Genetic Structure Analysis of 155 Transboundary and Local Populations of Cattle (Bos taurus, Bos indicus and Bos grunniens) Based on STR Markers
Abstract
:1. Introduction
2. Results
2.1. Genetic Variability
2.2. Phylogenetic Analysis and Principal Component Analysis
2.2.1. Domestic Yak (Bos grunniens)
2.2.2. European Breed Group (Bos taurus)
2.2.3. Asian Breed Group (Bos taurus)
2.2.4. Iberian and Creole Breed Group (Bos taurus)
2.2.5. Zebu Breed Group (Bos indicus)
2.2.6. African Breed Group (African Humpless Bos taurus, Humped Bos indicus, A.h. Bos taurus × Humped Bos indicus)
2.3. Bayesian Cluster Analysis
2.3.1. Domestic Yak (Bos grunniens)
2.3.2. European Breed Group (Bos taurus)
2.3.3. Asian Breed Group (Bos taurus)
2.3.4. Iberian and Creole Breed Group (Bos taurus)
2.3.5. Zebu Breed Group (Bos indicus)
2.3.6. African Breed Group (African Humpless Bos taurus, Humped Bos indicus, A.h. Bos taurus × Humped Bos indicus)
3. Discussion
3.1. Domestic Yak (Bos grunniens)
3.2. European Breed Group (Bos taurus)
3.3. Asian Breed Group (Bos taurus)
3.4. Iberian and Creole Breed Group (Bos taurus)
3.5. Zebu Breed Group (Bos indicus)
3.6. African Breed Group (African Humpless Bos taurus, Humped Bos indicus, A.h. Bos taurus × Humped Bos indicus)
4. Materials and Methods
4.1. Sample Information and Microsatellite Data
- Open-access STR data of other cattle populations from different regions of the world were presented in the papers: Van de Goor et al. [138], data available in the electronic supplementary material of the article; Gargani et al. [139], allelic profiles were deposited in the Dryad database (http://doi.org/10.5061/dryad.d4500); Ginja et al. [51] data available in the Dryad, Dataset, https://doi.org/10.5061/dryad.5dv41ns43.
4.2. Data Merging and Filtering
4.3. Genetic Diversity Estimation
4.4. Phylogenetic Analysis
4.5. Principal Component Analysis
4.6. Bayesian Cluster Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A
Bread Name | N | Na | Ne | A | % | Ar | Ho | He | Fis | HWE |
---|---|---|---|---|---|---|---|---|---|---|
Holstein | 2745 | 10.000 | 4.185 | 120 | 54.89 | 5.32 | 0.73 | 0.73 | 0.0032 | 0 |
Tagil | 48.08 | 8.167 | 4.882 | 98 | 45.57 | 5.88 | 0.78 | 0.77 | −0.09 | 5 × 10−4 |
Kholmogory | 49.92 | 6.750 | 4.028 | 81 | 37.7 | 4.99 | 0.72 | 0.73 | 0.0031 | 0 |
Red Gorbatov | 50 | 8.000 | 4.301 | 96 | 45.45 | 5.38 | 0.78 | 0.74 | −0.0563 | 0.5788 |
Brown Swiss | 42.75 | 8.083 | 4.527 | 97 | 45.89 | 5.83 | 0.77 | 0.76 | −0.0184 | 0.7017 |
Kostroma | 20 | 6.333 | 3.699 | 76 | 35.46 | 4.86 | 0.75 | 0.7 | −0.0783 | 0.9291 |
Altai-Rus | 12 | 3.417 | 2.684 | 41 | 19.55 | 3.22 | 0.64 | 0.58 | −0.0947 | 0.0093 |
Kalmyk | 52 | 9.250 | 4.985 | 111 | 51.68 | 6.21 | 0.77 | 0.78 | 0.0081 | 1 × 10−4 |
Aulie-Ata | 40.58 | 9.500 | 4.850 | 114 | 53.68 | 6.18 | 0.78 | 0.77 | −0.0055 | 0.1758 |
Alatau | 49 | 9.583 | 5.014 | 115 | 53.8 | 6.4 | 0.77 | 0.77 | −2 × 10−4 | 0.9043 |
Kyrgyz Beef-type | 47 | 8.333 | 4.351 | 100 | 47.08 | 5.8 | 0.75 | 0.74 | −0.0143 | 0.6891 |
Kyrgyz native | 48.92 | 9.417 | 5.035 | 113 | 52.29 | 6.24 | 0.79 | 0.78 | −0.015 | 0.9992 |
Yakut | 98.83 | 5.667 | 2.872 | 68 | 31.9 | 4.15 | 0.63 | 0.61 | −0.0228 | 0 |
Khogorogo | 50 | 7.083 | 3.869 | 85 | 39.66 | 5.09 | 0.7 | 0.7 | −0.0062 | 0.0042 |
Gobi | 49 | 7.333 | 4.495 | 88 | 40.9 | 5.56 | 0.75 | 0.75 | 0.006 | 0.0071 |
Buryat | 278.58 | 11.333 | 5.163 | 136 | 63.09 | 6.17 | 0.78 | 0.78 | 0.0026 | 0 |
Blonde D’Aquitaine | 150 | 7.667 | 4.629 | 92 | 42.47 | 5.49 | 0.79 | 0.76 | −0.0357 | 0 |
Belgian Blue | 45 | 7.083 | 4.030 | 85 | 40.38 | 5.18 | 0.73 | 0.71 | −0.0232 | 0.0167 |
Brandrood Cattle | 38 | 5.917 | 3.302 | 71 | 33.48 | 4.47 | 0.65 | 0.64 | −0.0054 | 0.3932 |
Charolais | 77.92 | 7.750 | 4.260 | 93 | 43.13 | 5.34 | 0.7 | 0.71 | 0.0114 | 7 × 10−4 |
Dexter | 291 | 7.667 | 3.693 | 92 | 42.61 | 4.84 | 0.68 | 0.71 | 0.0414 | 0 |
Dutch Friesian | 40 | 7.250 | 4.344 | 87 | 40.53 | 5.32 | 0.69 | 0.73 | 0.051 | 0 |
Groningen Whiteheaded | 20 | 5.083 | 2.781 | 61 | 29.83 | 4.16 | 0.62 | 0.6 | −0.029 | 0.3151 |
Galloway | 59 | 7.000 | 3.268 | 84 | 39.22 | 4.75 | 0.58 | 0.64 | 0.0998 | 0 |
Heck Cattle | 39 | 4.500 | 2.941 | 54 | 25.47 | 3.79 | 0.62 | 0.61 | −0.016 | 0 |
Hereford | 141.42 | 6.917 | 3.834 | 83 | 39.37 | 4.9 | 0.7 | 0.72 | 0.0306 | 0 |
Limousin | 157.5 | 8.167 | 4.398 | 98 | 45.65 | 5.49 | 0.75 | 0.75 | 0.0085 | 0 |
Dutch Belted | 22 | 5.083 | 3.377 | 61 | 28.75 | 4.27 | 0.65 | 0.64 | −0.0156 | 0.0849 |
Marchigiana | 14 | 5.000 | 2.932 | 60 | 28.36 | 4.13 | 0.58 | 0.62 | 0.059 | 0.0641 |
Maas Rijn IJssel | 37 | 6.167 | 4.035 | 74 | 34.67 | 4.93 | 0.77 | 0.73 | −0.0617 | 0.0452 |
Scottisch Highlander | 85 | 4.333 | 2.756 | 52 | 24.89 | 3.73 | 0.59 | 0.6 | 0.0139 | 0 |
Verbeterd Roodbont | 38 | 7.167 | 4.372 | 86 | 39.22 | 5.4 | 0.72 | 0.73 | 0.0172 | 0.0781 |
Wagyu | 15 | 4.667 | 2.780 | 56 | 27.11 | 4.03 | 0.65 | 0.62 | −0.0534 | 0.4475 |
Waldviertler Blondvieh | 45 | 6.000 | 3.459 | 72 | 34.04 | 4.7 | 0.67 | 0.65 | −0.0382 | 0.0013 |
Chianina | 28.25 | 5.667 | 2.834 | 68 | 32.16 | 4.17 | 0.6 | 0.61 | 0.0169 | 0.0513 |
Romagnola | 22.67 | 5.750 | 3.336 | 69 | 32.51 | 4.56 | 0.7 | 0.66 | −0.0577 | 0.5968 |
Modicana | 48.08 | 8.250 | 4.148 | 99 | 47.44 | 5.46 | 0.66 | 0.75 | 0.1151 | 0 |
Hungarian Grey | 60 | 6.750 | 3.570 | 81 | 37.84 | 4.79 | 0.68 | 0.7 | 0.0216 | 0 |
Istrian | 44.08 | 8.083 | 4.224 | 97 | 44.87 | 5.64 | 0.74 | 0.74 | −0.0039 | 0.7742 |
Podolica | 49.75 | 9.500 | 4.631 | 114 | 52.5 | 6.06 | 0.74 | 0.77 | 0.0388 | 0 |
Cinisara | 25.33 | 8.250 | 4.511 | 99 | 46.12 | 5.97 | 0.73 | 0.77 | 0.0441 | 0.2271 |
Texas Longhorn | 78.33 | 8.333 | 4.722 | 100 | 47.48 | 5.8 | 0.74 | 0.76 | 0.0328 | 0 |
Florida Cracker | 49.83 | 7.583 | 4.838 | 91 | 43.6 | 5.79 | 0.71 | 0.78 | 0.0797 | 0 |
Pineywoods | 49 | 7.667 | 4.544 | 92 | 43.92 | 5.57 | 0.63 | 0.76 | 0.1656 | 0 |
Criollo Lechero Tropical | 34.08 | 7.500 | 4.364 | 90 | 42.43 | 5.29 | 0.69 | 0.74 | 0.0656 | 0.6564 |
Criollo Poblano | 37.5 | 8.417 | 4.831 | 101 | 47.99 | 5.95 | 0.72 | 0.78 | 0.0771 | 0.0026 |
Criollo Baja California | 13 | 7.000 | 4.508 | 84 | 40.4 | 5.49 | 0.81 | 0.76 | −0.0719 | 0.9832 |
Criollo Chihuahua | 11.17 | 6.667 | 4.533 | 80 | 38.94 | 5.44 | 0.8 | 0.77 | −0.0433 | 0.9136 |
Criollo Nayarit | 22.5 | 8.083 | 5.011 | 97 | 46.59 | 6.08 | 0.78 | 0.79 | 0.0065 | 0.8536 |
Criollo Chiapas | 19.08 | 7.583 | 4.786 | 91 | 43.02 | 5.78 | 0.77 | 0.77 | 0.0043 | 0.8864 |
Guabalá | 23.33 | 5.583 | 3.352 | 67 | 31.53 | 4.35 | 0.61 | 0.6 | −0.0079 | 0.1659 |
Guaymí | 35.5 | 8.000 | 4.377 | 96 | 46.15 | 5.83 | 0.75 | 0.75 | 0.0011 | 0.9492 |
Suriname | 50 | 9.667 | 5.343 | 116 | 54.56 | 6.5 | 0.79 | 0.79 | 0.0053 | 0.0896 |
Blanco Orejinegro | 24.67 | 5.917 | 3.332 | 71 | 34.29 | 4.57 | 0.74 | 0.68 | −0.0911 | 0.0353 |
Caqueteño | 22.5 | 7.500 | 4.891 | 90 | 43.06 | 5.75 | 0.8 | 0.78 | −0.0266 | 0.3225 |
Sanmartinero | 19 | 6.167 | 3.802 | 74 | 35.84 | 4.85 | 0.74 | 0.72 | −0.0266 | 0.9099 |
Romosinuano | 17.08 | 4.750 | 3.362 | 57 | 27.8 | 4.21 | 0.66 | 0.67 | 0.0155 | 5 × 10−4 |
Costeño con Cuernos | 22.92 | 5.667 | 3.763 | 68 | 33.13 | 4.71 | 0.75 | 0.71 | −0.0546 | 0.3235 |
Chino Santandereano | 21.67 | 7.500 | 4.365 | 90 | 43.19 | 5.67 | 0.74 | 0.76 | 0.0286 | 0.4263 |
Velasquez | 22.17 | 6.750 | 4.269 | 81 | 38.99 | 5.35 | 0.72 | 0.75 | 0.0283 | 0.5645 |
Lucerna | 14.17 | 6.500 | 3.998 | 78 | 37.36 | 5.15 | 0.67 | 0.72 | 0.0761 | 0.585 |
Hartón del Valle | 20.67 | 8.000 | 4.960 | 96 | 45.45 | 6.08 | 0.8 | 0.79 | −0.0213 | 1 |
Criollo Limonero | 42.83 | 7.000 | 4.007 | 84 | 40.61 | 5.23 | 0.74 | 0.71 | −0.0532 | 0.0348 |
Criollo Ecuatoriano | 40.92 | 8.667 | 4.973 | 104 | 49.62 | 6.02 | 0.74 | 0.78 | 0.0416 | 0.0784 |
Criollo Macabeo | 24.58 | 8.167 | 4.785 | 98 | 45.91 | 5.97 | 0.8 | 0.76 | −0.0422 | 0.0579 |
Caracú | 74 | 8.750 | 4.329 | 105 | 49.27 | 5.68 | 0.7 | 0.74 | 0.0561 | 0 |
Crioulo Lageano | 38.83 | 9.667 | 5.396 | 116 | 55.47 | 6.44 | 0.74 | 0.76 | 0.026 | 0.5209 |
Curraleiro | 49.92 | 9.417 | 5.129 | 113 | 53.29 | 6.12 | 0.69 | 0.76 | 0.0956 | 0 |
Mocho Nacional | 47.83 | 9.417 | 5.166 | 113 | 53.83 | 6.18 | 0.78 | 0.78 | 0.0064 | 0 |
Pantaneiro | 47.83 | 9.250 | 5.146 | 111 | 52.88 | 6.34 | 0.77 | 0.78 | 0.0101 | 0.0028 |
Criollo Yacumeño | 22.33 | 6.167 | 3.146 | 74 | 36.49 | 4.46 | 0.72 | 0.72 | 0.1622 | 0.0373 |
Criollo Uruguayo | 41.92 | 5.833 | 3.307 | 70 | 33.56 | 4.47 | 0.67 | 0.67 | −0.0011 | 0 |
Pampa Chaqueño | 49.92 | 8.417 | 4.856 | 101 | 49.03 | 6.09 | 0.77 | 0.78 | 0.0159 | 0.8347 |
Criollo Pilcomayo | 36 | 7.750 | 4.994 | 93 | 44.31 | 6 | 0.81 | 0.78 | −0.0374 | 0.3587 |
Criollo Argentino | 49.75 | 6.167 | 3.566 | 74 | 35.01 | 4.57 | 0.7 | 0.69 | −0.0149 | 0 |
Criollo Patagónico | 34.42 | 5.333 | 3.279 | 64 | 30.13 | 4.2 | 0.62 | 0.66 | 0.0637 | 0 |
Criollo Patagónico Chileno | 33.92 | 7.250 | 4.661 | 87 | 41.23 | 5.52 | 0.73 | 0.77 | 0.0453 | 1 × 10−4 |
Senepol | 19.58 | 5.583 | 3.435 | 67 | 32.14 | 4.51 | 0.74 | 0.69 | −0.0734 | 0.3307 |
Criollo Cubano | 44.33 | 7.417 | 4.659 | 89 | 42.78 | 5.55 | 0.78 | 0.76 | −0.0222 | 0 |
Siboney | 49.75 | 8.167 | 4.807 | 98 | 46.34 | 5.94 | 0.72 | 0.76 | 0.0484 | 0 |
Betizu | 43.33 | 7.083 | 4.035 | 85 | 39.61 | 5.18 | 0.66 | 0.72 | 0.0814 | 1 × 10−4 |
Monchina | 50 | 8.250 | 4.505 | 99 | 46.91 | 5.75 | 0.75 | 0.76 | 0.0117 | 0.1833 |
Lidia | 44.83 | 6.417 | 3.670 | 77 | 36.28 | 4.66 | 0.62 | 0.68 | 0.0903 | 0 |
Alistana | 50 | 7.417 | 3.825 | 89 | 42.41 | 5.09 | 0.68 | 0.71 | 0.0433 | 0 |
Sayaguesa | 48 | 7.000 | 4.379 | 84 | 40.04 | 5.35 | 0.7 | 0.74 | 0.0557 | 0 |
Tudanca | 50 | 7.500 | 4.327 | 90 | 42.52 | 5.48 | 0.7 | 0.72 | 0.0311 | 0 |
Asturiana de los Valles | 50 | 9.083 | 4.991 | 109 | 51.59 | 6.19 | 0.74 | 0.77 | 0.0314 | 0.052 |
Asturiana de las Montañas | 50 | 7.500 | 4.185 | 90 | 42.54 | 5.39 | 0.71 | 0.73 | 0.0348 | 0 |
Retinta | 50 | 8.167 | 4.751 | 98 | 46.42 | 5.78 | 0.73 | 0.76 | 0.0371 | 0 |
Morucha | 50 | 7.833 | 4.564 | 94 | 44.86 | 5.69 | 0.72 | 0.76 | 0.0418 | 2 × 10−4 |
Avileña | 49.92 | 8.167 | 4.834 | 98 | 46.08 | 5.8 | 0.72 | 0.76 | 0.0484 | 0 |
Pirenaica | 50 | 7.583 | 4.196 | 91 | 42.61 | 5.43 | 0.72 | 0.74 | 0.0253 | 0 |
Rubia Gallega | 50 | 7.583 | 4.266 | 91 | 43.18 | 5.42 | 0.7 | 0.72 | 0.0306 | 0 |
Serrana de Teruel | 50 | 8.000 | 4.895 | 96 | 44.84 | 5.87 | 0.76 | 0.78 | 0.0259 | 0 |
Parda de Montaña | 50 | 7.833 | 3.907 | 94 | 44.51 | 5.53 | 0.72 | 0.72 | 0.0012 | 0.0105 |
Bruna de los Pirineos | 43.67 | 7.417 | 4.195 | 89 | 42.64 | 5.28 | 0.73 | 0.73 | −0.0068 | 0.3086 |
Pasiega | 49.92 | 7.917 | 4.488 | 95 | 45.02 | 5.71 | 0.73 | 0.74 | 0.0134 | 0 |
Berrenda en Colorado | 39.83 | 8.000 | 5.143 | 96 | 44.94 | 6.04 | 0.77 | 0.79 | 0.0257 | 0.252 |
Berrenda en Negro | 26.08 | 5.750 | 3.144 | 69 | 32.97 | 4.42 | 0.62 | 0.65 | 0.0511 | 6 × 10−4 |
Marismeña | 49.25 | 5.667 | 2.786 | 68 | 32.5 | 4.19 | 0.59 | 0.61 | 0.0339 | 0 |
Pajuna | 37.92 | 7.500 | 4.432 | 90 | 42.46 | 5.51 | 0.71 | 0.74 | 0.0337 | 0.002 |
Negra Andaluza | 49.33 | 8.667 | 4.631 | 104 | 48.25 | 5.88 | 0.67 | 0.74 | 0.0903 | 0 |
Menorquina | 41.92 | 5.917 | 3.212 | 71 | 33.4 | 4.31 | 0.67 | 0.65 | −0.0185 | 0 |
Mallorquina | 49.33 | 4.583 | 2.807 | 55 | 26.13 | 3.65 | 0.62 | 0.6 | −0.0299 | 0 |
Vaca Canaria | 47.25 | 8.000 | 4.648 | 96 | 44.52 | 5.65 | 0.73 | 0.76 | 0.0477 | 0.4643 |
Vaca Palmera | 49.92 | 5.917 | 3.417 | 71 | 33.06 | 4.46 | 0.64 | 0.65 | 0.0014 | 0 |
Alentejana | 38 | 5.917 | 3.400 | 71 | 33.8 | 4.59 | 0.63 | 0.68 | 0.0765 | 0 |
Arouquesa | 69 | 8.167 | 4.693 | 98 | 45.13 | 5.7 | 0.73 | 0.76 | 0.0314 | 0 |
Barrosã | 69 | 6.500 | 3.691 | 78 | 36.8 | 4.9 | 0.68 | 0.68 | −0.0055 | 0 |
Brava de Lide | 42.92 | 5.917 | 3.448 | 71 | 33.98 | 4.45 | 0.6 | 0.65 | 0.0802 | 0 |
Cachena | 51 | 7.750 | 4.238 | 93 | 43.64 | 5.41 | 0.72 | 0.71 | −0.007 | 3 × 10−4 |
Garvonesa | 39 | 6.417 | 3.577 | 77 | 36.72 | 4.63 | 0.72 | 0.67 | −0.0777 | 0 |
Marinhoa | 46 | 6.417 | 3.732 | 77 | 35.86 | 4.86 | 0.73 | 0.71 | −0.0304 | 0 |
Maronesa | 46.83 | 7.000 | 3.661 | 84 | 39.6 | 5.05 | 0.7 | 0.7 | −3 × 10−4 | 0 |
Mertolenga | 63.5 | 8.167 | 4.325 | 98 | 46.22 | 5.47 | 0.67 | 0.75 | 0.1037 | 0 |
Minhota | 49.92 | 7.917 | 4.324 | 95 | 44.41 | 5.66 | 0.8 | 0.74 | −0.0861 | 0.7863 |
Mirandesa | 53.92 | 5.833 | 2.987 | 70 | 33.67 | 4.12 | 0.65 | 0.65 | −0.0099 | 0 |
Preta | 59.92 | 8.000 | 4.056 | 96 | 44.91 | 5.37 | 0.68 | 0.7 | 0.0351 | 0.1376 |
Ramo Grande | 43.83 | 8.167 | 4.198 | 98 | 45.7 | 5.53 | 0.71 | 0.74 | 0.0305 | 0.4001 |
Aberdeen Angus | 61.75 | 6.500 | 3.819 | 78 | 36.38 | 4.79 | 0.68 | 0.72 | 0.0538 | 0 |
British White Cattle | 29.83 | 6.000 | 3.595 | 72 | 34.31 | 4.62 | 0.71 | 0.69 | −0.0214 | 0.0018 |
Jersey | 19.92 | 5.250 | 3.121 | 63 | 30.82 | 4.31 | 0.67 | 0.65 | −0.0275 | 0.0306 |
Shorthorn | 27 | 6.083 | 3.044 | 73 | 35.1 | 4.56 | 0.64 | 0.62 | −0.0365 | 0.3411 |
Simmental | 19 | 6.917 | 3.453 | 83 | 39.31 | 5.09 | 0.64 | 0.69 | 0.0642 | 0.0327 |
Gelbvieh | 26 | 6.500 | 3.762 | 78 | 36.93 | 5.11 | 0.71 | 0.7 | −0.0102 | 0.7697 |
Baladi | 97.25 | 11.333 | 5.362 | 136 | 63.76 | 6.57 | 0.74 | 0.77 | 0.0435 | 0 |
Menoufis | 20.58 | 8.083 | 4.868 | 97 | 46.62 | 5.76 | 0.68 | 0.73 | 0.0688 | 0.9526 |
Landim | 11.75 | 7.250 | 4.615 | 87 | 41.15 | 5.77 | 0.75 | 0.74 | −0.0152 | 0.9905 |
Angola | 28.75 | 6.500 | 3.504 | 78 | 37.48 | 4.85 | 0.71 | 0.69 | −0.0196 | 0.0022 |
Bafatá | 19.75 | 5.333 | 2.778 | 64 | 30.94 | 3.94 | 0.63 | 0.6 | −0.0618 | 09882 |
Gabú | 25 | 5.750 | 2.843 | 69 | 32.86 | 4.13 | 0.62 | 0.61 | −0.0166 | 0.1537 |
Ankole-Watusi | 45.75 | 5.833 | 3.051 | 70 | 32.38 | 4.3 | 0.6 | 0.62 | 0.0262 | 0 |
Sanga Tonga | 24.08 | 6.833 | 3.768 | 82 | 39.25 | 4.94 | 0.62 | 0.71 | 0.1195 | 0 |
Pokot | 94.83 | 10.917 | 5.076 | 131 | 62.05 | 6.52 | 0.74 | 0.78 | 0.051 | 0 |
Eastern Shorthorn Zebu | 42.58 | 8.333 | 4.050 | 100 | 47.78 | 5.36 | 0.64 | 0.7 | 0.0897 | 0 |
Sokoto Gudali | 17.75 | 7.417 | 3.865 | 89 | 43.02 | 5.4 | 0.66 | 0.72 | 0.0821 | 0.0021 |
Red Bororo | 13.67 | 6.833 | 3.917 | 82 | 39.18 | 5.44 | 0.73 | 0.733 | −0.0049 | 0.9882 |
Muturu | 20.33 | 6.667 | 3.810 | 80 | 38.2 | 5.06 | 0.63 | 0.7 | 0.0911 | 0.8777 |
Kuri | 12.33 | 5.917 | 3.867 | 71 | 34.34 | 4.83 | 0.7 | 0.7 | 2 × 10−4 | 0.8407 |
Gyr | 26.83 | 6.333 | 3.523 | 76 | 35.53 | 4.55 | 0.67 | 0.68 | 0.0226 | 0.0584 |
Brahman | 34.5 | 7.250 | 3.623 | 87 | 41.38 | 4.86 | 0.69 | 0.69 | 0.0088 | 0.0017 |
Sindi | 9.67 | 5.583 | 3.482 | 67 | 31.44 | 4.69 | 0.74 | 0.66 | −0.1322 | 0.9976 |
Guzerat | 14.67 | 5.083 | 2.804 | 61 | 28.8 | 4.13 | 0.62 | 0.62 | 0.004 | 0.9818 |
Nelore | 84.33 | 7.917 | 3.004 | 95 | 44.79 | 4.55 | 0.63 | 0.63 | 0.0014 | 0 |
Yak-Rus | 323 | 6.750 | 3.086 | 81 | 38.81 | 3.92 | 0.6 | 0.65 | 0.0769 | 0 |
Okinsk-Rus | 45 | 4.250 | 2.765 | 51 | 24.44 | 3.71 | 0.63 | 0.6 | −0.0437 | 0 |
Yak-Mongol | 31 | 6.000 | 3.344 | 72 | 34.42 | 4.65 | 0.64 | 0.67 | 0.0392 | 0 |
Bay-Beldyr-Rus | 36 | 4.500 | 2.663 | 54 | 26.3 | 3.41 | 0.62 | 0.6 | −0.0287 | 0 |
Khovd-Mongol | 49 | 5.833 | 3.079 | 70 | 33.83 | 4.09 | 0.63 | 0.64 | 0.0067 | 0 |
Malchyn-Rus | 59 | 4.083 | 2.883 | 49 | 23.66 | 3.48 | 0.58 | 0.63 | 0.0688 | 0 |
Agrosoyuz-Rus | 58 | 4.417 | 2.959 | 53 | 25.27 | 3.53 | 0.67 | 0.64 | −0.0392 | 0 |
Mogen-Buren-Rus | 58 | 3.833 | 2.695 | 46 | 22.26 | 3.49 | 0.66 | 0.61 | −0.0781 | 0 |
Adargan-Rus | 33 | 4.000 | 2.725 | 48 | 23.2 | 3.42 | 0.63 | 0.61 | −0.0345 | 0 |
Aryg-Khem-Rus | 59.75 | 4.417 | 2.811 | 53 | 25.09 | 3.51 | 0.57 | 0.61 | 0.057 | 0 |
Aikol-Kyrgyz | 49 | 4.750 | 2.918 | 57 | 28.02 | 3.94 | 0.64 | 0.63 | −0.023 | 0 |
Locus and Source Reference | Position on Chromosome | Repeating Sequences | Sequences Forward (F) and Inverse (R) Primers | Length of Amplicons (bp) |
---|---|---|---|---|
BM1824 [155] | D1S34 | (GT)n | F: GAGCAAGGTGTTTTTCCAATC R: CATTCTCCAACTGCTTCCTTG | 176–188 |
BM2113 [156] | D2S26 | (CA)n | F: GCTGCCTTCTACCAAATACCC R: CTTCCTGAGAGAAGCAACACC | 124–146 |
CSRM60 [157] | D10S5 | (AC)n | F: AAGATGTGATCCAAGAGAGAGGCA R: AGGACCAGATCGTGAAAGGCATAG | 91–117 |
CSSM66 [155] | D14S31 | (AC)n | F: AATTTAATGCACTGAGGAGCTTGG R: ACACAAATCCTTTCTGCCAGCTGA | 177–203 |
ETH3 [158] | D19S2 | (GT)nAC(GT)6 | F: GAACCTGCCTCTCCTGCATTGG R: ACTCTGCCTGTGGCCAAGTAGG | 100–128 |
ETH10 [158] | D5S3 | (AC)n | F: GTTCAGGACTGGCCCTGCTAACA R: CCTCCAGCCCACTTTCTCTTCTC | 206–222 |
ETH225 [159] | D9S2 | (TG)4CG(TG)(CA)n | F: GATCACCTTGCCACTATTTCCT R: ACATGACAGCCAGCTGCTACT | 139–157 |
ILSTS006 [160] | D7S8 | (GT)n | F: TGTCTGTATTTCTGCTGTGG R: ACACGGAAGCGATCTAAACG | 279–297 |
SPS115 [161] | D15 | (CA)nTA(CA)6 | F: AAAGTGACACAACAGCTTCACCAG R: AACCGAGTGTCCTAGTTTGGCTGTG | 247–261 |
TGLA53 [162] | D16S3 | (TG)6CG(TG)4(TA)n | F: GCTTTCAGAAATAGTTTGCATTCA R: ATCTTCACATGATATTACAGCAGA | 151–187 |
TGLA122 [162] | D21S6 | (AC)n(AT)n | F: AATCACATGGCAAATAAGTACATAC R: CCCTCCTCCAGGTAAATCAGC | 136–182 |
TGLA227 [162] | D18S1 | (TG)n | F: GGAATTCCAAATCTGTTAATTTGCT R: ACAGACAGAAACTCAATGAAAGCA | 76–104 |
Breed | n | n* | Location of Sample | Reference | Number for Structure |
---|---|---|---|---|---|
Asian breed group | |||||
Aulie-Ata | 42 | 41 | Talas region, Talas District, (Kyrgyzstan) | Svishcheva et al. [8] | 9 |
Alatau | 49 | 49 | Chui region, Zhayilsky district (Kyrgyzstan) | Svishcheva et al. [8] | 10 |
Buryat | 286 | 279 | Khuvsgul aimag (Mongolia) | Svishcheva et al. [8] | 16 |
Inner Mongolia (China) | Svishcheva et al. [8] | 16 | |||
Buryatia Republic, Dzhidinsky District (Russia) | Svishcheva et al. [8] | 16 | |||
Gobi | 50 | 49 | South Gobi aimag (Mongolia) | Svishcheva et al. [8] | 15 |
Kalmyk | 54 | 52 | Kalmykia republic, Yustinsky district (Russia) | Svishcheva et al. [8] | 8 |
Khogorogo | 50 | 50 | Khuvsgul aimag (Mongolia) | Svishcheva et al. [8] | 14 |
Kyrgyz Beef-type | 48 | 47 | Chui region, Panfilovsky district (Kyrgyzstan) | Svishcheva et al. [8] | 11 |
Kyrgyz native | 49 | 49 | Naryn region, At-Bashinsky District (Kyrgyzstan) | Svishcheva et al. [8] | 12 |
Yakut | 99 | 99 | Yakutia republic (Russia) | Svishcheva et al. [8] | 13 |
Wagyu | 20 | 15 | Japan | Van de Goor et al. [138] | 33 |
European breed group | |||||
Brown Swiss | 129 | 44 | Kostroma region, Kostroma district (Russia) | Svishcheva et al. [8] | 5 |
Berne (Germany) | Gargani et al. [139] | 5 | |||
Switzerland (sampled in Mexico) | Martínez et al. [133] | 5 | |||
Holstein | 3023 | 2746 | Moscow region (Russia) | Svishcheva et al. [8] | 1 |
The Netherlands | Van de Goor et al. [138] | 1 | |||
The Netherlands (sampled in Portugal) | Martínez et al. [133] | 1 | |||
Kostroma | 20 | 20 | Kostroma Region, Kostroma district, (Russia) | Svishcheva et al. [8] | 6 |
Kholmogory | 50 | 50 | Komi republic, Inta (Russia) | Svishcheva et al. [8] | 3 |
Red Gorbatov | 50 | 50 | Nizhny Novgorod region, Pavlovsky district (Russia) | Svishcheva et al. [8] | 4 |
Tagil | 49 | 49 | Perm region, Oktyabrsky District (Russia) | Svishcheva et al. [8] | 2 |
Istrian | 45 | 45 | Institut national de la recherche agronomique, INRA (France)/Giessen (Germany) | Gargani et al. [139] | 39 |
Chianina | 36 | 30 | Institut national de la recherche agronomique, INRA (France)/Piacenza (Italy) | Gargani et al. [139] | 35 |
Cinisara | 30 | 26 | Catania (Italy)/Van Hall Larenstein, University of Applied Sciences (Netherlands) | Gargani et al. [139] | 41 |
Modicana | 50 | 49 | Catania (Italy) | Gargani et al. [139] | 37 |
Podolica | 50 | 50 | Campobasso(Italy) | Gargani et al. [139] | 40 |
Romagnola | 32 | 24 | Institut national de la recherche agronomique, INRA(France)/Piacenza(Italy) | Gargani et al. [139] | 36 |
Blonde D’Aquitaine | 165 | 150 | France | Van de Goor et al. [138] | 17 |
Belgian Blue | 51 | 45 | Belgium | Van de Goor et al. [138] | 18 |
Brandrood Cattle | 41 | 38 | Netherlands | Van de Goor et al. [138] | 19 |
Charolais | 86 | 78 | France | Van de Goor et al. [138] | 20 |
France (sampled in Portugal) | Martínez et al. [133] | 20 | |||
Dexter | 471 | 291 | Republic of Ireland | Van de Goor et al. [138] | 21 |
UK (sampled in USA) | Ginja et al. [51] | 21 | |||
Dutch Friesian | 42 | 40 | Netherlands | Van de Goor et al. [138] | 22 |
Groningen Whiteheaded | 24 | 20 | Netherlands | Van de Goor et al. [138] | 23 |
Galloway | 88 | 59 | Scotland | Van de Goor et al. [138] | 24 |
Heck Cattle | 39 | 39 | Germany | Van de Goor et al. [138] | 25 |
Hereford | 150 | 142 | The UK | Van de Goor et al. [138] | 26 |
UK (sampled in Argentina, Mexico, USA) | Martínez et al. [133] | 26 | |||
Limousin | 173 | 158 | France | Van de Goor et al. [138] | 27 |
France (sampled in Portugal) | Martínez et al. [133] | 27 | |||
Dutch Belted | 24 | 22 | Netherlands | Van de Goor et al. [138] | 28 |
Marchigiana | 17 | 14 | Italy | Van de Goor et al. [138] | 29 |
Maas Rijn IJssel | 41 | 37 | Netherlands | Van de Goor et al. [138] | 30 |
Scottish Highlander | 118 | 85 | Scotland | Van de Goor et al. [138] | 31 |
Verbeterd Roodbont | 42 | 38 | Netherlands | Van de Goor et al. [138] | 32 |
Waldviertler Blondvieh | 45 | 45 | Austria | Van de Goor et al. [138] | 34 |
Aberdeen Angus | 62 | 62 | UK (sampled in Argentina & USA) | Martínez et al. [133] | 120 |
British White Cattle | 30 | 30 | UK (sampled in USA) | Martínez et al. [133] | 121 |
Jersey | 20 | 20 | UK (sampled in USA) | Martínez et al. [133] | 122 |
Shorthorn | 28 | 27 | UK (sampled in USA) | Martínez et al. [133] | 123 |
Gelbvieh | 26 | 26 | Germany (sampled in USA) | Ginja et al. [51] | 125 |
Simmental | 19 | 19 | Switzerland (sampled in USA) | Ginja et al. [51] | 124 |
Hungarian Grey | 60 | 60 | Vienna | Gargani et al. [139] | 38 |
Iberian breed group | |||||
Alentejana | 38 | 38 | Portugal | Martínez et al. [133] | 107 |
Arouquesa | 70 | 69 | Portugal | Martínez et al. [133] | 108 |
Barrosã | 69 | 69 | Portugal | Martínez et al. [133] | 109 |
Brava de Lide | 43 | 43 | Portugal | Martínez et al. [133] | 110 |
Cachena | 51 | 51 | Portugal | Martínez et al. [133] | 111 |
Garvonesa | 39 | 39 | Portugal | Martínez et al. [133] | 112 |
Marinhoa | 46 | 46 | Portugal | Martínez et al. [133] | 113 |
Maronesa | 47 | 47 | Portugal | Martínez et al. [133] | 114 |
Mertolenga | 64 | 64 | Portugal | Martínez et al. [133] | 115 |
Minhota | 50 | 50 | Portugal | Martínez et al. [133] | 116 |
Mirandesa | 54 | 54 | Portugal | Martínez et al. [133] | 117 |
Preta | 60 | 60 | Portugal | Martínez et al. [133] | 118 |
Ramo Grande | 44 | 44 | Portugal (Azores Islands) | Martínez et al. [133] | 119 |
Alistana | 50 | 50 | Spain | Martínez et al. [133] | 84 |
Asturiana de las Montañas | 50 | 50 | Spain | Martínez et al. [133] | 88 |
Asturiana de los Valles | 50 | 50 | Spain | Martínez et al. [133] | 87 |
Avileña | 50 | 50 | Spain | Martínez et al. [133] | 91 |
Berrenda en Colorado | 40 | 40 | Spain | Martínez et al. [133] | 98 |
Berrenda en Negro | 30 | 27 | Spain | Martínez et al. [133] | 99 |
Betizu | 49 | 44 | Spain | Martínez et al. [133] | 81 |
Bruna de los Pirineos | 50 | 46 | Spain | Martínez et al. [133] | 96 |
Marismeña | 50 | 50 | Spain | Martínez et al. [133] | 100 |
Monchina | 50 | 50 | Spain | Martínez et al. [133] | 82 |
Morucha | 50 | 50 | Spain | Martínez et al. [133] | 90 |
Negra Andaluza | 50 | 50 | Spain | Martínez et al. [133] | 102 |
Pajuna | 38 | 38 | Spain | Martínez et al. [133] | 101 |
Parda de Montaña | 50 | 50 | Spain | Martínez et al. [133] | 95 |
Pasiega | 50 | 50 | Spain | Martínez et al. [133] | 97 |
Pirenaica | 50 | 50 | Spain | Martínez et al. [133] | 92 |
Retinta | 50 | 50 | Spain | Martínez et al. [133] | 89 |
Rubia Gallega | 50 | 50 | Spain | Martínez et al. [133] | 93 |
Sayaguesa | 48 | 48 | Spain | Martínez et al. [133] | 85 |
Serrana de Teruel | 50 | 50 | Spain | Martínez et al. [133] | 94 |
Lidia | 50 | 48 | Spain | Martínez et al. [133] | 83 |
Tudanca | 50 | 50 | Spain | Martínez et al. [133] | 86 |
Mallorquina | 50 | 50 | Spain (Balearic Islands) | Martínez et al. [133] | 104 |
Menorquina | 50 | 44 | Spain (Balearic Islands) | Martínez et al. [133] | 103 |
Vaca Canaria | 50 | 48 | Spain (Canary Islands) | Martínez et al. [133] | 105 |
Vaca Palmera | 50 | 50 | Spain (Canary Islands) | Martínez et al. [133] | 106 |
Creole breed group | |||||
Criollo Argentino | 50 | 50 | Argentina | Martínez et al. [133] | 75 |
Criollo Patagónico | 35 | 35 | Argentina | Martínez et al. [133] | 76 |
Criollo Yacumeño | 30 | 25 | Bolivia | Ginja et al. [51] | 71 |
Caracú | 74 | 74 | Brazil | Martínez et al. [133] | 66 |
Crioulo Lageano | 39 | 39 | Brazil | Egito et al. [115] | 67 |
Curraleiro | 50 | 50 | Brazil | Egito et al. [115] | 68 |
Mocho Nacional | 50 | 49 | Brazil | Egito et al. [115] | 69 |
Pantaneiro | 48 | 48 | Brazil | Egito et al. [115] | 70 |
Criollo Patagónico Chileno | 38 | 35 | Chile | Ginja et al. [51] | 77 |
Blanco Orejinegro | 25 | 25 | Colombia | Martínez et al. [133] | 54 |
Caqueteño | 25 | 24 | Colombia | Martínez et al. [133] | 55 |
Chino Santandereano | 25 | 22 | Colombia | Martínez et al. [133] | 59 |
Costeño con Cuernos | 25 | 23 | Colombia | Martínez et al. [133] | 58 |
Hartón del Valle | 22 | 21 | Colombia | Martínez et al. [133] | 62 |
Lucerna | 23 | 15 | Colombia | Martínez et al. [133] | 61 |
Romosinuano | 25 | 18 | Colombia | Martínez et al. [133] | 57 |
Sanmartinero | 24 | 20 | Colombia | Martínez et al. [133] | 56 |
Velasquez | 25 | 23 | Colombia | Martínez et al. [133] | 60 |
Criollo Cubano | 50 | 46 | Cuba | Martínez et al. [133] | 79 |
Siboney | 50 | 50 | Cuba | Martínez et al. [133] | 80 |
Criollo Ecuatoriano | 46 | 42 | Ecuador | Martínez et al. [133] | 64 |
Criollo Macabeo | 25 | 25 | Ecuador | Vargas et al. 2016 [163] | 65 |
Criollo Baja California | 20 | 14 | Mexico | Martínez et al. [133] | 47 |
Criollo Chiapas | 30 | 20 | Mexico | Martínez et al. [133] | 50 |
Criollo Chihuahua | 16 | 12 | Mexico | Martínez et al. [133] | 48 |
Criollo Lechero Tropical | 46 | 37 | Mexico | Ginja et al. [51] | 45 |
Criollo Nayarit | 24 | 24 | Mexico | Martínez et al. [133] | 49 |
Criollo Poblano | 42 | 38 | Mexico | Martínez et al. [133] | 46 |
Guabalá | 25 | 24 | Panama | Martínez et al. [133] | 51 |
Guaymí | 36 | 36 | Panama | Martínez et al. [133] | 52 |
Criollo Pilcomayo | 36 | 36 | Paraguay | Martínez et al. [133] | 74 |
Pampa Chaqueño | 50 | 50 | Paraguay | Martínez et al. [133] | 73 |
Senepol | 22 | 20 | Saint Croix Island (Caribe) | Ginja et al. [51] | 78 |
Suriname | 50 | 50 | Suriname | Ginja et al. [51] | 53 |
Criollo Uruguayo | 43 | 43 | Uruguay | Martínez et al. [133] | 72 |
Florida Cracker | 50 | 50 | USA | Ginja et al. [51] | 43 |
Pineywoods | 50 | 49 | USA | Ginja et al. [51] | 44 |
Texas Longhorn | 80 | 80 | USA | Martínez et al. [133] | 42 |
Criollo Limonero | 48 | 43 | Venezuela | Martínez et al. [133] | 63 |
African breed group | |||||
Angola | 29 | 29 | Angola | Ginja et al. [51] | 129 |
Baladi | 101 | 100 | Egypt | Ginja et al. [51] | 126 |
Menoufis | 27 | 22 | Egypt | Ginja et al. [51] | 127 |
Bafatá | 20 | 20 | Guinea | Ginja et al. [51] | 130 |
Gabú | 25 | 25 | Guinea | Ginja et al. [51] | 131 |
Eastern Shorthorn Zebu | 47 | 45 | Kenya | Ginja et al. [51] | 135 |
Pokot | 104 | 99 | Kenya | Ginja et al. [51] | 134 |
Ankole-Watusi | 46 | 46 | Lake Victoria (sampled in the USA) | Ginja et al. [51] | 132 |
Landim | 13 | 12 | Mozambique | Ginja et al. [51] | 128 |
Kuri | 21 | 13 | Nigeria | Ginja et al. [51] | 139 |
Muturu | 21 | 21 | Nigeria | Ginja et al. [51] | 138 |
Red Bororo | 14 | 14 | Nigeria | Ginja et al. [51] | 137 |
Sokoto Gudali | 22 | 19 | Nigeria | Ginja et al. [51] | 136 |
Sanga Tonga | 36 | 25 | Zambia | Ginja et al. [51] | 133 |
Zebu breed group (Bos indicus) | |||||
Guzerat | 15 | 15 | India (sampled in Brazil) | Martínez et al. [133] | 143 |
Nelore | 89 | 87 | India (sampled in Brazil) | Martínez et al. [133] | 144 |
Sindi | 11 | 10 | India (sampled in Brazil) | Martínez et al. [133] | 142 |
Brahman | 41 | 36 | India (sampled in Mexico & USA) | Martínez et al. [133] | 141 |
Gyr | 36 | 29 | India (sampled in Mexico) | Martínez et al. [133] | 140 |
Domestic yak breed group (Bos grunniens) | |||||
Adargan-Rus | 60 | 33 | Ovyursky District (Russia) | Oyun et al. [17,18] | 153 |
Agrosoyuz-Rus | 58 | 58 | Kyzyl (Russia) | Oyun et al. [17,18] | 151 |
Altai-Rus | 15 | 12 | Kosh-Agachsky District (Russia) | Oyun et al. [17,18] | 7 |
Aikol-Kyrgyz | 50 | 49 | Jeti-Oguz District (Kyrgyz Republic) | Oyun et al. [17,18] | 155 |
Aryg-Khem-Rus | 60 | 60 | Barun-Khemchiksky District (Russia) | Oyun et al. [17,18] | 154 |
Bay-Beldyr-Rus | 56 | 56 | Mongun-Tayginsky District (Russia) | Oyun et al. [17,18] | 148 |
Khovd-Mongol | 49 | 49 | Khovd (Mongolia) | Oyun et al. [17,18] | 149 |
Malchyn-Rus | 60 | 59 | Mongun-Tayginsky District (Russia) | Oyun et al. [17,18] | 150 |
Mogen-Buren-Rus | 60 | 58 | Mongun-Tayginsky District (Russia) | Oyun et al. [17,18] | 152 |
Yak-Mongol | 31 | 31 | Mongolia | Oyun et al. [17,18] | 147 |
Okinsk-Rus | 46 | 45 | Okinsky District (Russia) | Oyun et al. [17,18] | 146 |
Yak-Rus | 336 | 323 | Russia | Oyun et al. [17,18] | 145 |
Total: | 11,174 | 10,250 |
References
- FAO. Report on Monitoring Schemes and Data Collection on Biodiversity for Food and Agriculture in Eastern Europe and Central Asia; FAO: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Simianer, H. Decision making in livestock conservation. Ecol. Econ. 2005, 53, 559–572. [Google Scholar] [CrossRef]
- Yurchenko, A.; Yudin, N.; Aitnazarov, R.; Plyusnina, A.; Brukhin, V.; Soloshenko, V.; Lhasaranov, B.; Popov, R.; Paronyan, I.A.; Plemyashov, K.V.; et al. Genome-wide genotyping uncovers genetic profiles and history of the Russian cattle breeds. Heredity 2018, 120, 125–137. [Google Scholar] [CrossRef] [PubMed]
- Gautier, M.; Laloë, D.; Moazami-Goudarzi, K. Insights into the genetic history of French cattle from dense SNP data on 47 worldwide breeds. PLoS ONE 2010, 5, e13038. [Google Scholar] [CrossRef] [PubMed]
- Pitt, D.; Sevane, N.; Nicolazzi, E.L.; MacHugh, D.E.; Park, S.D.E.; Colli, L.; Martinez, R.; Bruford, M.W.; Orozco-terWengel, P. Domestication of cattle: Two or three events? Evol. Appl. 2019, 12, 123–136. [Google Scholar] [CrossRef] [PubMed]
- The Bovine HapMap Consortium; Gibbs, R.A.; Taylor, J.F.; Van Tassell, C.P.; Barendse, W.; Eversole, K.A.; Gill, C.A.; Green, R.D.; Hamernik, D.L.; Kappes, S.M.; et al. Genome-wide survey of SNP variation uncovers the genetic structure of cattle breeds. Science 2009, 324, 528–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zinovieva, N.A.; Dotsev, A.V.; Sermyagin, A.A.; Deniskova, T.E.; Abdelmanova, A.S.; Kharzinova, V.R.; Sölkner, J.; Reyer, H.; Wimmers, K.; Brem, G. Selection signatures in two oldest Russian native cattle breeds revealed using high-density single nucleotide polymorphism analysis. PLoS ONE 2020, 15, e0242200. [Google Scholar] [CrossRef]
- Svishcheva, G.; Babayan, O.; Lkhasaranov, B.; Tsendsuren, A.; Abdurasulov, A.; Stolpovsky, Y. Microsatellite Diversity and Phylogenetic Relationships among East Eurasian Bos taurus Breeds with an Emphasis on Rare and Ancient Local Cattle. Animals 2020, 10, 1493. [Google Scholar] [CrossRef]
- Buggiotti, L.; Yudin, N.; Larkin, D. Copy Number Variants in Two Northernmost Cattle Breeds Are Related to Their Adaptive Phenotypes. Genes 2022, 13, 1595. [Google Scholar] [CrossRef]
- Yurchenko, A.A.; Daetwyler, H.D.; Yudin, N.; Schnabel, R.D.; Vander Jagt, C.J.; Soloshenko, V.; Lhasaranov, B.; Popov, R.; Taylor, J.F.; Larkin, D.M. Scans for signatures of selection in Russian cattle breed genomes reveal new candidate genes for environmental adaptation and acclimation. Sci. Rep. 2018, 8, 12984. [Google Scholar] [CrossRef] [Green Version]
- Iso-Touru, T.; Tapio, M.; Vilkki, J.; Kiseleva, T.; Ammosov, I.; Ivanova, Z.; Popov, R.; Ozerov, M.; Kantanen, J. Genetic diversity and genomic signatures of selection among cattle breeds from Siberia, eastern and northern Europe. Anim. Genet. 2016, 47, 647–657. [Google Scholar] [CrossRef]
- Dotsev, A.V.; Zinovieva, N.A.; Deniskova, T.E.; Abdelmanova, A.; Sölkner, J.; Reyer, H.; Wimmers, K.; Brem, G. PSXII-21 Genome-wide search for genomic regions under putative selection in two Russian native cattle breeds using high-density SNP Bead Chip. J. Anim. Sci. 2020, 98, 242–243. [Google Scholar] [CrossRef]
- Sermyagin, A.A.; Dotsev, A.V.; Gladyr, E.A.; Traspov, A.A.; Deniskova, T.E.; Kostyunina, O.V.; Reyer, H.; Wimmers, K.; Barbato, M.; Paronyan, I.A.; et al. Whole-genome SNP analysis elucidates the genetic structure of Russian cattle and its relationship with Eurasian taurine breeds. Genet. Sel. Evol. 2018, 50, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mastrangelo, S.; Tolone, M.; Ben Jemaa, S.; Sottile, G.; Di Gerlando, R.; Cortés, O.; Senczuk, G.; Portolano, B.; Pilla, F.; Ciani, E. Refining the genetic structure and relationships of European cattle breeds through meta-analysis of worldwide genomic SNP data, focusing on Italian cattle. Sci. Rep. 2020, 10, 14522. [Google Scholar] [CrossRef] [PubMed]
- Kantanen, J.; Edwards, C.J.; Bradley, D.G.; Viinalass, H.; Thessler, S.; Ivanova, Z.; Kiselyova, T.; Cinkulov, M.; Popov, R.; Stojanović, S.; et al. Maternal and paternal genealogy of Eurasian taurine cattle (Bos taurus). Heredity 2009, 103, 404–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buggiotti, L.; Yurchenko, A.; Yudin, N.; Vander Jagt, C.; Vorobieva, N.; Kusliy, M.; Vasiliev, S.; Rodionov, A.; Boronetskaya, O.; Zinovieva, N.; et al. Demographic History, Adaptation, and NRAP Convergent Evolution at Amino Acid Residue 100 in the World Northernmost Cattle from Siberia. Mol. Biol. Evol. 2021, 38, 3093–3110. [Google Scholar] [CrossRef]
- Oyun, N.Y.; Konorov, E.A.; Urum, A.V.; Artyushin, I.V.; Svishcheva, G.R.; Cendsuren, C.; Stolpovsky, Y.A. Study of Genetic Diversity and Population Structure of the Yak (Bos grunniens) in the Sayan-Altai Region. Russ. J. Genet. 2018, 54, 1210–1220. [Google Scholar] [CrossRef]
- Oyun, N. Geneticheskoe raznoobrazie yaka (Bos grunniens) sayano-altajskogo regiona. Ph.D. Thesis, Institut obshchej genetiki im. Vavilova Rossijskoj Akademii Nauk, Moskva, Russia, 2018. (In Russian). [Google Scholar]
- Xuebin, Q.; Jianlin, H.; Lkhagva, B.; Chekarova, I.; Badamdorj, D.; Rege, J.E.O.; Hanotte, O. Genetic diversity and differentiation of Mongolian and Russian yak populations. J. Anim. Breed. Genet. 2005, 122, 117–126. [Google Scholar] [CrossRef]
- Cai, X.; Mipam, T.; Zhao, F.; Sun, L. Isolation and characterization of polymorphic microsatellites in the genome of Yak (Bos grunniens). Mol. Biol. Rep. 2014, 41, 3829–3837. [Google Scholar] [CrossRef]
- Dorji, T.; Goddard, M.; Perkins, J.; Robinson, N.; Roder, W. Genetic Diversity in Bhutanese yak (Bos grunniens) Populations Using Microsatellite Markers. In Yak Production in Central Asian Highlands. Proceedings of the Third International Congress on Yak Held in Lhasa, P.R. China, 4–9 September 2000; ILRI (International Livestock Research Institute): Nairobi, Kenya, 2002; pp. 197–202. [Google Scholar]
- Sharma, H.; Sharma, R.; Ahlawat, S.; Das, P.J.; Jayakumar, S.; Tantia, M.S. Cattle microsatellite markers successfully established diversity status of Arunachali yak (only registered yak breed of India). Indian J. Anim. Sci. 2018, 88, 1051–1057. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Genini, S.; Ménétrey, F.; Malek, M.; Vögeli, P.; Goe, M.R.; Stranzinger, G. Application of bovine microsatellite markers for genetic diversity analysis of Swiss yak (Poephagus grunniens). Anim. Genet. 2005, 36, 484–489. [Google Scholar] [CrossRef]
- Stolpovsky, Y.A.; Kol, N.V.; Evsyukov, A.N.; Nesteruk, L.V.; Dorzhu, C.M.; Tsendsuren, T.; Sulimova, G.E. Comparative analysis of ISSR marker polymorphism in populations of yak (Bos mutus) and in F1 hybrids between yak and cattle in the Sayan-Altai region. Russ. J. Genet. 2014, 50, 1025–1037. [Google Scholar] [CrossRef]
- Davydov, V.N. Genofond domashnikh zhivotnykh iuga Vostochnoi Sibiri [The Gene Pool of Southern Eastern Siberia’s Domestic Animals]; BNTS SO AN USSR: Ulan-ude, Russia, 1990. (In Russian) [Google Scholar]
- Al’-Keisi, T.V. Sravnitel’noe issledovanie allelofonda yakov i ikh gibridov s krupnym rogatym skotom s ispol’zovaniem mikrosatellitov (Comparative Study Allele Pool of Yaks and Their Hybrids with Cattle with the Use of Microsatellites). Extended Abstract of Diss., Cand. Sci. Biol. Moskva-Dubrovitsy, Russia, 2011. [Google Scholar]
- Qi, X.B.; Jianlin, H.; Wang, G.; Rege, J.E.O.; Hanotte, O. Assessment of cattle genetic introgression into domestic yak populations using mitochondrial and microsatellite DNA markers. Anim. Genet. 2010, 41, 242–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kashi, Y.; Tikochinsky, Y.; Genislav, E.; lraqi, F.; Nave, A.; Beckmann, J.S.; Gruenbaum, Y.; Soller, M. Large restriction fragments containing poly-TG are highly polymorphic in a variety of vertebrates. Nucleic Acids Res. 1990, 18, 1129–1132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tautz, D. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res. 1989, 17, 6463–6471. [Google Scholar] [CrossRef] [PubMed]
- Li, M.-H.; Tapio, I.; Vilkki, J.; Ivanova, Z.; Kiselyova, T.; Marzanov, N.; Ćinkulov, M.; Stojanović, S.; Ammosov, I.; Popov, R.; et al. The genetic structure of cattle populations (Bos taurus) in northern Eurasia and the neighbouring Near Eastern regions: Implications for breeding strategies and conservation. Mol. Ecol. 2007, 16, 3839–3853. [Google Scholar] [CrossRef] [PubMed]
- FAO. Molecular Genetic Characterization of Animal Genetic Resources; FAO Animal Production and Health Guidelines; FAO: Rome, Italy, 2011. [Google Scholar]
- Ernst, L.K.; Dmitriev, N.G.; Paronyan, I.A. Geneticheskie Resursy Sel’skokhozyaistvennykh Zhivotnykh v Rossii i Sopredel’nykh Stranakh [Genetic Resources of Farm Animals in Russia and Neighboring Countries]; ALL-RUSSIAN RESEARCH INSTITUTE OF GENETICS AND BREEDING OF FARM ANIMALS: St. Petersburg, Russia, 1994. (In Russian) [Google Scholar]
- Dmitriev, N.; Ernst, L. Animal Genetic Resources of the USSR; FAO Animal Production and Health Paper (FAO); FAO: Rome, Italy, 1989. [Google Scholar]
- Decker, J.; McKay, S.; Rolf, M.; Kim, J.; Molina, A.; Sonstegard, T.; Hanotte, O.; Götherström, A.; Seabury, C.M.; Praharani, L.; et al. Worldwide Patterns of Ancestry, Divergence, and Admixture in Domesticated Cattle. PLoS Genet. 2014, 10, e1004254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beja-Pereira, A.; Alexandrino, P.; Bessa, I.; Carretero, Y.; Dunner, S.; Ferrand, N.; Jordana, J.; Laloe, D.; Moazami-Goudarzi, K.; Sanchez, A.; et al. Genetic Characterization of Southwestern European Bovine Breeds: A Historical and Biogeographical Reassessment With a Set of 16 Microsatellites. J. Hered. 2003, 94, 243–250. [Google Scholar] [CrossRef]
- Fina, M.P. La raça Bruna dels Pirineus, patrimoni boví autòcton català. Quad. Agrar. (Institució Catalana D’Estudis Agrar.) 2014, 37, 93–118. [Google Scholar] [CrossRef]
- Serra, X.; Gil, M.; Gispert, M.; Guerrero, L.; Oliver, M.A.; Sañudo, C.; Campo, M.M.; Panea, B.; Olleta, J.L.; Quintanilla, R.; et al. Characterisation of young bulls of the Bruna dels Pirineus cattle breed (selected from old Brown Swiss) in relation to carcass, meat quality and biochemical traits. Meat Sci. 2004, 66, 425–436. [Google Scholar] [CrossRef]
- Cano, G.; Blanco, M.; Casasús, I.; Cortés-Lacruz, X.; Villalba, D. Corrigendum to: Comparison of B-splines and non-linear functions to describe growth patterns and predict mature weight of female beef cattle. Anim. Prod. Sci. 2016, 56, 2161. [Google Scholar] [CrossRef]
- Rouse, J.E. The Criollo: Spanish Cattle in the Americas; University of Oklahoma Press: Norman, OK, USA, 1977. [Google Scholar]
- McTavish, E.J.; Decker, J.E.; Schnabel, R.D.; Taylor, J.F.; Hillis, D.M. New World cattle show ancestry from multiple independent domestication events. Proc. Natl. Acad. Sci. USA 2013, 110, E1398–E1406. [Google Scholar] [CrossRef] [Green Version]
- Cymbron, T.; Loftus, R.; Malheiro, M.I.; Bradley, D.G. Mitochondrial sequence variation suggests an African influence in Portuguese cattle. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1999, 266, 597–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cymbron, T.; Freeman, A.R.; Isabel Malheiro, M.; Vigne, J.; Bradley, D.G. Microsatellite diversity suggests different histories for Mediterranean and Northern European cattle populations. Proc. R. Soc. B Biol. Sci. 2005, 272, 1837–1843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willham, R.L. Genetic Improvement of Beef Cattle in the United States: Cattle, People and Their Interaction. J. Anim. Sci. 1982, 54, 659–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ginja, C.; Penedo, M.C.T.; Melucci, L.; Quiroz, J.; Martínez López, O.R.; Revidatti, M.A.; Martínez-Martínez, A.; Delgado, J.V.; Gama, L.T. Origins and genetic diversity of New World Creole cattle: Inferences from mitochondrial and Y chromosome polymorphisms. Anim. Genet. 2010, 41, 128–141. [Google Scholar] [CrossRef]
- Decker, J.; Pires, J.; Conant, G.; McKay, S.; Heaton, M.; Chen, K.; Cooper, A.; Vilkki, J.; Seabury, C.; Caetano, A.; et al. Resolving the evolution of extant and extinct ruminants with high-throughput phylogenomics. Proc. Natl. Acad. Sci. USA 2009, 106, 18644–18649. [Google Scholar] [CrossRef] [Green Version]
- Rege, J.E.O.; Tawah, C.L. The state of African cattle genetic resources II. Geographical distribution, characteristics and uses of present-day breeds and strains. Anim. Genet. Resour./Resour. Génétiques Anim./Recur. Genéticos Anim. 1999, 26, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Mwai, O.; Hanotte, O.; Kwon, Y.-J.; Cho, S. African Indigenous Cattle: Unique Genetic Resources in a Rapidly Changing World. Asian-Australas. J. Anim Sci. 2015, 28, 911–921. [Google Scholar] [CrossRef] [Green Version]
- Flores, B.M.; Vallejo, M.E.C.; Bermejo, J.V.D.; González, F.J.N.; Martínez, M.D.A. Do Pharaohs’ cattle still graze the Nile Valley? Genetic characterization of the Egyptian Baladi cattle breed. Anim. Biotechnol. 2021, 1–13. [Google Scholar] [CrossRef]
- Villalobos-Cortés, A.; Carbonó, M.; Rodríguez, A.; Arosemena, E.; Jaén, M. Phenotypic characterization of the Guaymi breed in conservation centers of Panama. Afr. J. Agric. Res. 2021, 17, 907–915. [Google Scholar] [CrossRef]
- Jang, J.; Terefe, E.; Kim, K.; Lee, Y.H.; Belay, G.; Tijjani, A.; Han, J.L.; Hanotte, O.; Kim, H. Population differentiated copy number variation of Bos taurus, Bos indicus and their African hybrids. BMC Genom. 2021, 22, 531. [Google Scholar] [CrossRef] [PubMed]
- Ginja, C.; Gama, L.; Cortés, O.; Burriel, I.M.; Vega-Pla, J.L.; Penedo, C.; Sponenberg, P.; Cañón, J.; Sanz, A.; do Egito, A.A.; et al. The genetic ancestry of American Creole cattle inferred from uniparental and autosomal genetic markers. Sci. Rep. 2019, 9, 11486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahbahani, H.; Tijjani, A.; Mukasa, C.; Wragg, D.; Almathen, F.; Nash, O.; Akpa, G.N.; Mbole-Kariuki, M.; Malla, S.; Woolhouse, M.; et al. Signatures of Selection for Environmental Adaptation and Zebu × Taurine Hybrid Fitness in East African Shorthorn Zebu. Front. Genet. 2017, 8, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rege, J.E.O.; Kahi, A.; Okomo-Adhiambo, M.; Mwacharo, J.; Hanotte, O. Zebu Cattle of Kenya: Uses, Performance, Farmer Preferences, Measures of Genetic Diversity and Options for Improved Use; International Livestock Research Institute, Kenya Agricultural Research Institute: Nairobi, Kenya, 2001. [Google Scholar]
- Gifford-Gonzalez, D.; Hanotte, O. Domesticating Animals in Africa: Implications of Genetic and Archaeological Findings. J. World Prehist. 2011, 24, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Li, M.-H.; Kantanen, J. Genetic structure of Eurasian cattle (Bos taurus) based on microsatellites: Clarification for their breed classification. Anim. Genet. 2010, 41, 150–158. [Google Scholar] [CrossRef]
- Medugorac, I.; Graf, A.; Grohs, C.; Rothammer, S.; Zagdsuren, Y.; Gladyr, E.; Zinovieva, N.; Barbieri, J.; Seichter, D.; Russ, I.; et al. Whole-genome analysis of introgressive hybridization and characterization of the bovine legacy of Mongolian yaks. Nat. Genet. 2017, 49, 470–475. [Google Scholar] [CrossRef] [Green Version]
- Chen, N.; Cai, Y.; Chen, Q.; Li, R.; Wang, K.; Huang, Y.; Hu, S.; Huang, S.; Zhang, H.; Zheng, Z.; et al. Whole-genome resequencing reveals world-wide ancestry and adaptive introgression events of domesticated cattle in East Asia. Nat. Commun. 2018, 9, 2337. [Google Scholar] [CrossRef] [Green Version]
- Utsunomiya, Y.T.; Bomba, L.; Lucente, G.; Colli, L.; Negrini, R.; Lenstra, J.A.; Erhardt, G.; Garcia, J.F.; Ajmone-Marsan, P.; European Cattle Genetic Diversity Consortium. Revisiting AFLP fingerprinting for an unbiased assessment of genetic structure and differentiation of taurine and zebu cattle. BMC Genet. 2014, 15, 47. [Google Scholar] [CrossRef] [Green Version]
- Koufariotis, L.; Hayes, B.J.; Kelly, M.; Burns, B.M.; Lyons, R.; Stothard, P.; Chamberlain, A.J.; Moore, S. Sequencing the mosaic genome of Brahman cattle identifies historic and recent introgression including polled. Sci. Rep. 2018, 8, 17761. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.-D.; Ding, X.-D.; Wang, S.; Wójcik, J.M.; Zhang, Y.I.; Tokarska, M.; Li, Y.; Wang, M.S.; Faruque, O.; Nielsen, R.; et al. Pervasive introgression facilitated domestication and adaptation in the Bos species complex. Nat. Ecol. Evol. 2018, 2, 1139–1145. [Google Scholar] [CrossRef]
- Hsiao, J.J.; Fisher, D.E. The roles of microphthalmia-associated transcription factor and pigmentation in melanoma. Arch. Biochem. Biophys. 2014, 563, 28–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qanbari, S.; Pausch, H.; Jansen, S.; Somel, M.; Strom, T.M.; Fries, R.; Nielsen, R.; Simianer, H. Classic Selective Sweeps Revealed by Massive Sequencing in Cattle. PLoS Genet. 2014, 10, e1004148. [Google Scholar] [CrossRef] [Green Version]
- Lai, S.J.; Chen, S.Y.; Liu, Y.P.; Yao, Y.G. Mitochondrial DNA sequence diversity and origin of Chinese domestic yak. Anim. Genet. 2007, 38, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Huerta-Sánchez, E.; Jin, X.; Asan; Bianba, Z.; Peter, B.M.; Vinckenbosch, N.; Liang, Y.; Yi, X.; He, M.; Somel, M.; et al. Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature 2014, 512, 194–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miao, B.; Wang, Z.; Li, Y. Genomic Analysis Reveals Hypoxia Adaptation in the Tibetan Mastiff by Introgression of the Gray Wolf from the Tibetan Plateau. Mol. Biol. Evol. 2016, 34, 734–743. [Google Scholar] [CrossRef]
- Yu, Y.; Nie, L.; He, Z.Q.; Wen, J.K.; Jian, C.S.; Zhang, Y.P. Mitochondrial DNA variation in cattle of South China: Origin and introgression. Anim. Genet. 1999, 30, 245–250. [Google Scholar] [CrossRef]
- Huang, C.; Dai, R.; Meng, G.; Dingkao, R.; Wang, X.; Ren, W.; Ma, X.; Wu, X.; Chu, M.; La, Y.; et al. Transcriptome-Wide Study of mRNAs and lncRNAs Modified by m6A RNA Methylation in the Longissimus Dorsi Muscle Development of Cattle-Yak. Cells 2022, 11, 3654. [Google Scholar] [CrossRef]
- Tumennasan, K.; Tuya, T.; Hotta, Y.; Takase, H.; Speed, R.M.; Chandley, A.C. Fertility investigations in the F1 hybrid and backcross progeny of cattle (Bos taurus) and Yak (B. grunniens) in Mongolia. Cytogenet. Genome Res. 1997, 78, 69–73. [Google Scholar] [CrossRef]
- Yu, S.J. The challenges and progress in the management of reproduction in yaks. Soc. Reprod. Fertil. Suppl. 2007, 64, 283–296. [Google Scholar] [CrossRef]
- Zilhão, J. The Spread of Agro-Pastoral Economies across Mediterranean Europe: A View from the Far West. J. Mediterr. Archaeol. 1993, 6, 5–63. [Google Scholar] [CrossRef]
- Senczuk, G.; Mastrangelo, S.; Ajmone-Marsan, P.; Becskei, Z.; Colangelo, P.; Colli, L.; Ferretti, L.; Karsli, T.; Lancioni, H.; Lasagna, E.; et al. On the origin and diversification of Podolian cattle breeds: Testing scenarios of European colonization using genome-wide SNP data. Genet. Sel. Evol. 2021, 53, 48. [Google Scholar] [CrossRef] [PubMed]
- Di Lorenzo, P.; Lancioni, H.; Ceccobelli, S.; Colli, L.; Cardinali, I.; Karsli, T.; Capodiferro, M.R.; Sahin, E.; Ferretti, L.; Ajmone Marsan, P.; et al. Mitochondrial DNA variants of Podolian cattle breeds testify for a dual maternal origin. PLoS ONE 2018, 13, e0192567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonfiglio, S.; Ginja, C.; De Gaetano, A.; Achilli, A.; Olivieri, A.; Colli, L.; Tesfaye, K.; Agha, S.H.; Gama, L.T.; Cattonaro, F.; et al. Origin and spread of Bos taurus: New clues from mitochondrial genomes belonging to haplogroup T1. PLoS ONE 2012, 7, e38601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Felius, M.; Koolmees, P.; Theunissen, B.; European Cattle Genetic Diversity Consortium; Lenstra, J.A. On the Breeds of Cattle—Historic and Current Classifications. Diversity 2011, 3, 660–692. [Google Scholar] [CrossRef] [Green Version]
- Keller, C. Naturgeschichte der Haustiere; P. Parey: Berlin, Germany, 1905. [Google Scholar]
- Werner, H. Die Rinderzucht: Körperbau, Schläge, Züchtung, Haltung und Nutzung des Rindes; Praktisches Handbuch; P. Parey: Berlin, Germany, 1912. [Google Scholar]
- Dechambre, P. Traité de Zootechnie: Les Bovins; Charles Amat: Paris, France, 1913; p. 26. [Google Scholar]
- Bougler, J. Introduction. In Races Bovines Françaises; France Agricole: Montrouge, France, 1998; p. 20. [Google Scholar]
- Kushnir, A.V.; Glazko, V.I. Gray ukrainian cattle and their closely related forms. Contemp. Probl. Ecol. 2009, 2, 288–295. [Google Scholar] [CrossRef]
- Sicilian Roots. 2021. Available online: http://www.sicilianroots.com/eng/razze/vacca-cinisara/ (accessed on 17 August 2022).
- Maretto, F.; Ramljak, J.; Sbarra, F.; Penasa, M.; Mantovani, R.; Ivankovich, A.; Bittante, G. Genetic relationships among Italian and Croatian Podolian cattle breeds assessed by microsatellite markers. Livest. Sci. 2012, 150, 256–264. [Google Scholar] [CrossRef]
- Pellecchia, M.; Negrini, R.; Colli, L.; Patrini, M.; Milanesi, E.; Achilli, A.; Bertorelle, G.; Cavalli-Sforza, L.L.; Piazza, A.; Torroni, A.; et al. The mystery of Etruscan origins: Novel clues from Bos taurus mitochondrial DNA. Proc. R. Soc. B Biol. Sci. 2007, 274, 1175–1179. [Google Scholar] [CrossRef] [Green Version]
- Bonfiglio, S.; Achilli, A.; Olivieri, A.; Negrini, R.; Colli, L.; Liotta, L.; Ajmone-Marsan, P.; Torroni, A.; Ferretti, L. The Enigmatic Origin of Bovine mtDNA Haplogroup R: Sporadic Interbreeding or an Independent Event of Bos primigenius Domestication in Italy? PLoS ONE 2010, 5, e15760. [Google Scholar] [CrossRef]
- Negrini, R.; Nijman, I.J.; Milanesi, E.; Moazami-Goudarzi, K.; Williams, J.L.; Erhardt, G.; Dunner, S.; Rodellar, C.; Valentini, A.; Bradley, D.G.; et al. Differentiation of European cattle by AFLP fingerprinting. Anim. Genet. 2007, 38, 60–66. [Google Scholar] [CrossRef]
- Senczuk, G.; Guerra, L.; Mastrangelo, S.; Campobasso, C.; Zoubeyda, K.; Imane, M.; Marletta, D.; Kusza, S.; Karsli, T.; Gaouar, S.B.S.; et al. Fifteen Shades of Grey: Combined Analysis of Genome-Wide SNP Data in Steppe and Mediterranean Grey Cattle Sheds New Light on the Molecular Basis of Coat Color. Genes 2020, 11, 932. [Google Scholar] [CrossRef]
- Zsolnai, A.; Maróti-Agóts, Á.; Kovács, A.; Bâlteanu, A.V.; Kaltenecker, E.; Anton, I. Genetic position of Hungarian Grey among European cattle and identification of breed-specific markers. Animal 2020, 14, 1786–1792. [Google Scholar] [CrossRef]
- Bartosiewicz, L. Hungarian Grey Cattle: In Search of Origins; Hungarian Agricultural Research: Budapest, Hungary, 1996. [Google Scholar]
- Milhoffer, S. Magyarország közgazdasága. Első kötet.; Franklin-Társulat, Írod. Intézet és Könyvnyomda: Budapest, Hungary, 1904. (In Hungarian) [Google Scholar]
- Schandl, J. Szarvasmarhatenyésztés; Mezõgazdasági Kiadó: Budapest, Hungary, 1962. [Google Scholar]
- Bodó, I.; Gera, I.; Koppány, G. The Hungarian Grey Cattle Breed; Association of the Hungarian Grey Cattle Breeders: Budapest, Hungary, 1996; p. 128. [Google Scholar]
- Sedov, V.V. Slavyane: Istoriko-Arkheologicheskoe Issledovanie [The Slavs: A Historical and Archaeological Research]; Yazyki Slavyanskoy Kul’tury Publ.: Moskva, Russia, 2002. (In Russian) [Google Scholar]
- Liskun, E.F. Russkie otrod’ya krupno-rogatogo skota; Novyj agronom: Moskva, Russia, 1928; Available online: http://elib.cnshb.ru/books/free/0411/411374/ (accessed on 29 November 2022). (In Russian)
- Liskun, E.F. Otechestvennye porody krupnogo rogatogo skota; GISL: Moskva, Russia, 1949; Available online: http://elib.cnshb.ru/books/free/0411/411371/86/ (accessed on 29 November 2022). (In Russian)
- Bazhanov, A. Rukovodstvo k razvedeniju, soderzhaniju i upotrebleniju krupnogo rogatogo skota; Obshhestvennaja Pol’za: Sankt-Petersburg, Russia, 1867. (In Russian) [Google Scholar]
- Pridorogin, M.I. Krupnyj rogatyj skot. Vazhnejshie porody, 2nd ed.; Izd-vo Studentov P.S.-H.A.: Moskva, Russia, 1919. (In Russian) [Google Scholar]
- Nusov, N.I.; Ignatenko, G.G. Skotovodstvo. Izd.2-e, Pererab. i dop. M.; «Kolos»: Moskva, Russia, 1974. (In Russian) [Google Scholar]
- Stolpovsky, Y.A.; Gosteva, E.R.; Solodneva, E.V. Geneticheskie i Selekcionnye Aspekty Istorii Razvitiya Skotovodstva na Territorii Rossii; M-vo nauki i vyssh. obrazovaniya Ros. Federacii, In-t obshch. genetiki im. N. I. Vavilova Ros. akad. nauk, Feder. agrar. nauch. centr Yugo-Vostoka, Akvarel: Moskva, Russia, 2022; 88p. (In Russian) [Google Scholar]
- Vityugov, A.A. Kholmogorskii skot [Kholmogor cattle]; Arhangelsk: Arhangelsk, Russia, 1928. [Google Scholar]
- Kapacinskij, V.V. Krasnyj gorbatovskij skot; Gor’kovskoe knizhnoe izdatel’stvo: Gor’kij, Russia, 1953; p. 276. (In Russian) [Google Scholar]
- Romanov, A.I. O Tagil’skom skote v svyazi s ego istoriej i uchrezhdeniem zemskogo rassadnika na osnovah metizacii s gollandskim skotom. In Proceedings of the V sbornike: Trudy soveshchaniya veterinarnykh vrachei i predstavitelei zemstv [Proceedings of the Meeting of Veterinarians and Representatives of Zemstvos], Perm, Russia; 1913; pp. 11–129. (In Russian). [Google Scholar]
- Gorskij, N.A. Kostromskaya poroda skota v kolhozah; Sel’hozgiz: Moskva, Russia, 1952; p. 172. (In Russian) [Google Scholar]
- SHaumyan, V.A. Kostromskaya poroda // V kn.: Skotovodstvo. M. T.1; Sel’hozgiz: Moskva, Russia, 1961. (In Russian) [Google Scholar]
- Zhebrovskiy, L.S.; Babukov, A.V.; Ivanov, K.M. Genofond Sel’skokhozyaystvennykh Zhivotnykh i Ego Ispol’zovanie v Selektsii (The Gene Pool of Farm Animals and Its Use in Selection); Leningrad: Kolos, Russia, 1983; p. 352. (In Russian) [Google Scholar]
- Felius, M. Cattle Breeds: An Encyclopedia; C Misset bv: Doetinchem, The Netherlands, 1995. [Google Scholar]
- Xia, X.-T.; Achilli, A.; Lenstra, J.A.; Tong, B.; Ma, Y.; Huang, Y.Z.; Han, J.L.; Sun, Z.Y.; Chen, H.; Lei, C.Z.; et al. Mitochondrial genomes from modern and ancient Turano-Mongolian cattle reveal an ancient diversity of taurine maternal lineages in East Asia. Heredity 2021, 126, 1000–1008. [Google Scholar] [CrossRef] [PubMed]
- Kharkov, V.N.; Khamina, K.V.; Medvedeva, O.F.; Simonova, K.V.; Eremina, E.R.; Stepanov, V.A. Gene pool of Buryats: Clinal variability and territorial subdivision based on data of Y-chromosome markers. Russ. J. Genet. 2014, 50, 180–190. [Google Scholar] [CrossRef]
- Zoriktuev, B.R. Aktualnye Problemy Etnicheskoi Istorii Mongolov i Buryat (Actual Problems of the Ethnic History of the Mongols and Buryats); Vostochnaya literature Publ.: Moskva, Russia, 2011. (In Russian) [Google Scholar]
- Tsibiktarov, A.D. On the Origin of the Cattle Breeding among Buryats. Bull. Irkutsk. State Univ. Geoarchaeology Ethnol. Anthropol. Eries 2017, 20, 61–76. Available online: http://izvestiageoarh.isu.ru/en/article?id=152 (accessed on 29 November 2022). (In Russian).
- Molodykh, I.A.; Kulakov, P.E.; Semenov, P.P. Trudy po Uchastiyu Otdela na Vserossiiskoi Vystavke v 1896 g. Illyustrirovannoe Opisanie Byta Sel’skogo Naseleniya Irkutskoi Gubernii [Proceedings on the Department’s Participation in All-Russian Exhibition in 1896. Illustrated Description of Everyday Life of the Irkutsk Province Rural Population]; P. O. Yablonsky Steam Printing House Publ.: Saint Petersburg, Russia, 1896. (In Russian) [Google Scholar]
- Trombetta, M.F.; Filippini, F. Marchigiana, young Podolic breed: History, tradition, new ways. Taurus Speciale. Taurus Speciale 2009, 3, 152–155. [Google Scholar]
- Sevane, N.; Martínez, R.; Bruford, M.W. Genome-wide differential DNA methylation in tropically adapted Creole cattle and their Iberian ancestors. Anim. Genet. 2019, 50, 15–26. [Google Scholar] [CrossRef]
- Suriname Dairy Production Project: Feasibility Study. Inter-American Institute for Cooperation on Agriculture. 1987. Available online: http://repositorio.iica.int/bitstream/handle/11324/6798/BVE18039987i.pdf (accessed on 29 November 2022).
- MacHugh, D.E.; Shriver, M.D.; Loftus, R.T.; Cunningham, P.; Bradley, D.G. Microsatellite DNA Variation and the Evolution, Domestication and Phylogeography of Taurine and Zebu Cattle (Bos taurus Bos indicus). Genetics 1997, 146, 1071–1086. [Google Scholar] [CrossRef]
- Ajmone-Marsan, P.; Garcia, J.F.; Lenstra, J.A. On the origin of cattle: How aurochs became cattle and colonized the world. Evol. Anthropol. Issues News Rev. 2010, 19, 148–157. [Google Scholar] [CrossRef]
- Egito, A.A.; Paiva, S.R.; Albuquerque, M.D.; Mariante, A.S.; Almeida, L.D.; Castro, S.R.; Grattapaglia, D. Microsatellite based genetic diversity and relationships among ten Creole and commercial cattle breeds raised in Brazil. BMC Genet. 2007, 8, 83. [Google Scholar] [CrossRef] [Green Version]
- Meirelles, F.V.; Rosa, A.J.M.; Lôbo, R.B.; Garcia, J.M.; Smith, L.C.; Duarte, F.A.M. Is the American Zebu really Bos indicus? Genet. Mol. Biol. 1999, 22, 543–546. [Google Scholar] [CrossRef] [Green Version]
- Paneto, J.C.C.; Ferraz, J.B.S.; Balieiro, J.C.C.; Bittar, J.F.F.; Ferreira, M.B.D.; Leite, M.B.; Merighe, G.K.F.; Meirelles, F.V. Bos indicus or Bos taurus mitochondrial DNA—Comparison of productive and reproductive breeding values in a Guzerat dairy herd. Genet. Mol. Res. 2008, 7, 592–602. [Google Scholar] [CrossRef]
- Mannen, H.; Kohno, M.; Nagata, Y.; Tsuji, S.; Bradley, D.G.; Yeo, J.S.; Nyamsamba, D.; Zagdsuren, Y.; Yokohama, M.; Nomura, K.; et al. Independent mitochondrial origin and historical genetic differentiation in North Eastern Asian cattle. Mol. Phylogenetics Evol. 2004, 32, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Yue, X.; Li, R.; Liu, L.; Zhang, Y.; Huang, J.; Chang, Z.; Dang, R.; Lan, X.; Chen, H.; Lei, C. When and how did Bos indicus introgress into Mongolian cattle? Gene 2014, 537, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.C.; Cao, H.H. Diversity of Chinese yellow cattle breeds and their conservation. Biodiv. Sci. 2001, 9, 275–283. [Google Scholar] [CrossRef]
- Upadhyay, M.R.; Chen, W.; Lenstra, J.A.; Goderie, C.R.; MacHugh, D.E.; Park, S.D.; Magee, D.A.; Matassino, D.; Ciani, F.; Megens, H.J.; et al. Genetic origin, admixture and population history of aurochs (Bos primigenius) and primitive European cattle. Heredity 2017, 118, 169–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbato, M.; Hailer, F.; Upadhyay, M.; Del Corvo, M.; Colli, L.; Negrini, R.; Kim, E.S.; Crooijmans, R.P.; Sonstegard, T.; Ajmone-Marsan, P. Adaptive introgression from indicine cattle into white cattle breeds from Central Italy. Sci. Rep. 2020, 10, 1279. [Google Scholar] [CrossRef] [Green Version]
- Epstein, H. Cattle. In Evolution of Domesticated Animals; Mason, I.L., Ed.; Longman Group: London, UK, 1984; 452p. [Google Scholar]
- Cortés, O.; Tupac-Yupanqui, I.; Dunner, S.; García-Atance, M.A.; García, D.; Fernández, J.; Cañón, J. Ancestral matrilineages and mitochondrial DNA diversity of the Lidia cattle breed. Anim. Genet. 2008, 39, 649–654. [Google Scholar] [CrossRef]
- Ward, J.A.; McHugo, G.P.; Dover, M.J.; Hall, T.J.; Ismael Ng’ang’a, S.; Sonstegard, T.S.; Bradley, D.G.; Frantz, L.A.; Salter-Townshend, M.; MacHugh, D.E. Genome-wide local ancestry and evidence for mitonuclear coadaptation in African hybrid cattle populations. iScience 2022, 25, 104672. [Google Scholar] [CrossRef]
- Kim, K.; Kwon, T.; Dessie, T.; Yoo, D.; Mwai, O.A.; Jang, J.; Sung, S.; Lee, S.; Salim, B.; Jung, J.; et al. The mosaic genome of indigenous African cattle as a unique genetic resource for African pastoralism. Nat. Genet. 2020, 52, 1099–1110. [Google Scholar] [CrossRef]
- Spinage, C.A. Cattle Plague: A History; Kluwer Academic/Plenum Publishers, Springer: New York, NY, USA, 2003. [Google Scholar] [CrossRef]
- Hanotte, O.; Tawah, C.L.; Bradley, D.G.; Okomo, M.; Verjee, Y.; Ochieng, J.; Rege, J.E.O. Geographic distribution and frequency of a taurine Bos taurus and an indicine Bos indicus Y specific allele amongst sub-Saharan African cattle breeds. Mol. Ecol. 2000, 9, 387–396. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Pardal, L.; Royo, L.J.; Beja-Pereira, A.; Curik, I.; Traoré, A.; Fernández, I.; Sölkner, J.; Alonso, J.; Álvarez, I.; Bozzi, R.; et al. Y-specific microsatellites reveal an African subfamily in taurine (Bos taurus) cattle. Anim. Genet. 2010, 41, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Makina, S.O.; Whitacre, L.K.; Decker, J.E.; Taylor, J.F.; MacNeil, M.D.; Scholtz, M.M.; van Marle-Köster, E.; Muchadeyi, F.C.; Makgahlela, M.L.; Maiwashe, A. Insight into the genetic composition of South African Sanga cattle using SNP data from cattle breeds worldwide. Genet. Sel. Evol. 2016, 48, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, S.J.M. Zooarchaeological evidence for Moslem and Christian improvements of sheep and cattle in Portugal. J. Archaeol. Sci. 2008, 35, 991–1010. [Google Scholar] [CrossRef]
- Anderung, C.; Bouwman, A.; Persson, P.; Carretero, J.M.; Ortega, A.I.; Elburg, R.; Smith, C.; Arsuaga, J.L.; Ellegren, H.; Götherström, A. Prehistoric contacts over the Straits of Gibraltar indicated by genetic analysis of Iberian Bronze Age cattle. Proc. Natl. Acad. Sci. USA 2005, 102, 8431–8435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez, A.M.; Gama, L.T.; Cañón, J.; Ginja, C.; Delgado, J.V.; Dunner, S.; Landi, V.; Martín-Burriel, I.; Penedo, M.C.; Rodellar, C.; et al. Genetic Footprints of Iberian Cattle in America 500 Years after the Arrival of Columbus. PLoS ONE 2012, 7, e49066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Felsenstein, J. Inferring Phylogenies, 2nd ed.; Sinauer Associates Inc.: Sunderland, MA, USA, 2004. [Google Scholar]
- Pariset, L.; Mariotti, M.; Nardone, A.; Soysal, M.I.; Ozkan, E.; Williams, J.L.; Dunner, S.; Leveziel, H.; Maróti-Agóts, A.; Bodò, I.; et al. Relationships between Podolic cattle breeds assessed by single nucleotide polymorphisms (SNPs) genotyping. J. Anim. Breed. Genet. 2010, 127, 481–488. [Google Scholar] [CrossRef]
- Abdelmanova, A.; Kharzinova, V.; Volkova, V.; Dotsev, A.; Sermyagin, A.; Boronetskaya, O.; Chinarov, R.; Lutshikhina, E.; Sölkner, J.; Brem, G.; et al. Comparative Study of the Genetic Diversity of Local Steppe Cattle Breeds from Russia, Kazakhstan and Kyrgyzstan by Microsatellite Analysis of Museum and Modern Samples. Diversity 2021, 13, 351. [Google Scholar] [CrossRef]
- Verdugo, M.P.; Mullin, V.E.; Scheu, A.; Mattiangeli, V.; Daly, K.G.; Delser, P.M.; Hare, A.J.; Burger, J.; Collins, M.J.; Kehati, R.; et al. Ancient cattle genomics, origins, and rapid turnover in the Fertile Crescent. Science 2019, 365, 173–176. [Google Scholar] [CrossRef]
- Van de Goor, L.H.P.; Koskinen, M.T.; van Haeringen, W.A. Population studies of 16 bovine STR loci for forensic purposes. Int. J. Leg. Med. 2011, 125, 111–119. [Google Scholar] [CrossRef]
- Gargani, M.; Pariset, L.; Lenstra, J.A.; De Minicis, E.; European Cattle Genetic Diversity Consortium; Valentini, A. Microsatellite genotyping of medieval cattle from central Italy suggests an old origin of Chianina and Romagnola cattle. Front. Genet. 2015, 6, 68. [Google Scholar] [CrossRef] [Green Version]
- Adamack, A.T.; Gruber, B. PopGenReport: Simplifying basic population genetic analyses in R. Methods Ecol. Evol. 2014, 5, 384–387. [Google Scholar] [CrossRef]
- Kamvar, Z.N.; Tabima, J.F.; Grünwald, N.J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2014, 2, e281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peakall, R.; Smouse, P.E. Genalex 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 2006, 6, 288–295. [Google Scholar] [CrossRef]
- Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 2008, 24, 1403–1405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keenan, K.; McGinnity, P.; Cross, T.F.; Crozier, W.W.; Prodöhl, P.A. diveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol. Evol. 2013, 4, 782–788. [Google Scholar] [CrossRef] [Green Version]
- Goudet, J. hierfstat, a package for r to compute and test hierarchical F-statistics. Mol. Ecol. Notes 2005, 5, 184–186. [Google Scholar] [CrossRef] [Green Version]
- Wei, T.; Simko, V. R Package ‘Corrplot’: Visualization of a Correlation Matrix, Version 0.92. 2021. Available online: https://github.com/taiyun/corrplot (accessed on 29 November 2022).
- Nei, M.; Tajima, F.; Tateno, Y. Accuracy of estimated phylogenetic trees from molecular data. J. Mol. Evol. 1983, 19, 153–170. [Google Scholar] [CrossRef]
- Boc, A.; Diallo, A.B.; Makarenkov, V. T-REX: A web server for inferring, validating and visualizing phylogenetic trees and networks. Nucleic Acids Res. 2012, 40, 573–579. [Google Scholar] [CrossRef] [Green Version]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Tange, O. GNU Parallel: The Command-Line Power Tool. USENIX Mag. 2011, 36, 42–47. [Google Scholar]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [Green Version]
- Earl, D.A.; vonHoldt, B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Jakobsson, M.; Rosenberg, N.A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 2007, 23, 1801–1806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barendse, W.; Armitage, S.M.; Kossarek, L.M.; Shalom, A.; Kirkpatrick, B.W.; Ryan, A.M.; Clayton, D.; Li, L.; Neibergs, H.L.; Zhang, N. A genetic linkage map of the bovine genome. Nat. Genet. 1994, 6, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Sunden, S.L.F.; Stone, R.T.; Bishop, M.D.; Kappes, S.M.; Keele, J.W.; Beattie, C.W. A highly polymorphic bovine microsatellite locus: BM2113. Anim. Genet. 1993, 24, 69. [Google Scholar] [CrossRef]
- Moore, S.S.; Byrne, K.; Berger, K.T.; Barendse, W.; McCarthy, F.; Womack, J.E.; Hetzel, D.J.S. Characterization of 65 bovine microsatellites. Mamm. Genome Off. J. Int. Mamm. Genome Soc. 1994, 5, 84–90. [Google Scholar] [CrossRef]
- Toldo, S.S.; Fries, R.; Steffen, P.; Neibergs, H.L.; Barendse, W.; Womack, J.E.; Hetzel, D.J.; Stranzinger, G. Physically mapped, cosmid-derived microsatellite markers as anchor loci on bovine chromosomes. Mamm. Genome Off. J. Int. Mamm. Genome Soc. 1993, 4, 720–727. [Google Scholar] [CrossRef]
- Steffen, P.; Eggen, A.; Stranzinger, G.; Fries, R.; Dietz, A.B.; Womack, J.E. Isolation and mapping of polymorphic microsatellites in cattle. Anim. Genet. 1993, 24, 121–124. [Google Scholar] [CrossRef]
- Brezinsky, L.; Kemp, S.J.; Teale, A.J. ILSTS006: A polymorphic bovine microsatellite. Anim. Genet. 1993, 24, 73. [Google Scholar] [CrossRef]
- Moore, S.S.; Byrne, K. Dinucleotide polymorphism at the bovine calmodulin independent adenylcyclase locus. Anim. Genet. 1993, 24, 150. [Google Scholar] [CrossRef] [PubMed]
- Georges, M.; Massey, J.M. Polymorphic DNA Markers in Bovidae. Patent WO1992013102A1, 6 August 1992. [Google Scholar]
- Vargas, J.; Landi, V.; Martínez, A.; Gómez, M.; Camacho, M.E.; Álvarez, L.Á.; Aguirre, L.; Delgado, J.V. Molecular Study of the Amazonian Macabea Cattle History. PLoS ONE 2016, 11, e0165398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Locus | Population | Allele | AF |
---|---|---|---|
Eth3 | Siboney | 101 | 0.040 |
Cssm66 | Kyrgyz native | 207 | 0.010 |
Cssm66 | Curraleiro | 209 | 0.031 |
ilsts006 | Yak-Rus | 293 | 0.003 |
ilsts006 | Angola | 301 | 0.069 |
ilsts006 | Podolica | 308 | 0.010 |
Tgla227 | Yak-Rus | 67 | 0.003 |
Tgla227 | Gyr | 121 | 0.017 |
Tgla227 | Gyr | 123 | 0.172 |
Tgla227 | Gyr | 125 | 0.034 |
Tgla122 | Tagil | 185 | 0.041 |
Sps115 | Menoufis | 232 | 0.023 |
Sps115 | Khovd-Mongol | 236 | 0.031 |
Eth225 | Alistana | 132 | 0.010 |
Tgla53 | Siboney | 194 | 0.020 |
Tgla53 | Siboney | 200 | 0.020 |
Csrm60 | Kalmyk | 86 | 0.010 |
Bm2113 | Red Bororo | 119 | 0.036 |
Bm2113 | Yak-Rus | 146 | 0.005 |
Bm1824 | Sanga Tonga | 172 | 0.060 |
Bm1824 | Pantaneiro | 196 | 0.042 |
Eth10 | Aikol-Kyrgyz | 203 | 0.010 |
Eth10 | Sanmartinero | 205 | 0.025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solodneva, E.; Svishcheva, G.; Smolnikov, R.; Bazhenov, S.; Konorov, E.; Mukhina, V.; Stolpovsky, Y. Genetic Structure Analysis of 155 Transboundary and Local Populations of Cattle (Bos taurus, Bos indicus and Bos grunniens) Based on STR Markers. Int. J. Mol. Sci. 2023, 24, 5061. https://doi.org/10.3390/ijms24055061
Solodneva E, Svishcheva G, Smolnikov R, Bazhenov S, Konorov E, Mukhina V, Stolpovsky Y. Genetic Structure Analysis of 155 Transboundary and Local Populations of Cattle (Bos taurus, Bos indicus and Bos grunniens) Based on STR Markers. International Journal of Molecular Sciences. 2023; 24(5):5061. https://doi.org/10.3390/ijms24055061
Chicago/Turabian StyleSolodneva, Evgenia, Gulnara Svishcheva, Rodion Smolnikov, Sergey Bazhenov, Evgenii Konorov, Vera Mukhina, and Yurii Stolpovsky. 2023. "Genetic Structure Analysis of 155 Transboundary and Local Populations of Cattle (Bos taurus, Bos indicus and Bos grunniens) Based on STR Markers" International Journal of Molecular Sciences 24, no. 5: 5061. https://doi.org/10.3390/ijms24055061
APA StyleSolodneva, E., Svishcheva, G., Smolnikov, R., Bazhenov, S., Konorov, E., Mukhina, V., & Stolpovsky, Y. (2023). Genetic Structure Analysis of 155 Transboundary and Local Populations of Cattle (Bos taurus, Bos indicus and Bos grunniens) Based on STR Markers. International Journal of Molecular Sciences, 24(5), 5061. https://doi.org/10.3390/ijms24055061