Inherited Thrombocytopenia Caused by Variants in Crucial Genes for Glycosylation
Abstract
:1. Introduction
2. Role of Glycosylation in Thrombopoiesis and Platelet Clearance
3. Disorders of Glycosylation Associate with Syndromic Thrombocytopenia
3.1. Disorders of Glycosylation Described in Patients with Thrombocytopenia
3.1.1. GNE-Related Disorder
3.1.2. SLC35A1-Related Disorder
3.1.3. GALE-Related Disorder
3.1.4. β4GALT1-Related Disorder
3.1.5. Other CDGs with Potential Relation to Inherited Thrombocytopenia in Patients
3.2. Disorders of Glycosylation Associated to Syndromic Thrombocytopenia Reported Only in Mice Models
3.2.1. ST3GAL4-Related Disorder
3.2.2. ST3GAL1-Related Disorder
3.2.3. C1GALT1-Related Disorder
3.2.4. COSMC-Related Disorder
4. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Munkley, J.; Elliott, D.J. Hallmarks of glycosylation in cancer. Oncotarget 2016, 7, 35478–35489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, Y.; Wang, Z.V.; Tao, C.; Gao, N.; Holland, W.L.; Ferdous, A.; Repa, J.J.; Liang, G.; Ye, J.; Lehrman, M.A.; et al. The Xbp1s/GalE axis links ER stress to postprandial hepatic metabolism. J. Clin. Investig. 2013, 123, 455–468. [Google Scholar] [CrossRef] [PubMed]
- Janik, M.E.; Lityńska, A.; Vereecken, P. Cell migration-The role of integrin glycosylation. Biochim. Biophys. Acta Gen. Subj. 2010, 1800, 545–555. [Google Scholar] [CrossRef] [PubMed]
- Moran, A.P.; Gupta, A.; Joshi, L. Sweet-talk: Role of host glycosylation in bacterial pathogenesis of the gastrointestinal tract. Gut 2011, 60, 1412–1425. [Google Scholar] [CrossRef] [Green Version]
- Rudd, P.M.; Elliott, T.; Cresswell, P.; Wilson, I.A.; Dwek, R.A. Glycosylation and the immune system. Science 2001, 291, 2370–2376. [Google Scholar] [CrossRef]
- Kanie, Y.; Kanie, O. Addressing the glycan complexity by using mass spectrometry: In the pursuit of decoding glycologic. Biochem. Compd. 2017, 5, 3. [Google Scholar] [CrossRef] [Green Version]
- Jayaprakash, N.G.; Surolia, A. Role of glycosylation in nucleating protein folding and stability. Biochem. J. 2017, 474, 2333–2347. [Google Scholar] [CrossRef]
- Gupta, R.; Leon, F.; Thompson, C.M.; Nimmakayala, R.; Karmakar, S.; Nallasamy, P.; Chugh, S.; Prajapati, D.R.; Rachagani, S.; Kumar, S.; et al. Global analysis of human glycosyltransferases reveals novel targets for pancreatic cancer pathogenesis. Br. J. Cancer 2020, 122, 1661–1672. [Google Scholar] [CrossRef]
- Handford, M.; Rodriguez-Furlán, C.; Orellana, A. Nucleotide-sugar transporters: Structure, function and roles in vivo. Braz. J. Med. Biol. Res. 2006, 39, 1149–1158. [Google Scholar] [CrossRef]
- Lee-Sundlov, M.M.; Stowell, S.R.; Hoffmeister, K.M. Multifaceted role of glycosylation in transfusion medicine, platelets, and red blood cells. J. Thromb. Haemost. 2020, 18, 1535–1547. [Google Scholar] [CrossRef]
- Aebi, M. N-linked protein glycosylation in the ER. Biochim. Biophys. Acta—Mol. Cell Res. 2013, 1833, 2430–2437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apweiler, R.; Hermjakob, H.; Sharon, N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim. Biophys. Acta—Gen. Subj. 1999, 1473, 4–8. [Google Scholar] [CrossRef] [PubMed]
- Wandall, H.H.; Rumjantseva, V.; Sørensen, A.L.T.; Patel-Hett, S.; Josefsson, E.C.; Bennett, E.P.; Italiano, J.E.; Clausen, H.; Hartwig, J.H.; Hoffmeister, K.M. The origin and function of platelet glycosyltransferases. Blood 2012, 120, 626–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramírez-López, A.; Román, M.T.Á.; Manzano, E.M.; Acuña, P.; Arias-Salgado, E.G.; Salces, M.M.; Pollmar, M.I.R.; Yuste, V.J.; Sanz, R.J.; Barcenilla, S.G.; et al. The importance of platelet glycoside residues in the haemostasis of patients with immune thrombocytopaenia. J. Clin. Med. 2021, 10, 1661. [Google Scholar] [CrossRef] [PubMed]
- Hitchcock, I.S.; Kaushansky, K. Thrombopoietin from beginning to end. Br. J. Haematol. 2014, 165, 259–268. [Google Scholar] [CrossRef]
- Deutsch, V.R.; Tomer, A. Megakaryocyte development and platelet production. Br. J. Haematol. 2006, 134, 453–466. [Google Scholar] [CrossRef]
- Hitchcock, I.S.; Chen, M.M.; King, J.R.; Kaushansky, K. YRRL motifs in the cytoplasmic domain of the thrombopoietin receptor regulate receptor internalization and degradation. Blood 2008, 112, 2222–2231. [Google Scholar] [CrossRef] [Green Version]
- Deutsch, V.R.; Tomer, A. Advances in megakaryocytopoiesis and thrombopoiesis: From bench to bedside. Br. J. Haematol. 2013, 161, 778–793. [Google Scholar] [CrossRef]
- Wang, Y.; Jobe, S.M.; Ding, X.; Choo, H.; Archer, D.R.; Mi, R.; Ju, T.; Cummings, R.D. Platelet biogenesis and functions require correct protein O-glycosylation. Proc. Natl. Acad. Sci. USA 2012, 109, 16143–16148. [Google Scholar] [CrossRef] [Green Version]
- Karakas, D.; Xu, M.; Ni, H. GPIbα is the driving force of hepatic thrombopoietin generation. Res. Pract. Thromb. Haemost. 2021, 5, e12506. [Google Scholar] [CrossRef]
- Poujol, C.; Ware, J.; Nieswandt, B.; Nurden, A.T.; Nurden, P. Absence of GPIbα is responsible for aberrant membrane development during megakaryocyte maturation: Ultrastructural study using a transgenic model. Exp. Hematol. 2002, 30, 352–360. [Google Scholar] [CrossRef]
- Marín-Quílez, A.; Di Buduo, C.A.; Díaz-Ajenjo, L.; Abbonante, V.; Vuelta, E.; Soprano, P.M.; Miguel-García, C.; Santos-Mínguez, S.; Serramito-Gómez, I.; Ruiz-Sala, P.; et al. Novel variants in GALE cause syndromic macrothrombocytopenia by disrupting glycosylation and thrombopoiesis. Blood 2023, 141, 406–421. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, A.L.; Rumjantseva, V.; Nayeb-Hashemi, S.; Clausen, H.; Hartwig, J.H.; Wandall, H.H.; Hoffmeister, K.M. Role of sialic acid for platelet life span: Exposure of β-galactose results in the rapid clearance of platelets from the circulation by asialoglycoprotein receptor-expressing liver macrophages and hepatocytes. Blood 2009, 114, 1645–1654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmeister, K.M.; Falet, H. Platelet clearance by the hepatic Ashwell-Morrell receptor: Mechanisms and biological significance. Thromb. Res. 2016, 141, S68–S72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coombs, P.J.; Taylor, M.E.; Drickamer, K. Two categories of mammalian galactose-binding receptors distinguished by glycan array profiling. Glycobiology 2006, 16, 1C–7C. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Chen, W.; Zhang, W.; Lee-sundlov, M.M.; Casari, C.; Berndt, M.C.; Lanza, F.; Bergmeier, W.; Hoffmeister, K.M.; Zhang, X.F.; et al. Desialylation of O-glycans on glycoprotein Ibα drives receptor signaling and platelet clearance. Haematologica 2021, 106, 220–229. [Google Scholar] [CrossRef] [Green Version]
- Jansen, A.J.G.; Josefsson, E.C.; Rumjantseva, V.; Liu, Q.P.; Falet, H.; Bergmeier, W.; Cifuni, S.M.; Sackstein, R.; Von Andrian, U.H.; Wagner, D.D.; et al. Desialylation accelerates platelet clearance after refrigeration and initiates GPIbα metalloproteinase-mediated cleavage in mice. Blood 2012, 119, 1263–1273. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Uzun, G.; Bakchoul, T. Primary immune thrombocytopenia: Novel insights into pathophysiology and disease management. J. Clin. Med. 2021, 10, 789. [Google Scholar] [CrossRef]
- Zheng, S.S.; Ahmadi, Z.; Leung, H.H.L.; Wong, R.; Yan, F.; Perdomo, J.S.; Chong, B.H. Antiplatelet antibody predicts platelet desialylation and apoptosis in immune thrombocytopenia. Haematologica 2022, 107, 2195–2205. [Google Scholar] [CrossRef]
- Quach, M.E. GPIb-IX-V and platelet clearance. Platelets 2022, 33, 817–822. [Google Scholar] [CrossRef]
- McArthur, K.; Chappaz, S.; Kile, B.T. Apoptosis in megakaryocytes and platelets: The life and death of a lineage. Blood 2018, 131, 605–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Nimmer, P.M.; Tahir, S.K.; Chen, J.; Fryer, R.M.; Hahn, K.R.; Iciek, L.A.; Morgan, S.J.; Nasarre, M.C.; Nelson, R.; et al. Bcl-2 family proteins are essential for platelet survival. Cell Death Differ. 2007, 14, 943–951. [Google Scholar] [CrossRef] [PubMed]
- Josefsson, E.C.; Burnett, D.L.; Lebois, M.; Debrincat, M.A.; White, M.J.; Henley, K.J.; Lane, R.M.; Moujalled, D.; Preston, S.P.; O’Reilly, L.A.; et al. Platelet production proceeds independently of the intrinsic and extrinsic apoptosis pathways. Nat. Commun. 2014, 5, 3455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartley, P.S. Platelet senescence and death. Clin. Lab. 2007, 53, 157–166. [Google Scholar]
- Edward Quach, M.; Chen, W.; Li, R. Mechanisms of platelet clearance and translation to improve platelet storage. Blood 2018, 131, 1512–1521. [Google Scholar] [CrossRef] [Green Version]
- Palma-Barqueros, V.; Revilla, N.; Sánchez, A.; Cánovas, A.Z.; Rodriguez-alén, A.; Marín-quílez, A.; González-porras, J.R.; Vicente, V.; Lozano, M.L.; Bastida, J.M.; et al. Inherited platelet disorders: An updated overview. Int. J. Mol. Sci. 2021, 22, 4521. [Google Scholar] [CrossRef]
- Hennet, T.; Cabalzar, J. Congenital disorders of glycosylation: A concise chart of glycocalyx dysfunction. Trends Biochem. Sci. 2015, 40, 377–384. [Google Scholar] [CrossRef] [Green Version]
- Paprocka, J.; Jezela-Stanek, A.; Tylki-Szymańska, A.; Grunewald, S. Congenital disorders of glycosylation from a neurological perspective. Brain Sci. 2021, 11, 190–198. [Google Scholar] [CrossRef]
- Izumi, R.; Niihori, T.; Suzuki, N.; Sasahara, Y.; Rikiishi, T.; Nishiyama, A.; Nishiyama, S.; Endo, K.; Kato, M.; Warita, H.; et al. GNE myopathy associated with congenital thrombocytopenia: A report of two siblings. Neuromuscul. Disord. 2014, 24, 1068–1072. [Google Scholar] [CrossRef]
- Beecher, G.; Fleming, M.D.; Liewluck, T. Hereditary myopathies associated with hematological abnormalities. Muscle Nerve 2022, 65, 374–390. [Google Scholar] [CrossRef]
- Zhen, C.; Guo, F.; Fang, X.; Liu, Y.; Wang, X. A family with distal myopathy with rimmed vacuoles associated with thrombocytopenia. Neurol. Sci. 2014, 35, 1479–1481. [Google Scholar] [CrossRef] [PubMed]
- Futterer, J.; Dalby, A.; Lowe, G.C.; Johnson, B.; Simpson, M.A.; Motwani, J.; Williams, M.; Watson, S.P.; Morgan, N.V. Mutation in GNE is associated with severe congenital thrombocytopenia. Blood 2018, 132, 1855–1858. [Google Scholar] [CrossRef] [PubMed]
- Revel-Vilk, S.; Shai, E.; Turro, E.; Jahshan, N.; Hi-Am, E.; Spectre, G.; Daum, H.; Kalish, Y.; Althaus, K.; Greinacher, A.; et al. GNE variants causing autosomal recessive macrothrombocytopenia without associated muscle wasting. Blood 2018, 132, 1851–1854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bottega, R.; Marzollo, A.; Marinoni, M.; Athanasakis, E.; Persico, I.; Bianco, A.M.; Faleschini, M.; Valencic, E.; Simoncini, D.; Rossini, L.; et al. GNE-related thrombocytopenia: Evidence for a mutational hotspot in the ADP/substrate domain of the GNE bifunctional enzyme. Haematologica 2021, 107, 750. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, Y.; Lei, M.; Tian, J.; Yang, Z.; Kuang, S.; Tan, Y.; Bo, T. Congenital thrombocytopenia associated with GNE mutations in twin sisters: A case report and literature review. BMC Med. Genet. 2020, 21, 224. [Google Scholar] [CrossRef]
- Smolag, K.I.; Fager Ferrari, M.; Zetterberg, E.; Leinoe, E.; Ek, T.; Blom, A.M.; Rossing, M.; Martin, M. Severe Congenital Thrombocytopenia Characterized by Decreased Platelet Sialylation and Moderate Complement Activation Caused by Novel Compound Heterozygous Variants in GNE. Front. Immunol. 2021, 12, 777402. [Google Scholar] [CrossRef]
- Jones, C.; Denecke, J.; Strter, R.; Stölting, T.; Schunicht, Y.; Zeuschner, D.; Klumperman, J.; Lefeber, D.J.; Spelten, O.; Zarbock, A.; et al. A novel type of macrothrombocytopenia associated with a defect in α2,3-sialylation. Am. J. Pathol. 2011, 179, 1969–1977. [Google Scholar] [CrossRef]
- Kauskot, A.; Pascreau, T.; Adam, F.; Bruneel, A.; Reperant, C.; Lourenco-Rodrigues, M.D.; Rosa, J.P.; Petermann, R.; Maurey, H.; Auditeau, C.; et al. A mutation in the gene coding for the sialic acid transporter SLC35A1 is required for platelet life span but not proplatelet formation. Haematologica 2018, 103, e613–e617. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Li, Y.; Kondo, Y.; Shi, H.; Han, J.; Jiang, Y.; Bai, X.; Archer-Hartmann, S.A.; Azadi, P.; Ruan, C.; et al. Slc35a1 deficiency causes thrombocytopenia due to impaired megakaryocytopoiesis and excessive platelet clearance in the liver. Haematologica 2021, 106, 759–769. [Google Scholar]
- Broussard, A.; Florwick, A.; Desbiens, C.; Nischan, N.; Robertson, C.; Guan, Z.; Kohler, X.J.J.; Wells, L.; Boyce, M. Human UDP-galactose 4′-epimerase (GALE) is required for cell-surface glycome structure and function. J. Biol. Chem. 2020, 295, 1225–1239. [Google Scholar] [CrossRef]
- Openo, K.K.; Schulz, J.M.; Vargas, C.A.; Orton, C.S.; Epstein, M.P.; Schnur, R.E.; Scaglia, F.; Berry, G.T.; Gottesman, G.S.; Ficicioglu, C.; et al. Epimerase-deficiency galactosemia is not a binary condition. Am. J. Hum. Genet. 2006, 78, 89–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosoff, P.M. Myelodysplasia and deficiency of uridine diphosphate-galactose 4-epimerase. J. Pediatr. 1995, 127, 605–608. [Google Scholar] [CrossRef] [PubMed]
- Seo, A.; Gulsuner, S.; Pierce, S.; Ben-Harosh, M.; Shalev, H.; Walsh, T.; Krasnov, T.; Dgany, O.; Doulatov, S.; Tamary, H.; et al. Inherited thrombocytopenia associated with mutation of UDP-galactose-4-epimerase (GALE). Hum. Mol. Genet. 2019, 28, 133–142. [Google Scholar] [CrossRef]
- Febres-Aldana, C.A.; Pelaez, L.; Wright, M.S.; Maher, O.M.; Febres-Aldana, A.J.; Sasaki, J.; Jayakar, P.; Jayakar, A.; Diaz-Barbosa, M.; Janvier, M.; et al. A Case of udp-galactose 4′-epimerase deficiency associated with dyshematopoiesis and atrioventricular valve malformations: An exceptional clinical phenotype explained by altered n-glycosylation with relative preservation of the leloir pathway. Mol. Syndromol. 2020, 11, 320–330. [Google Scholar] [CrossRef]
- Markovitz, R.; Owen, N.; Satter, L.F.; Kirk, S.; Mahoney, D.H.; Bertuch, A.A.; Scaglia, F. Expansion of the clinical phenotype of GALE deficiency. Am. J. Med. Genet. Part A 2021, 185, 3118–3121. [Google Scholar] [CrossRef] [PubMed]
- Marín-Quílez, A.; Di Buduo, C.A.; Benito, R.; Balduini, A.; Rivera, J.; Bastida, J.M. GALE variants associated with syndromic manifestations, macrothrombocytopenia, bleeding, and platelet dysfunction. Platelets 2023, 2176699. [Google Scholar] [CrossRef] [PubMed]
- Hanßke, B.; Thiel, C.; Lübke, T.; Hasilik, M.; Höning, S.; Peters, V.; Heidemann, P.H.; Hoffmann, G.F.; Berger, E.G.; von Figura, K.; et al. Deficiency of UDP-galactose:N-acetylglucosamine β-1,4-galactosyltransferase I causes the congenital disorder of glycosylation type IId. J. Clin. Investig. 2002, 109, 725–733. [Google Scholar] [CrossRef]
- Guillard, M.; Morava, E.; De Ruijter, J.; Roscioli, T.; Penzien, J.; Van Den Heuvel, L.; Willemsen, M.A.; De Brouwer, A.; Bodamer, O.A.; Wevers, R.A.; et al. B4GALT1-congenital disorders of glycosylation presents as a non-neurologic glycosylation disorder with hepatointestinal involvement. J. Pediatr. 2011, 159, 1041–1043. [Google Scholar] [CrossRef] [Green Version]
- Medrano, C.; Vega, A.; Navarrete, R.; Ecay, M.J.; Calvo, R.; Pascual, S.I.; Ruiz-Pons, M.; Toledo, L.; García-Jiménez, I.; Arroyo, I.; et al. Clinical and molecular diagnosis of non-phosphomannomutase 2 N-linked congenital disorders of glycosylation in Spain. Clin. Genet. 2019, 95, 615–626. [Google Scholar] [CrossRef]
- Staretz-Chacham, O.; Noyman, I.; Wormser, O.; Abu Quider, A.; Hazan, G.; Morag, I.; Hadar, N.; Raymond, K.; Birk, O.S.; Ferreira, C.R.; et al. B4GALT1-congenital disorders of glycosylation: Expansion of the phenotypic and molecular spectrum and review of the literature. Clin. Genet. 2020, 97, 920–926. [Google Scholar] [CrossRef]
- Giannini, S.; Lee-Sundlov, M.M.; Rivadeneyra, L.; Di Buduo, C.A.; Burns, R.; Lau, J.T.; Falet, H.; Balduini, A.; Hoffmeister, K.M. β4GALT1 controls β1 integrin function to govern thrombopoiesis and hematopoietic stem cell homeostasis. Nat. Commun. 2020, 11, 356–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Buduo, C.A.; Giannini, S.; Abbonante, V.; Rosti, V.; Hoffmeister, K.M.; Balduini, A. Increased B4GALT1 expression is associated with platelet surface galactosylation and thrombopoietin plasma levels in MPNs. Blood 2021, 137, 2085–2089. [Google Scholar] [CrossRef]
- Ng, B.G.; Shiryaev, S.A.; Rymen, D.; Eklund, E.A.; Raymond, K.; Kircher, M.; Abdenur, J.E.; Alehan, F.; Midro, A.T.; Bamshad, M.J.; et al. ALG1-CDG: Clinical and Molecular Characterization of 39 Unreported Patients. Hum. Mutat. 2016, 37, 653–660. [Google Scholar] [CrossRef] [Green Version]
- Höck, M.; Wegleiter, K.; Ralser, E.; Kiechl-Kohlendorfer, U.; Scholl-Bürgi, S.; Fauth, C.; Steichen, E.; Pichler, K.; Lefeber, D.J.; Matthjis, G.; et al. ALG8-CDG: Novel patients and review of the literature. Orphanet J. Rare Dis. 2015, 10, 73. [Google Scholar] [CrossRef] [Green Version]
- Jaeken, J.; Lefeber, D.; Matthijs, G. Clinical utility gene card for: Phosphomannose isomerase deficiency. Eur. J. Hum. Genet. 2014, 22, 1153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liem, Y.S.; Bode, L.; Freeze, H.H.; Leebeek, F.W.G.; Zandbergen, A.A.M.; Paul Wilson, J.H. Using heparin therapy to reverse protein-losing enteropathy in a patient with CDG-Ib. Nat. Clin. Pract. Gastroenterol. Hepatol. 2008, 5, 220–224. [Google Scholar] [CrossRef]
- Lam, C.; Krasnewich, D.M. PMM2-CDG. In GeneReviews; Adam, M.P., Everman, D.B., Mirzaa, G.M., Pagon, R.B., Wallace, S.E., Bean, L.J., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 2005. [Google Scholar]
- Noelle, V.; Knuepfer, M.; Pulzer, F.; Schuster, V.; Siekmeyer, W.; Matthijs, G.; Vogtmann, C. Unusual presentation of congenital disorder of glycosylation type 1a: Congenital persistent thrombocytopenia, hypertrophic cardiomyopathy and hydrops-like aspect due to marked peripheral oedema. Eur. J. Pediatr. 2005, 164, 223–226. [Google Scholar] [CrossRef] [PubMed]
- Makhamreh, M.M.; Cottingham, N.; Ferreira, C.R.; Berger, S.; Al-Kouatly, H.B. Nonimmune hydrops fetalis and congenital disorders of glycosylation: A systematic literature review. J. Inherit. Metab. Dis. 2020, 43, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Mammadova-Bach, E.; Jaeken, J.; Gudermann, T.; Braun, A. Platelets and defective n-glycosylation. Int. J. Mol. Sci. 2020, 21, 5630. [Google Scholar] [CrossRef]
- Ravell, J.C.; Matsuda-Lennikov, M.; Chauvin, S.D.; Zou, J.; Biancalana, M.; Deeb, S.J.; Price, S.; Su, H.C.; Notarangelo, G.; Jiang, P.; et al. Defective glycosylation and multisystem abnormalities characterize the primary immunodeficiency XMEN disease. J. Clin. Investig. 2020, 130, 507–522. [Google Scholar] [CrossRef] [Green Version]
- Stritt, S.; Nurden, P.; Favier, R.; Favier, M.; Ferioli, S.; Gotru, S.K.; Van Eeuwijk, J.M.M.; Schulze, H.; Nurden, A.T.; Lambert, M.P.; et al. Defects in TRPM7 channel function deregulate thrombopoiesis through altered cellular Mg 2+ homeostasis and cytoskeletal architecture. Nat. Commun. 2016, 7, 11097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiertelak, W.; Olczak, M.; Maszczak-Seneczko, D. An interaction between SLC35A1 and ST3Gal4 is differentially affected by CDG-causing mutations in the SLC35A1 gene. Biochem. Biophys. Res. Commun. 2022, 635, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Qi, F.; Isaji, T.; Duan, C.; Yang, J.; Wang, Y.; Fukuda, T.; Gu, J. ST3GAL3, ST3GAL4, and ST3GAL6 differ in their regulation of biological functions via the specificities for the α2,3-sialylation of target proteins. FASEB J. 2020, 34, 881–897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee-Sundlov, M.M.; Burns, R.T.; Kim, T.O.; Grozovsky, R.; Giannini, S.; Rivadeneyra, L.; Zheng, Y.; Glabere, S.H.; Kahr, W.H.A.; Abdi, R.; et al. Immune cells surveil aberrantly sialylated O-glycans on megakaryocytes to regulate platelet count. Blood 2021, 138, 2408–2424. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Lin, S.; Cui, W.; Newman, P.J. Overlapping and unique substrate specificities of ST3GAL1 and 2 during hematopoietic and megakaryocytic differentiation. Blood Adv. 2022, 6, 3945–3955. [Google Scholar] [CrossRef]
- Berger, E.G. Tn-syndrome. Biochim. Biophys. Acta Mol. Basis Dis. 1999, 1455, 255–268. [Google Scholar] [CrossRef] [Green Version]
- Julian, B.A.; Novak, J. IgA nephropathy: An update. Curr. Opin. Nephrol. Hypertens. 2004, 13, 171–917. [Google Scholar] [CrossRef]
- Alexander, W.S.; Viney, E.M.; Zhang, J.G.; Metcalf, D.; Kauppi, M.; Hyland, C.D.; Carpinelli, M.R.; Stevenson, W.; Croker, B.A.; Hilton, A.A.; et al. Thrombocytopenia and kidney disease in mice with a mutation in the C1galt1 gene. Proc. Natl. Acad. Sci. USA 2006, 103, 16442–16447. [Google Scholar] [CrossRef] [Green Version]
- Kudo, T.; Sato, T.; Hagiwara, K.; Kozuma, Y.; Yamaguchi, T.; Ikehara, Y.; Hamada, M.; Matsumoto, K.; Ema, M.; Murata, S.; et al. C1galt1-deficient mice exhibit thrombocytopenia due to abnormal terminal differentiation of megakaryocytes. Blood 2013, 122, 1649–1657. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Fu, J.; Ling, Y.; Yago, T.; McDaniel, J.M.; Song, J.; Bai, X.; Kondo, Y.; Qin, Y.; Hoover, C.; et al. Sialylation on O-glycans protects platelets from clearance by liver Kupffer cells. Proc. Natl. Acad. Sci. USA 2017, 114, 8360–8365. [Google Scholar] [CrossRef] [Green Version]
- Xiang, T.; Qiao, M.; Xie, J.; Li, Z.; Xie, H. Emerging Roles of the Unique Molecular Chaperone Cosmc in the Regulation of Health and Disease. Biomolecules 2022, 12, 1732. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, R.; Nakamura, Y.; Koiwai, R.; Fuseya, S.; Murakami, Y.; Hagiwara, K.; Sato, T.; Takahashi, S.; Kudo, T. Global Loss of Core 1-Derived O-Glycans in Mice Leads to High Mortality Due to Acute Kidney Failure and Gastric Ulcers. Int. J. Mol. Sci. 2022, 23, 1273. [Google Scholar] [CrossRef] [PubMed]
- Varki, A. Biological roles of glycans. Glycobiology 2017, 27, 3–49. [Google Scholar] [CrossRef] [Green Version]
- Pang, X.; Li, H.; Guan, F.; Li, X. Multiple roles of glycans in hematological malignancies. Front. Oncol. 2018, 8, 364. [Google Scholar] [CrossRef]
- Bastida, J.M.; Gonzalez-Porras, J.R.; Rivera, J.; Lozano, M.L. Role of thrombopoietin receptor agonists in inherited thrombocytopenia. Int. J. Mol. Sci. 2021, 22, 4330. [Google Scholar] [CrossRef] [PubMed]
- Zieger, B.; Boeckelmann, D.; Anani, W.; Falet, H.; Zhu, J.; Glonnegger, H.; Full, H.; Andresen, F.; Erlacher, M.; Lausch, E.; et al. Novel GNE Gene Variants Associated with Severe Congenital Thrombocytopenia and Platelet Sialylation Defect. Thromb. Haemost. 2022, 122, 1139–1146. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marín-Quílez, A.; Díaz-Ajenjo, L.; Di Buduo, C.A.; Zamora-Cánovas, A.; Lozano, M.L.; Benito, R.; González-Porras, J.R.; Balduini, A.; Rivera, J.; Bastida, J.M. Inherited Thrombocytopenia Caused by Variants in Crucial Genes for Glycosylation. Int. J. Mol. Sci. 2023, 24, 5109. https://doi.org/10.3390/ijms24065109
Marín-Quílez A, Díaz-Ajenjo L, Di Buduo CA, Zamora-Cánovas A, Lozano ML, Benito R, González-Porras JR, Balduini A, Rivera J, Bastida JM. Inherited Thrombocytopenia Caused by Variants in Crucial Genes for Glycosylation. International Journal of Molecular Sciences. 2023; 24(6):5109. https://doi.org/10.3390/ijms24065109
Chicago/Turabian StyleMarín-Quílez, Ana, Lorena Díaz-Ajenjo, Christian A. Di Buduo, Ana Zamora-Cánovas, María Luisa Lozano, Rocío Benito, José Ramón González-Porras, Alessandra Balduini, José Rivera, and José María Bastida. 2023. "Inherited Thrombocytopenia Caused by Variants in Crucial Genes for Glycosylation" International Journal of Molecular Sciences 24, no. 6: 5109. https://doi.org/10.3390/ijms24065109
APA StyleMarín-Quílez, A., Díaz-Ajenjo, L., Di Buduo, C. A., Zamora-Cánovas, A., Lozano, M. L., Benito, R., González-Porras, J. R., Balduini, A., Rivera, J., & Bastida, J. M. (2023). Inherited Thrombocytopenia Caused by Variants in Crucial Genes for Glycosylation. International Journal of Molecular Sciences, 24(6), 5109. https://doi.org/10.3390/ijms24065109