 Maintain Germinal Center B Cell Tolerance. J. Immunol. 2015, 194, 4130–4143. [Google Scholar] [CrossRef] [Green Version]
- Kumar, K.R.; Li, L.; Yan, M.; Bhaskarabhatla, M.; Mobley, A.B.; Nguyen, C.; Mooney, J.M.; Schatzle, J.D.; Wakeland, E.K.; Mohan, C. Regulation of B Cell Tolerance by the Lupus Susceptibility Gene Ly108. Science 2006, 312, 1665–1669. [Google Scholar] [CrossRef] [Green Version]
- Hajaj, E.; Zisman, E.; Tzaban, S.; Merims, S.; Cohen, J.; Klein, S.; Frankenburg, S.; Sade-Feldman, M.; Tabach, Y.; Yizhak, K.; et al. Alternative Splicing of the Inhibitory Immune Checkpoint Receptor SLAMF6 Generates a Dominant Positive Form, Boosting T-Cell Effector Functions. Cancer Immunol. Res. 2021, 9, 637–650. [Google Scholar] [CrossRef]
- Eissmann, P.; Watzl, C. Molecular Analysis of NTB-A Signaling: A Role for EAT-2 in NTB-A-Mediated Activation of Human NK Cells. J. Immunol. 2006, 177, 3170–3177. [Google Scholar] [CrossRef] [Green Version]
- Hornbeck, P.V.; Zhang, B.; Murray, B.; Kornhauser, J.M.; Latham, V.; Psp, P.R. PhosphoSitePlus, 2014: Mutations, PTMs and Recalibrations. Nucleic Acids Res. 2015, 43, 512–520. [Google Scholar] [CrossRef] [Green Version]
- Latour, S.; Roncagalli, R.; Chen, R.; Bakinowski, M.; Shi, X.; Schwartzberg, P.L.; Davidson, D.; Veillette, A. Binding of SAP SH2 Domain to FynT SH3 Domain Reveals a Novel Mechanism of Receptor Signalling in Immune Regulation. Nat. Cell Biol. 2003, 5, 149–154. [Google Scholar] [CrossRef]
- Fraser, C.C.; Howie, D.; Morra, M.; Qiu, Y.; Murphy, C.; Shen, Q.; Gutierrez-Ramos, J.C.; Coyle, A.; Kingsbury, G.A.; Terhorst, C. Identification and Characterization of SF2000 and SF2001, Two New Members of the Immune Receptor SLAM/CD2 Family. Immunogenetics 2002, 53, 843–850. [Google Scholar] [CrossRef]
- Patel, V.P.; Moran, M.; Low, T.A.; Miceli, M.C. A Molecular Framework for Two-Step T Cell Signaling: Lck Src Homology 3 Mutations Discriminate Distinctly Regulated Lipid Raft Reorganization Events. J. Immunol. 2001, 166, 754–764. [Google Scholar] [CrossRef] [Green Version]
- Keane, T.M.; Goodstadt, L.; Danecek, P.; White, M.A.; Wong, K.; Yalcin, B.; Heger, A.; Agam, A.; Slater, G.; Goodson, M.; et al. Mouse Genomic Variation and Its Effect on Phenotypes and Gene Regulation. Nature 2011, 477, 289–294. [Google Scholar] [CrossRef] [Green Version]
- Engel, P.; Eck, M.J.; Terhorst, C. The SAP and SLAM Families in Immune Responses and X-Linked Lymphoproliferative Disease. Nat. Rev. Immunol. 2003, 3, 813–821. [Google Scholar] [CrossRef]
- Chan, B.; Lanyi, A.; Song, H.K.; Griesbach, J.; Simarro-Grande, M.; Poy, F.; Howie, D.; Sumegi, J.; Terhorst, C.; Eck, M.J. SAP Couples Fyn to SLAM Immune Receptors. Nat. Cell Biol. 2003, 5, 155–160. [Google Scholar] [CrossRef]
- Carninci, P.; Kasukawa, T.; Katayama, S.; Gough, J.; Frith, M.C.; Maeda, N.; Oyama, R.; Ravasi, T.; Lenhard, B.; Wells, C.; et al. The Transcriptional Landscape of the Mammalian Genome. Science 2005, 309, 1559–1563. [Google Scholar] [CrossRef] [Green Version]
- Ergun, A.; Doran, G.; Costello, J.C.; Paik, H.H.; Collins, J.J.; Mathis, D.; Benoist, C. Differential Splicing across Immune System Lineages. Proc. Natl. Acad. Sci. USA 2013, 110, 14324–14329. [Google Scholar] [CrossRef] [Green Version]
- Bussotti, G.; Leonardi, T.; Clark, M.B.; Mercer, T.R.; Crawford, J.; Malquori, L.; Notredame, C.; Dinger, M.E.; Mattick, J.S.; Enright, A.J. Improved Definition of the Mouse Transcriptome via Targeted RNA Sequencing. Genome Res. 2016, 26, 705–716. [Google Scholar] [CrossRef] [Green Version]
- Arzalluz-Luqueángeles, Á.; Conesa, A. Single-Cell RNAseq for the Study of Isoforms-How Is That Possible? Genome Biol. 2018, 19, 110. [Google Scholar] [CrossRef]
- Shalek, A.K.; Satija, R.; Adiconis, X.; Gertner, R.S.; Gaublomme, J.T.; Raychowdhury, R.; Schwartz, S.; Yosef, N.; Malboeuf, C.; Lu, D.; et al. Single-Cell Transcriptomics Reveals Bimodality in Expression and Splicing in Immune Cells. Nature 2013, 498, 236–240. [Google Scholar] [CrossRef] [Green Version]
- Barnkob, M.B.; Olsen, L.R. Target Isoforms Are an Overlooked Challenge and Opportunity in Chimeric Antigen Receptor Cell Therapy. Immunother. Adv. 2022, 2, 1–4. [Google Scholar]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Greaves, D.R.; Wilson, F.D.; Lang, G.; Kioussis, D. Human CD2 3′-Flanking Sequences Confer High-Level, T Cell-Specific, Position-Independent Gene Expression in Transgenic Mice. Cell 1989, 56, 979–986. [Google Scholar] [CrossRef]
- Bell, M.P.; Huntoon, C.J.; Graham, D.; McKean, D.J. The Analysis of Costimulatory Receptor Signaling Cascades in Normal T Lymphocytes Using in Vitro Gene Transfer and Reporter Gene Analysis. Nat. Med. 2001, 7, 1155–1158. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rietdijk, S.; Keszei, M.; Castro, W.; Terhorst, C.; Abadía-Molina, A.C. Characterization of Ly108-H1 Signaling Reveals Ly108-3 Expression and Additional Strain-Specific Differences in Lupus Prone Mice. Int. J. Mol. Sci. 2023, 24, 5024. https://doi.org/10.3390/ijms24055024
Rietdijk S, Keszei M, Castro W, Terhorst C, Abadía-Molina AC. Characterization of Ly108-H1 Signaling Reveals Ly108-3 Expression and Additional Strain-Specific Differences in Lupus Prone Mice. International Journal of Molecular Sciences. 2023; 24(5):5024. https://doi.org/10.3390/ijms24055024
Chicago/Turabian StyleRietdijk, Svend, Marton Keszei, Wilson Castro, Cox Terhorst, and Ana C. Abadía-Molina. 2023. "Characterization of Ly108-H1 Signaling Reveals Ly108-3 Expression and Additional Strain-Specific Differences in Lupus Prone Mice" International Journal of Molecular Sciences 24, no. 5: 5024. https://doi.org/10.3390/ijms24055024
APA StyleRietdijk, S., Keszei, M., Castro, W., Terhorst, C., & Abadía-Molina, A. C. (2023). Characterization of Ly108-H1 Signaling Reveals Ly108-3 Expression and Additional Strain-Specific Differences in Lupus Prone Mice. International Journal of Molecular Sciences, 24(5), 5024. https://doi.org/10.3390/ijms24055024