Cytogenetic Damage Induced by Radioiodine Therapy: A Follow-Up Case Study
Abstract
:1. Introduction
2. Results
3. Discussion
4. Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yeong, C.H.; Cheng, M.; Ng, K.H. Therapeutic radionuclides in nuclear medicine: Current and future prospects. Review. J. Zhejiang Univ.-Sci. B (Biomed. Biotechnol.) 2014, 15, 845–863. [Google Scholar] [CrossRef] [Green Version]
- Sawka, A.M.; Thabane, L.; Parlea, L.; Ibrahim-Zada, I.; Tsang, R.W.; Brierley, J.D.; Straus, S.; Ezzat, S.; Goldstein, D.P. Second primary malignancy risk after radioactive iodine treatment for thyroid cancer: A systematic review and meta-analysis. Thyroid 2009, 19, 451–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Nostrand, D. The benefits and risks of I-131 therapy in patients with well-differentiated thyroid cancer. Thyroid 2009, 19, 1381–1391. [Google Scholar] [CrossRef] [PubMed]
- Benua, R.S.; Leeper, R.D. A Method and Rationale for Treating Thyroid Carcinoma with the Largest Safe Dose of I-131. In Frontiers of Thyroidology, Vol. II; Medeiros-Neto, G.A., Gaitan, E., Eds.; Plenum: New York, NY, USA, 1986; pp. 1317–1321. [Google Scholar]
- Haenscheid, H.; Lassmann, M.; Luster, M.; Thomas, S.R.; Pacini, F.; Ceccarelli, C.; Ladenson, P.W.; Wahl, R.L.; Schlumberger, M.; Ricard, M.; et al. Iodine biokinetics and dosimetry in radioiodine therapy of thyroid cancer: Procedures and results of a prospective international controlled study of ablation after rhTSH or hormone withdrawal. J. Nucl. Med. 2006, 47, 648–654. [Google Scholar]
- Buckley, S.E.; Chittenden, S.J.; Saran, F.H.; Meller, S.T.; Flux, G.F. Whole-body dosimetry for individualized treatment planning of 131-I-MIBG radionuclide therapy for neuroblastoma. J. Nucl. Med. 2009, 50, 1518–1524. [Google Scholar] [CrossRef] [Green Version]
- Stabin, M.G.; Brill, A.B. State of the art in nuclear medicine dose assessment. Semin. Nucl. Med. 2008, 38, 308–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- M’Kacher, R.; Schlumberger, M.; Legal, J.-D.; Violot, D.; Béron-Gaillard, N.; Gaussen, A.; Parmentier, P. Biologic dosimetry in thyroid cancer patients after repeated treatments with iodine-131. J. Nucl. Med. 1998, 39, 825–829. [Google Scholar] [PubMed]
- Monsieurs, M.A.; Thierens, H.M.; Vral, A.; Brans, B.; De Ridder, L.; Dierckx, R.A. Patient dosimetry after 131-I-MIBG therapy for neuroblastoma and carcinoid tumours. Nucl. Med. Commun. 2001, 22, 367–374. [Google Scholar] [CrossRef]
- Serna, A.; Alcaraz, M.; Navarro, J.L.; Acevedo, C.; Vicente, V.; Canteras, M. Biological dosimetry and Bayesian analysis of chromosomal damage in thyroid cancer patients. Radiat. Prot. Dosim. 2008, 129, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Kim, B. An increased relative but small absolute risk of leukemia can be attributed to I-131 ablation. Clin. Thyroidol. 2019, 31, 30–32. [Google Scholar] [CrossRef]
- Seo, G.H.; Cho, Y.Y.; Chung, J.H.; Kim, S.W. Increased risk of leukemia after radioactive iodine therapy in patients with thyroid cancer: A nationwide, population-based study in Korea. Thyroid 2015, 25, 927–934. [Google Scholar] [CrossRef]
- Sotnik, N.V.; Osovets, S.V.; Scherthan, H.; Azizova, T.V. mFISH analysis of chromosome aberrations in workers occupationally exposed to mixed radiation. Radiat. Environ. Biophys. 2014, 53, 347–354. [Google Scholar] [CrossRef]
- IAEA. Cytogenetic Analysis for Radiation Dose Assessment: A Manual; Technical Reports Series, No 405; IAEA: Vienna, Austria, 2001. [Google Scholar]
- Cornforth, M.N. Analyzing radiation-induced complex chromosome rearrangements by combinatorial painting. Radiat. Res. 2001, 155, 643–659. [Google Scholar] [CrossRef] [PubMed]
- Khvostunov, I.K.; Saenko, V.A.; Krylov, V.V.; Rodichev, A.A.; Yamashita, S. Cytogenetic biodosimetry and dose-rate effect after radioiodine therapy for thyroid cancer. Radiat. Environ. Biophys. 2017, 56, 213–226. [Google Scholar] [CrossRef]
- Estevao-Costa, J.; Gil-da-Costa, J.; Medina, A.M.; Sobrinho-Simoes, M. Thyroid carcinoma in a newborn: Clinical challenges in managing the first recorded case. Med. Pediatr. Oncol. 2000, 34, 290–292. [Google Scholar] [CrossRef]
- Dottorini, M.E.; Vignati, A.; Mazzucchelli, L.; Lomuscio, G.; Colombo, L. Differentiated thyroid carcinoma in children and adolescents: A 37-year experience in 85 patients. J. Nucl. Med. 1997, 38, 669–676. [Google Scholar]
- Sigurdson, A.J.; Ha, M.; Hauptmann, M.; Bhatti, P.; Sram, R.J.; Beskid, O.; Tawn, E.J.; Whitehouse, C.A.; Lindholm, C.; Nakano, M.; et al. International study of factors affecting human chromosome translocations. Mutat. Res. 2008, 652, 112–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonassi, S.; Znaor, A.; Norppa, H.; Hagmar, L. Chromosomal aberrations and risk of cancer in humans: An epidemiologic perspective. Cytogenet. Genome Res. 2004, 104, 376–382. [Google Scholar] [CrossRef]
- Stephan, G.; Schneider, K.; Panzer, W.; Walsh, L.; Oestreicher, U. Enhanced yield of chromosome aberrations after CT examinations in pediatric patients. Int. J. Radiat. Biol. 2007, 83, 281–287. [Google Scholar] [CrossRef]
- Livingston, G.K.; Ryan, T.L.; Smith, T.L.; Escalona, M.B.; Foster, A.E.; Balajee, A.S. Detection of simple, complex and clonal chromosome translocations induced by internal radioiodine exposure: A cytogenetic follow-up case study after 25 years. Cytogenet. Genome Res. 2019, 159, 169–181. [Google Scholar] [CrossRef]
- Nakamura, N.; Nakano, M.; Kodama, Y.; Ohtaki, K.; Cologne, J.; Awa, A.A. Prediction of clonal chromosome aberration frequency in human blood lymphocytes. Radiat. Res. 2004, 161, 282–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartel, C.; Nasonova, E.; Fuss, M.C.; Nikoghosyan, A.V.; Debus, J.; Ritter, S. Persistence of radiation-induced aberrations in patients after radiotherapy with C-ions and IMRT. Clin. Transl. Radiat. Oncol. 2018, 13, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Loucas, B.D.; Shuryak, I.; Cornforth, M.N. Three-color chromosome painting as seen through the eyes of mFISH: Another look at radiation-induced exchanges and their conversion to whole-genome equivalency. Front. Oncol. 2016, 6, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greulich, K.M.; Kreja, L.; Heinze, B.; Rhein, A.P.; Weier, H.-U.G.; Bruckner, M.; Fuchs, P.; Molls, M. Rapid detection of radiation-induced chromosomal aberrations in lymphocytes and hematopoietic progenitor cells by mFISH. Mutat. Res. 2000, 452, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Hartel, C.; Nikoghosyan, A.; Durante, M.; Sommer, S.; Nasonova, E.; Fournier, C.; Lee, R.; Debus, J.; Schulz-Ertner, D.; Ritter, S. Chromosomal aberrations in peripheral blood lymphocytes of prostate cancer patients treated with IMRT and carbon ions. Radiother. Oncol. 2010, 95, 73–78. [Google Scholar] [CrossRef]
- McKenna, M.J.; Robinson, E.; Taylor, L.; Tompkins, C.; Cornforth, M.N.; Simon, S.L.; Bailey, S.M. Chromosome Translocations, Inversions and Telomere Length for Retrospective Biodosimetry on Exposed U.S. Atomic Veterans. Radiat. Res. 2019, 191, 311–322. [Google Scholar] [CrossRef] [Green Version]
- Gregoire, E.; Roy, L.; Buard, V.; Delbos, M.; Durand, V.; Martin-Bodiot, C.; Voisin, P.; Sorokine-Durm, I.; Vaurijoux, A.; Voisin, P.; et al. Twenty years of FISH-based translocation analysis for retrospective ionizing radiation biodosimetry. Int. J. Radiat. Biol. 2018, 94, 248–258. [Google Scholar] [CrossRef] [PubMed]
- Balajee, A.S.; Hadjidekova, V. Retrospective cytogenetic analysis of unstable and stable chromosome aberrations in the victims of radiation accident in Bulgaria. Mutat. Res.—Genet. Toxicol. Environ. Mutagen. 2021, 861–862, 503295. [Google Scholar] [CrossRef] [PubMed]
- Borgmann, K.; Roeper, B.; Abd El-Awady, R.; Brackrock, S.; Bigalkee, M.; Dork, T.; Alberti, W.; Dikomey, E.; Dahm-Daphi, J. Indicators of late normal tissue response after radiotherapy for head and neck cancer: Fibroblasts, lymphocytes, genetics, DNA repair, and chromosome aberrations. Radiother. Oncol. 2002, 64, 141–152. [Google Scholar] [CrossRef]
Patient 1 | ||||||||
---|---|---|---|---|---|---|---|---|
Day 0 | Day 4 | Day 135 | Day 138 | Day 281 | Day 285 | Day 400 | Day 404 | |
Conventional analysis using Giemsa painting | ||||||||
Number of cells: | 1068 | 1000 | 500 | 550 | 500 | 400 | 500 | 500 |
aberrant cells | 3 | 33 | 14 | 42 | 16 | 26 | 29 | 47 |
acentrics | 1 | 20 | 8 | 27 | 16 | 16 | 16 | 20 |
centric rings | 0 | 5 | 0 | 4 | 0 | 5 | 3 | 6 |
dicentrics | 3 | 12 | 6 | 15 | 4 | 8 | 11 | 26 |
FISH analysis using selective painting of chromosomes 2, 4, 12 | ||||||||
Number of cells: | - | - | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 |
reciprocal translocations (tc) | - | - | 8 | 11 | 5 | 8 | 5 | 8 |
non-reciprocal translocations (ti) | - | - | 2 | 3 | 5 | 6 | 1 | 4 |
deletions | - | - | 5 | 9 | 3 | 7 | 4 | 6 |
mFISH analysis using whole genome painting | ||||||||
Number of cells: | 1102 | 454 | 501 | 893 | 610 | 537 | 512 | 443 |
aberrant cells | 15 | 20 | 23 | 55 | 37 | 44 | 36 | 47 |
stable aberrant cells | 4 | 10 | 9 | 19 | 14 | 12 | 15 | 17 |
reciprocal translocations | 4 | 9 | 10 | 22 | 14 | 15 | 16 | 18 |
non-reciprocal translocations | 0 | 0 | 2 | 7 | 4 | 6 | 1 | 5 |
acentrics | 11 | 6 | 4 | 12 | 7 | 14 | 5 | 10 |
centric rings | 0 | 0 | 1 | 2 | 1 | 0 | 3 | 0 |
dicentrics | 0 | 4 | 8 | 13 | 10 | 11 | 12 | 17 |
other simple exchanges * | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 1 |
complex aberrations | 1 | 1 | 0 | 1 | 2 | 1 | 0 | 0 |
Total breaks | 25 | 35 | 46 | 107 | 74 | 83 | 71 | 92 |
Patient 2 | ||||||||
Day 1959 | Day 1962 | Day 2323 | Day 2326 | |||||
Conventional analysis using Giemsa painting | ||||||||
Number of cells: | 500 ** | 514 ** | 657 | 500 | ||||
aberrant cells | 18 | 43 | 51 | 31 | ||||
acentrics | 8 | 28 | 33 | 14 | ||||
centric rings | 5 | 4 | 4 | 3 | ||||
dicentrics | 10 | 20 | 20 | 18 | ||||
FISH analysis using selective painting of chromosomes 2, 4, 12 | ||||||||
Number of cells: | - | 1000 | 914 | |||||
reciprocal translocations | - | - | 16 | 16 | ||||
non-reciprocal translocations | - | - | 12 | 10 | ||||
deletions | - | - | 1 | 3 | ||||
mFISH analysis using whole genome painting | ||||||||
Number of cells: | 510 | 578 | 707 | 526 | ||||
aberrant cells | 52 | 95 | 86 | 75 | ||||
stable aberrant cells | 28 | 44 | 53 | 35 | ||||
reciprocal translocations | 34 | 57 | 60 | 44 | ||||
non-reciprocal translocations | 3 | 14 | 10 | 10 | ||||
acentrics | 8 | 15 | 12 | 10 | ||||
centric rings | 2 | 2 | 0 | 1 | ||||
dicentrics | 8 | 14 | 5 | 17 | ||||
other simple exchanges * | 0 | 4 | 5 | 1 | ||||
complex aberrations | 5 | 6 | 3 | 3 | ||||
Total breaks | 118 | 219 | 183 | 166 | ||||
Aberrations detected by mFISH in healthy donors induced by 60Co γ-irradiation | ||||||||
Dose, Gy | ||||||||
0 | 0.25 | 0.5 | ||||||
Number of cells: | 1223 | 1003 | 693 | |||||
aberrant cells | 26 | 43 | 69 | |||||
stable aberrant cells | 10 | 15 | 23 | |||||
reciprocal translocations | 10 | 15 | 25 | |||||
non-reciprocal translocations | 2 | 4 | 4 | |||||
acentrics | 13 | 12 | 17 | |||||
centric rings | 0 | 1 | 1 | |||||
dicentrics | 0 | 6 | 22 | |||||
other simple exchanges * | 1 | 3 | 5 | |||||
complex aberrations | 0 | 2 | 1 |
Patient 1 | ||||||||
---|---|---|---|---|---|---|---|---|
Conventional analysis of (dic+rc) using Giemsa painting | ||||||||
Days | Pre-treatment | T, h | Post-treatment | Increment ∆M ± SEM * | G(T) | Dose, Gy (CI **) | ||
cells | M1 ± SEM * | cells | M2 ± SEM * | |||||
0–4 | 1068 | 0.28 ± 0.21 | 92 | 1000 | 1.70 ± 0.41 | 1.42 ± 0.62 | 0.246 | 0.52 (0–0.84) |
135–138 | 500 | 1.20 ± 0.49 | 68 | 550 | 3.45 ± 0.78 | 2.25 ± 1.27 | 0.251 | 0.70 (0–1.19) |
281–285 | 500 | 0.80 ± 0.40 | 92 | 400 | 3.25 ± 0.89 | 2.45 ± 1.29 | 0.246 | 0.74 (0–1.23) |
400–404 | 500 | 2.80 ± 0.74 | 92 | 500 | 6.40 ± 1.13 | 3.60 ± 1.87 | 0.246 | 0.95 (0–1.53) |
FISH analysis of (tc+ti) using selective painting of chromosomes 2, 4, 12 | ||||||||
Days | Pre-treatment | T, h | Post-treatment | Increment ∆F ± SEM * | G(T) | Dose, Gy (CI **) | ||
cells | F1 ± SEM * | cells | F2 ± SEM ** | |||||
135–138 | 1000 | 3.19 ± 1.01 | 68 | 1000 | 4.47 ± 1.20 | 1.28 ± 2.21 | 0.251 | 0.57 (0–1.48) |
281–285 | 1000 | 3.19 ± 1.01 | 92 | 1000 | 4.47 ± 1.20 | 1.28 ± 2.21 | 0.246 | 0.57 (0–1.49) |
400–404 | 1000 | 1.92 ± 0.78 | 92 | 1000 | 3.83 ± 1.11 | 1.92 ± 1.87 | 0.246 | 0.75 (0–1.49) |
Patient 2 | ||||||||
Conventional analysis of (dic+rc) using Giemsa painting | ||||||||
Days | Pre-treatment | T, h | Post-treatment | Increment ∆M ± SEM * | G(T) | Dose, Gy (CI **) | ||
cells | M1 ± SEM * | cells | M2 ± SEM * | |||||
1959–1962 | 500 | 3.00 ± 0.81 | 68 | 514 | 4.67 ± 1.01 | 1.67 ± 1.82 | 0.251 | 0.57 (0–1.23) |
2323–2326 | 657 | 3.65 ± 0.85 | 68 | 500 | 4.20 ± 0.94 | 0.55 ± 1.79 | 0.251 | 0.25 (0–1.05) |
FISH analysis of (tc+ti) using selective painting of chromosomes 2, 4, 12 | ||||||||
Days | Pre-treatment | T, h | Post-treatment | Increment ∆F ± SEM ** | G(T) | Dose, Gy (CI **) | ||
cells | F1 ± SEM ** | cells | F2 ± SEM ** | |||||
2323–2326 | 1000 | 8.95 ± 1.69 | 68 | 914 | 9.09 ± 1.78 | 0.14 ± 3.47 | 0.251 | 0.10 (0–1.64) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khvostunov, I.K.; Nasonova, E.; Krylov, V.; Rodichev, A.; Kochetova, T.; Shepel, N.; Korovchuk, O.; Kutsalo, P.; Shegai, P.; Kaprin, A. Cytogenetic Damage Induced by Radioiodine Therapy: A Follow-Up Case Study. Int. J. Mol. Sci. 2023, 24, 5128. https://doi.org/10.3390/ijms24065128
Khvostunov IK, Nasonova E, Krylov V, Rodichev A, Kochetova T, Shepel N, Korovchuk O, Kutsalo P, Shegai P, Kaprin A. Cytogenetic Damage Induced by Radioiodine Therapy: A Follow-Up Case Study. International Journal of Molecular Sciences. 2023; 24(6):5128. https://doi.org/10.3390/ijms24065128
Chicago/Turabian StyleKhvostunov, Igor K., Elena Nasonova, Valeriy Krylov, Andrei Rodichev, Tatiana Kochetova, Natalia Shepel, Olga Korovchuk, Polina Kutsalo, Petr Shegai, and Andrei Kaprin. 2023. "Cytogenetic Damage Induced by Radioiodine Therapy: A Follow-Up Case Study" International Journal of Molecular Sciences 24, no. 6: 5128. https://doi.org/10.3390/ijms24065128
APA StyleKhvostunov, I. K., Nasonova, E., Krylov, V., Rodichev, A., Kochetova, T., Shepel, N., Korovchuk, O., Kutsalo, P., Shegai, P., & Kaprin, A. (2023). Cytogenetic Damage Induced by Radioiodine Therapy: A Follow-Up Case Study. International Journal of Molecular Sciences, 24(6), 5128. https://doi.org/10.3390/ijms24065128