Integration of Transcriptomics and Non-Targeted Metabolomics Reveals the Underlying Mechanism of Skeletal Muscle Development in Duck during Embryonic Stage
Abstract
:1. Introduction
2. Results
2.1. Metabolome Analysis
2.1.1. Overview of the Metabolomic Profiling
2.1.2. Identification of Differentially Accumulated Metabolites
2.1.3. KEGG Analysis of Differentially Accumulated Metabolites
2.2. Transcriptome Profiles
2.2.1. Overview of Transcriptome
2.2.2. Identification of Differentially Expressed Genes
2.2.3. Go Ontology and KEGG Pathway Analysis
2.3. Integrated Analysis of Transcriptomics and Metabolomics
2.4. RT-qPCR Validation of the RNA-Seq Data
3. Discussion
3.1. Metabolome Analysis
3.2. Transcriptome Profiles
3.3. Integrated Analysis of Transcriptomics and Metabolomics
4. Materials and Methods
4.1. Animals and Sample Collection
4.2. Extraction of Metabolites and Metabolomics Analysis
4.2.1. Metabolites Extraction
4.2.2. LC-MS/MS Analysis
4.2.3. Processing and Analysis of Metabolome Data
4.3. RNA Sequencing and Data Analysis
4.3.1. RNA Extraction and Library Preparation
4.3.2. RNA Sequencing and Data Analysis
4.3.3. Validation of RNA-seq Data
4.4. Integrative Analysis of Metabolomics and Transcriptomics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Te Pas, M.F.; de Wit, A.A.; Priem, J.; Cagnazzo, M.; Davoli, R.; Russo, V.; Pool, M.H. Transcriptome ex-pression profiles in prenatal pigs in relation to myogenesis. J. Muscle Res. Cell Motil. 2005, 26, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Marie, M.; Marcelle, C.; Gros, J. A common somitic origin for embryonic muscle progenitors. Med. Sci. 2005, 21, 915–917. [Google Scholar]
- Gros, J.; Manceau, M.; Thomé, V.; Marcelle, C. A common somitic origin for embryonic muscle progenitors and satellite cells. Nature 2005, 435, 954–958. [Google Scholar] [CrossRef] [PubMed]
- Wigmore, P.M.; Stickland, N.C. Muscle development in large and small pig fetuses. J. Anat. 1983, 137, 235–245. [Google Scholar]
- Biressi, S.; Tagliafico, E.; Lamorte, G.; Monteverde, S.; Tenedini, E.; Roncaglia, E.; Ferrari, S.; Ferrari, S.; Angelis, M.G.C.; Tajbakhsh, S.; et al. Intrinsic phenotypic diversity of embryonic and fetal myoblasts is revealed by genome-wide gene expression analysis on purified cells. Dev. Biol. 2007, 304, 633–651. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Lv, Y.T.; Zhang, H.X.; Ruan, D.; Wang, S.; Lin, Y.C. Developmental specificity in skeletal muscle of late-term avian embryos and its potential manipulation. Poul. Sci. 2013, 92, 2754–2764. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Ba, Y.; Zhuang, Q.F.; Zhong, G.F. RNA-Seq technology and its application in fish transcriptomics. Omics 2014, 18, 98–110. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Song, W.; Tao, Z.; Liu, H.; Xu, W.; Zhang, S.; Li, H. Deep RNA sequencing of pectoralis muscle transcriptomes during late-term embryonic to neonatal development in indigenous Chinese duck breeds. PLoS ONE 2017, 12, e0180403. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Du, H.; Yang, C.; Li, Q.; Qiu, M.; Song, X.; Hu, C. Comparative transcriptome analysis reveals regulators mediating breast muscle growth and development in three chicken breeds. Anim. Biotech. 2019, 30, 233–241. [Google Scholar] [CrossRef]
- Trapnell, C.; Roberts, A.; Goff, L.; Pertea, G.; Kim, D.; Kelley, D.R.; Pimentel, H.; Salzberg, S.L.; Rinn, J.L.; Pachter, L. Differential gene and transcript expression analysis of RNA-seq experiments with Top Hat and Cufflinks. Nat. Protoc. 2012, 7, 562–578. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.; Greenwood, P.L.; Cafe, L.M.; Zhou, G.H.; Zhang, W.G.; Dalrymple, B.P. Transcriptome analysis of cattle muscle identifies potential markers for skeletal muscle growth rate and major cell types. BMC Genom. 2015, 16, 177. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.; Bansal, G.; Narang, A.; Basak, T.; Abbas, T.; Dash, D. Integrating transcriptome and proteome profiling: Strategies and applications. Proteomics 2016, 16, 2533–2544. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.M.; Bai, M.; Xiang, L.J.; Zhang, G.S.; Ma, W.; Jiang, H.Z. Comparative transcriptome profiling of longissimus muscle tissues from Qianhua Mutton Merino and Small Tail Han sheep. Sci. Rep. 2016, 6, 33586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rinschen, M.M.; Ivanisevic, J.; Giera, M.; Siuzdak, G. Identification of bioactive metabolites using activity metabolomics. Nat. Rev. Mol. Cell Biol. 2019, 20, 353–367. [Google Scholar] [CrossRef]
- Morton, J.T.; Aksenov, A.A.; Nothias, L.F.; Foulds, J.R.; Quinn, R.A.; Badri, M.H.; Swenson, T.L.; van Goethem, M.W.; Northen, T.R.; Vazquez-Baeza, Y.; et al. Learning representations of microbe-metabolite interactions. Nat. Methods 2019, 16, 1306–1314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Z.G.; Cao, J.T.; Ge, L.Y.; Zhang, J.Q.; Zhang, H.L.; Liu, X.L. Characterization and Comparative Transcriptomic Analysis of Skeletal Muscle in Pekin Duck at Different Growth Stages Using RNA-Seq. Animals 2021, 11, 834. [Google Scholar] [CrossRef]
- Liu, C.L.; Pan, D.D.; Ye, Y.Y.; Cao, J.X. ¹H NMR and multivariate data analysis of the relationship between the age and quality of duck meat. Food Chem. 2013, 141, 1281–1286. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, Y.; Wang, L.X.; Ye, S.Q.; Liu, J.J.; Gong, P.; Qian, Y.G.; Zeng, H.J.; Chen, X. Integrated multi-omic data reveal the potential molecular mechanisms of the nutrition and flavor in Liancheng white duck meat. Front. Genet. 2022, 13, 939585. [Google Scholar] [CrossRef]
- Qiao, N.; Yang, Y.Y.; Liao, J.Z.; Zhang, H.; Yang, F.; Ma, F.Y.; Han, Q.Y.; Yu, W.L.; Li, Y.; Hu, L.M.; et al. Metabolomics and transcriptomics indicated the molecular targets of copper to the pig kidney. Ecotoxicol. Environ. Saf. 2021, 218, 112284. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.J.; Tu, K.; Li, L.; Wu, B.; Wu, L.; Liu, Z.H.; Zhou, L.Q.; Tian, J.T.; Yang, A.G. Integrated transcriptome and metabolome analysis reveals molecular responses of the clams to acute hypoxia. Mar. Environ. Res. 2021, 168, 105317. [Google Scholar] [CrossRef]
- Ryall, J.G. Metabolic reprogramming as a novel regulator of skeletal muscle development and regeneration. FEBS J. 2013, 280, 4004–4013. [Google Scholar] [CrossRef]
- Liebau, F.; Deane, A.M.; Rooyackers, O. Protein absorption and kinetics in critical illness. Curr. Opin. Clin. Nutr. 2021, 24, 71–78. [Google Scholar] [CrossRef]
- Holeček, M. Histidine in Health and Disease: Metabolism, Physiological Importance, and Use as a Supplement. Nutrients 2020, 12, 848. [Google Scholar] [CrossRef] [Green Version]
- Zaynab, M.; Fatima, M.; Abbas, M.; Sharif, Y.; Umair, M.; Zafar, M.H.; Bahadar, K. Role of secondary metabolites in plant defense against pathogens. Microb. Pathog. 2018, 124, 198–202. [Google Scholar] [CrossRef]
- Fischer, J.D.; Holliday, G.L.; Rahman, S.A.; Thornton, J.M. The Structures and Physicochemical Properties of Organic Cofactors in Biocatalysis. J. Mol. Biol. 2010, 403, 803–824. [Google Scholar] [CrossRef]
- Rutten, E.P.A.; Engelen, M.P.K.J.; Schols, A.M.W.J.; Deutz, N.E.P. Skeletal muscle glutamate metabolism in health and disease: State of the art. Curr. Opin. Clin. Nutr. 2005, 8, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Malomuzh, A.I.; Naumenko, N.V.; Guseva, D.S.; Urazaev, A.K. Effect of Dipeptide N-Acetylaspartylglutamate on Denervation-Induced Changes in the Volume of Rat Skeletal Muscle Fibers. Bull. Exp. Biol. Med. 2006, 142, 683–684. [Google Scholar] [CrossRef]
- Sato, T.; Ito, Y.; Nagasawa, T. Regulatory effects of the L-lysine metabolites, L-2-aminoadipic acid and L-pipecolic acid, on protein turnover in C2C12 myotubes. Biosc. Biotech. Bioch. 2016, 80, 2168–2175. [Google Scholar] [CrossRef] [Green Version]
- Goossens, C.; Weckx, R.; Derde, S.; Perre, S.V.; Derese, I.; van Veldhoven, P.P.; Ghesquière, B.; van den Berghe, G.; Langouche, L. Altered cholesterol homeostasis in critical illness-induced muscle weakness: Efect of exogenous 3-hydroxybutyrate. Crit. Care 2021, 25, 252. [Google Scholar] [CrossRef]
- Hana, C.A.; Klebermass, E.M.; Balber, T.B.; Mitterhauser, M.M.; Quint, R.; Hirtl, Y.; Klimpke, A.; Somloi, S.; Hutz, J.; Sperr, E.; et al. Inhibition of Lipid Accumulation in Skeletal Muscle and Liver Cells: A Protective Mechanism of Bilirubin Against Diabetes Mellitus Type 2. Front. Pharmacol. 2021, 11, 636533. [Google Scholar] [CrossRef]
- Da Paixão, A.O.; Bolin, A.P.; Silvestre, J.G.; Rodrigues, A.C. Palmitic Acid Impairs Myogenesis and Alters Temporal Expression of miR-133a and miR-206 in C2C12 Myoblasts. Int. J. Mol. Sci. 2021, 22, 2748. [Google Scholar] [CrossRef]
- Wang, N.; Ma, H.; Li, J.; Meng, C.Y.; Zou, J.; Wang, H.; Liu, K.; Liu, M.D.; Xiao, X.Z.; Zhang, H.L.; et al. HSF1 functions as a key defender against palmitic acid-induced ferroptosis in cardiomyocytes. J. Mol. Cell. Cardiol. 2021, 150, 65–76. [Google Scholar] [CrossRef]
- Khalil, A.S.M.; Giribabu, N.; Yelumalai, S.; Shahzad, H.; Kilari, E.K.; Salleh, N. Myristic acid defends against testicular oxidative stress, inflammation, apoptosis: Restoration of spermatogenesis, steroidogenesis in diabetic rats. Life Sci. 2021, 278, 119605. [Google Scholar] [CrossRef]
- Goethals, S.; Rombouts, C.; Hemeryck, L.Y.; van Meulebroek, L.; van Hecke, T.; Vossen, E.; van Camp, J.; de Smet, S.; Vanhaecke, L. Untargeted Metabolomics to Reveal Red versus White Meat-Associated Gut Metabolites in a Prudent and Western Dietary Context. Mol. Nutr. Food Res. 2020, 64, e2000070. [Google Scholar] [CrossRef]
- Cui, X.D.; Li, X.X.; He, Y.T.; Yu, J.; Fu, J.; Song, B.; Zhao, R.C.H. Combined NOX/ROS/PKC Signaling Pathway and Metabolomic Analysis Reveals the Mechanism of TRAM34-Induced Endothelial Progenitor Cell Senescence. Stem Cells Dev. 2021, 30, 671–682. [Google Scholar] [CrossRef]
- Rustad, K.C.; Wong, V.W.; Gurtner, G.C. The role of focal adhesion complexes in fibroblast mechanotransduction during scar formation. Differentiation 2013, 86, 87–91. [Google Scholar] [CrossRef]
- Mishra, Y.G.; Manavathi, B. Focal adhesion dynamics in cellular function and disease. Cell. Signal. 2021, 85, 110046. [Google Scholar] [CrossRef]
- Wozniak, M.A.; Modzelewska, K.; Kwong, L.; Keely, P.J. Focal adhesion regulation of cell behavior. Biochim. Biophys. Acta Mol. Cell Res. 2004, 1692, 103–119. [Google Scholar] [CrossRef]
- Graham, Z.A.; Gallagher, P.M.; Cardozo, C.P. Focal adhesion kinase and its role in skeletal muscle. J. Muscle Res. Cell Motil. 2015, 36, 305–315. [Google Scholar] [CrossRef] [Green Version]
- Mitra, S.K.; Schlaepfer, D.D. Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr. Opin. Cell Biol. 2006, 18, 516–523. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Q.B.; Li, S.; Chen, Z.H.; Tan, J.J.; Yao, J.T.; Duan, D.L. Low molecular weight fucoidan alleviates diabetic nephropathy by binding fibronectin and inhibiting ECM-receptor interaction in human renal mesangial cells. Int. J. Biol. Macromol. 2020, 150, 304–314. [Google Scholar] [CrossRef]
- Lock, J.G.; Wehrle-Haller, B.; Strömblad, S. Cell-matrix adhesion complexes: Master control machinery of cell migration. Semin. Cancer Biol. 2008, 18, 65–76. [Google Scholar] [CrossRef]
- Hu, C.; Zuo, Q.S.; Jin, K.; Zhao, Z.Y.; Wu, Y.H.; Gao, J.C.; Wang, C.Y.; Wang, Y.J.; Zhan, W.D.; Zhou, J.; et al. Retinoic acid promotes formation of chicken (Gallus gallus) spermatogonial stem cells by regulating the ECM-receptor interaction signaling pathway. Gene 2022, 820, 146227. [Google Scholar] [CrossRef]
- Berman, A.E.; Kozlova, N.I.; Morozevich, G.E. Integrins: Structure and signaling. Biochemistry 2003, 68, 1284–1299. [Google Scholar] [CrossRef]
- Santella, L.; Limatola, N.; Vasilev, F.; Chun, T.J. Maturation and fertilization of echinoderm eggs: Role of actin cytoskeleton dynamics. Biochem. Bioph. Res. Commun. 2018, 506, 361–371. [Google Scholar] [CrossRef]
- Kepser, L.J.; Damar, F.; de Cicco, T.; Chaponnier, C.; Prószyński, T.J.; Pagenstecher, A.; Rust, M.B. CAP2 deficiency delays myofibril actin cytoskeleton differentiation and disturbs skeletal muscle architecture and function. Proc. Natl. Acad. Sci. USA 2019, 116, 8397–8402. [Google Scholar] [CrossRef] [Green Version]
- Lazki-Hagenbach, P.; Klein, O.; Sagi-Eisenberg, R. The actin cytoskeleton and mast cell function. Curr. Opin. Immunol. 2021, 72, 27–33. [Google Scholar] [CrossRef]
- Sandbo, N.; Dulin, N. Actin cytoskeleton in myofibroblast differentiation: Ultrastructure defining form and driving function. Transl. Res. 2011, 158, 181–196. [Google Scholar] [CrossRef] [Green Version]
- Larsson, C. Protein kinase C and the regulation of the actin cytoskeleton. Cell. Signal. 2006, 18, 276–284. [Google Scholar] [CrossRef]
- Sharma, R.; Kumar, D.; Jha, N.K.; Jha, S.K.; Ambasta, R.K.; Kumar, P. Re-expression of cell cycle markers in aged neurons and muscles: Whether cells should divide or die? Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 324–336. [Google Scholar] [CrossRef]
- Seoane, J.; Le, H.V.; Shen, L.J.; Anderson, S.A.; Massagué, J. Integration of Smad and Forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 2004, 117, 211–223. [Google Scholar] [CrossRef] [Green Version]
- Murakami, M.S.; Moody, S.A.; Daar, I.O.; Morrison, D.K. Morphogenesis during Xenopus gastrulation requires Wee1-mediated inhibition of cell proliferation. Development 2004, 131, 571–580. [Google Scholar] [CrossRef] [Green Version]
- Angulo-Urarte, A.; van der Wal, T.; Huveneers, S. Cell-cell junctions as sensors and transducers of mechanical forces. Biochim. Biophys. Acta Biomembranes 2020, 1862, 183316. [Google Scholar] [CrossRef]
- Wang, M.N.; Niu, Z.B.; Qin, H.Q.; Ruan, B.Z.; Zheng, Y.; Ning, X.K.; Gu, S.Z.; Gao, L.H.; Chen, Z.L.; Wang, X.N.; et al. Mechanical Ring Interfaces between Adherens Junction and Contractile Actomyosin to Coordinate Entotic Cell-in-Cell Formation. Cell Rep. 2020, 32, 108071. [Google Scholar] [CrossRef]
- Nagy, J.I.; Lynn, B.D. Structural and Intermolecular Associations Between Connexin36 and Protein Components of the Adherens Junction-Neuronal Gap Junction Complex. Neuroscience 2018, 384, 241–261. [Google Scholar] [CrossRef]
- Padmanabhan, A.; Rao, M.V.; Wu, Y.; Zaidel-Bar, R. Jack of all trades: Functional modularity in the adherens junction. Curr. Opin. Cell Biol. 2015, 36, 32–40. [Google Scholar] [CrossRef]
- Hussain, M.; Xu, C.Y.; Lu, M.P.; Wu, X.L.; Tang, L.F.; Wu, X.M. Wnt/β-catenin signaling links embryonic lung development and asthmatic airway remodeling. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 3226–3242. [Google Scholar] [CrossRef]
- Anakwe, K.; Robson, L.; Hadley, J.; Buxton, P.; Church, V.; Allen, S.; Hartmann, C.; Harfe, B.; Nohno, T.; Brown, A.M.C.; et al. Wnt signalling regulates myogenic differentiation in the developing avian wing. Development 2003, 130, 3503–3514. [Google Scholar] [CrossRef] [Green Version]
- Alicea-Delgado, M.; García-Arrarás, J.E. Wnt/β-catenin signaling pathway regulates cell proliferation but not muscle dedifferentiation nor apoptosis during sea cucumber intestinal regeneration. Dev. Biol. 2021, 480, 105–113. [Google Scholar] [CrossRef]
- Bovolenta, P.; Rodriguez, J.; Esteve, P. Frizzled/RYK mediated signalling in axon guidance. Development 2006, 133, 4399–4408. [Google Scholar] [CrossRef] [Green Version]
- Helfer, G.; Tups, A. Hypothalamic Wnt signalling and its role in energy balance regulation. J. Neuroendocrinol. 2016, 28, 12368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.; Chen, S.R.; Liu, W.B.; Hou, Z.C.; Xu, G.Y.; Yang, N. Polymorphisms in Wnt signaling pathway genes are significantly associated with chicken carcass traits. Poul. Sci. 2012, 91, 1299–1307. [Google Scholar] [CrossRef]
- Baudler, S.; Krone, W.; Brüning, J.C. Genetic manipulation of the insulin signalling cascade in mice-potential insight into the pathomechanism of type 2 diabetes. Best Pract. Res. Clin. Endocrinol. Metab. 2003, 17, 431–443. [Google Scholar] [CrossRef]
- Richter, E.A.; Hargreaves, M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol. Rev. 2013, 93, 993–1017. [Google Scholar] [CrossRef] [Green Version]
- Mukaida, S.; Evans, B.A.; Bengtsson, T.; Hutchinson, D.S.; Sato, M. Adrenoceptors promote glucose uptake into adipocytes and muscle by an insulin-independent signaling pathway involving mechanistic target of rapamycin complex 2. Pharmacol. Res. 2017, 116, 87–92. [Google Scholar] [CrossRef]
- Rhoads, R.P.; Baumgard, L.H.; El-Kadi, S.W.; Zhao, L.D. Physiology and Endocrinology Symposium: Roles for insulin-supported skeletal muscle growth. J. Anim. Sci. 2016, 94, 1791–1802. [Google Scholar] [CrossRef] [Green Version]
- Britton, J.S.; Lockwood, W.K.; Li, L.; Cohen, S.M.; Edgar, B.A. Drosophila’s insulin/PI3-kinase pathway coordinates cellular metabolism with nutritional conditions. Dev. Cell 2002, 2, 239–249. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.H.; Su, L.P.; Zhu, J.; Law, P.K.; Lee, K.O.; Ye, L.; Wang, Z.Z. Skeletal myoblast transplantation on gene expression profiles of insulin signaling pathway and mitochondrial biogenesis and function in skeletal muscle. Diabetes Res. Clin. Pract. 2013, 102, 43–52. [Google Scholar] [CrossRef]
- Jia, B.X.; Yu, S.; Yu, D.Z.; Liu, N.; Zhang, S.; Wu, A.B. Mycotoxin deoxynivalenol affects myoblast differentiation via downregulating cytoskeleton and ECM-integrin-FAK-RAC-PAK signaling pathway. Ecotox. Environ. Saf. 2021, 226, 112850. [Google Scholar] [CrossRef]
- Wolfenson, H.; Henis, Y.I.; Geiger, B.; Bershadsky, A.D. The heel and toe of the cell’s foot: A multifaceted approach for understanding the structure and dynamics of focal adhesions. Cell Motil. Cytoskel. 2009, 66, 1017–1029. [Google Scholar] [CrossRef] [Green Version]
- Petrany, M.J.; Millay, D.P. Cell fusion: Merging membranes and making muscle. Trends Cell Biol. 2019, 29, 964–973. [Google Scholar] [CrossRef]
- Lehka, L.; Rędowicz, M.J. Mechanisms regulating myoblast fusion: A multilevel interplay. Semin. Cell Dev. Biol. 2020, 104, 81–92. [Google Scholar] [CrossRef]
- Wang, Y.C.; Yamada, E.; Zong, H.H.; Pessin, J.E. Fyn activation of mTORC1 stimulates the IRE1alpha-JNK pathway, leading to cell death. J. Biol. Chem. 2015, 290, 24772–24783. [Google Scholar] [CrossRef] [Green Version]
- Yamada, E.; Bastie, C.C.; Koga, H.; Wang, Y.C.; Cuervo, A.M.; Pessin, J.E. Mouse skeletal muscle fiber-type-specific macroautophagy and muscle wasting are regulated by a Fyn/STAT3/Vps34 signaling pathway. Cell Rep. 2012, 1, 557–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erskine, R.M.; Williams, A.G.; Jones, D.A.; Stewart, C.E.; Degens, H. Do PTK2 gene polymorphisms contribute to the interindividual variability in muscle strength and the response to resistance training? A preliminary report. J. Appl. Physiol. 2012, 112, 1329–1334. [Google Scholar] [CrossRef] [Green Version]
- Stebbings, G.K.; Williams, A.G.; Morse, C.I.; Day, S.H. Polymorphisms in PTK2 are associated with skeletal muscle specific force: An independent replication study. Eur. J. Appl. Physiol. 2017, 117, 713–720. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Bandyopadhyay, J.; Lee, J.I.; Cho, I.; Park, D.; Cho, J.H. A Role for Peroxidasin PXN-1 in Aspects of C. elegans Development. Mol. Cells 2015, 38, 51–57. [Google Scholar]
- Gotenstein, J.R.; Swale, R.E.; Fukuda, T.; Wu, Z.L.; Giurumescu, C.A.; Goncharov, A.; Jin, Y.S.; Chisholm, A.D. The C. elegans peroxidasin PXN-2 is essential for embryonic morphogenesis and inhibits adult axon regeneration. Development 2010, 137, 3603–3613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, L.J.; Racedo, S.E.; Diacou, A.; Park, T.; Zhou, B.; Morrow, B.E. Crk and Crkl have shared functions in neural crest cells for cardiac outf low tract septation and vascular smooth muscle differentiation. Hum. Mol. Genet. 2022, 31, 1197–1215. [Google Scholar] [CrossRef] [PubMed]
- Oakes, P.W.; Gardel, M.L. Stressing the limits of focal adhesion mechanosensitivity. Curr. Opin. Cell Biol. 2014, 30, 68–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, T.J.; Boyd, K.; Curran, T. Cardiovascular and Craniofacial Defects in Crk-Null Mice. Mol. Cell. Biol. 2006, 26, 6272–6282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, C.A.; Parkin, C.A.; Bidet, Y.; Ingham, P.W. A role for the Myoblast city homologues Dock1 and Dock5 and the adaptor proteins Crk and Crk-like in zebrafish myoblast fusion. Development 2007, 134, 3145–3153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rane, C.K.; Minden, A. P21 activated kinases: Structure, regulation, and functions. Small GTPases 2014, 5, e28003. [Google Scholar] [CrossRef] [Green Version]
- Varshney, P.; Dey, C.S. P21-activated kinase 2 (PAK2) regulates glucose uptake and insulin sensitivity in neuronal cells. Mol. Cell. Endocrinol. 2016, 429, 50–61. [Google Scholar] [CrossRef]
- Feng, Q.T.; Di, R.M.; Tao, F.; Chang, Z.; Lu, S.S.; Fan, W.J.; Shan, C.J.; Li, X.L.; Yang, Z.Z. PDK1 regulates vascular remodeling and promotes epithelial-mesenchymal transition in cardiac development. Mol. Cell. Biol. 2010, 30, 3711–3721. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Cho, S.C.; Jeong, H.J.; Lee, H.Y.; Jeong, M.H.; Pyun, J.H.; Ryu, D.; Kim, M.S.; Lee, Y.S.; Kim, M.S.; et al. Indoprofen prevents muscle wasting in aged mice through activation of PDK1/AKT pathway. J. Cachexia Sarcopeni 2020, 11, 1070–1088. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Nystrom, F.H.; Dong, L.Q.; Li, Y.; Song, S.; Liu, F.; Quon, M.J. Insulin Stimulates Increased Catalytic Activity of Phosphoinositide-Dependent Kinase-1 by a Phosphorylation-Dependent Mechanism. Biochemistry 2001, 40, 11851–11859. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.W.; Huang, Y.L.; Wu, Y.D.; Gunst, S.J. A novel role for RhoA GTPase in the regulation of airway smooth muscle contraction. Can. J. Physiol. Pharmacol. 2015, 93, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Robert, A.; Herrmann, H.; Davidson, M.W.; Gelfand, V.I. Microtubule-dependent transport of vimentin filament precursors is regulated by actin and by the concerted action of Rho- and p21-activated kinases. FASEB J. 2014, 28, 2879–2890. [Google Scholar] [CrossRef] [Green Version]
- Castellani, L.; Salvati, E.; Alemà, S.; Falcone, G. Fine Regulation of RhoA and Rock Is Required for Skeletal Muscle Differentiation. J. Biol. Chem. 2006, 281, 15249–15257. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, V.R.; Gaspar, R.C.; Severino, M.B.; Macêdo, A.P.A.; Simabuco, F.M.; Ropelle, E.R.; Cintra, D.E.; da Silva, A.S.; Kim, Y.B.; Pauli, J.R. Exercise Counterbalances Rho/ROCK2 Signaling Impairment in the Skeletal Muscle and Ameliorates Insulin Sensitivity in Obese Mice. Front. Immunol. 2021, 12, 702025. [Google Scholar] [CrossRef]
- Khanna, N.; Fang, Y.M.; Yoon, M.S.; Chen, J. XPLN is an endogenous inhibitor of mTORC2. Proc. Natl. Acad. Sci. USA 2013, 110, 15979–15984. [Google Scholar] [CrossRef] [Green Version]
- You, J.S.; Singh, N.; Reyes-Ordonez, A.; Khanna, N.; Bao, Z.H.; Zhao, H.M.; Chen, J. ARHGEF3 Regulates Skeletal Muscl e Regeneration and Strength through Autophagy. Cell Rep. 2021, 34, 108594. [Google Scholar] [CrossRef]
- Ramalingam, L.; Oh, E.; Thurmond, D.C. Novel roles for insulin receptor (IR) in adipocytes and skeletal muscle cells via new and unexpected substrates. Cell. Mol. Life Sci. 2013, 70, 2815–2834. [Google Scholar] [CrossRef] [Green Version]
- Lim, M.J.; Choi, K.J.; Ding, Y.; Kim, J.H.; Kim, B.S.; Kim, Y.H.; Lee, J.; Choe, W.; Kang, I.; Ha, J.; et al. RhoA/Rho Kinase Blocks Muscle Differentiation via Serine Phosphorylation of Insulin Receptor Substrate-1 and -2. Mol. Endocrinol. 2007, 21, 2282–2293. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.L.; Guo, Y.F.; Jia, G.; Liu, G.M.; Zhao, H.; Huang, Z.Q. Arginine promotes skeletal muscle fiber type transformation from fast-twitch to slow-twitch via Sirt1/AMPK pathway. J. Nutr. Biochem. 2018, 61, 155–162. [Google Scholar] [CrossRef]
- Brunton, J.A.; Baldwin, M.P.; Hanna, R.A.; Bertolo, R.F. Proline supplementation to parenteral nutrition results in greater rates of protein synthesis in the muscle, skin, and small intestine in neonatal Yucatan miniature piglets. J. Nutr. 2012, 142, 1004–1008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holeček, M. Influence of Histidine Administration on Ammonia and Amino Acid Metabolism: A Review. Physiol. Res. 2020, 69, 555–564. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.G.; Cao, J.T.; Liu, G.Y.; Zhang, H.L.; Liu, X.L. Comparative Transcriptome Profiling of Skeletal Muscle from Black Muscovy Duck at Different Growth Stages Using RNA-seq. Genes 2020, 11, 1228. [Google Scholar] [CrossRef]
Sample Name | Raw Data | Clean Data | Q20 % | Q30 % | GC Content% | Mapped Reads | Unique Mapped Reads | Multi Mapped Reads |
---|---|---|---|---|---|---|---|---|
E15_BM1 | 77,109,784 | 70,263,996 | 99.97 | 97.81 | 45.50 | 62,101,245 (88.38%) | 59,533,956 (84.73%) | 2,567,289 (3.65%) |
E15_BM2 | 74,321,278 | 67,100,234 | 99.97 | 97.78 | 45.50 | 59,133,997 (88.13%) | 56,909,871 (84.81%) | 2,224,126 (3.31%) |
E15_BM3 | 77,985,728 | 70,738,438 | 99.97 | 97.72 | 45.50 | 62,172,644 (87.89%) | 59,569,330 (84.21%) | 2,603,314 (3.68%) |
E21_BM1 | 77,175,666 | 71,023,652 | 99.97 | 97.74 | 46.50 | 62,546,291 (88.06%) | 59,905,449 (84.35%) | 2,640,842 (3.72%) |
E21_BM2 | 76,696,598 | 70,756,258 | 99.97 | 97.82 | 45.50 | 62,300,708 (88.05%) | 59,702,570 (84.38%) | 2,598,138 (3.67%) |
E21_BM3 | 76,451,028 | 69,392,604 | 99.97 | 97.67 | 45.50 | 61,290,597 (88.32%) | 58,817,525 (84.76%) | 2,473,072 (3.56%) |
E27_BM1 | 72,954,478 | 66,093,658 | 99.97 | 97.73 | 44.50 | 58,411,962 (88.38%) | 56,127,311 (84.92%) | 2,284,651 (3.46%) |
E27_BM2 | 70,316,234 | 62,796,684 | 99.96 | 97.79 | 46.50 | 55,131,121 (87.79%) | 52,566,867 (83.71%) | 2,564,254 (4.08%) |
E27_BM3 | 75,114,974 | 67,389,576 | 99.97 | 97.35 | 44.50 | 59,482,822 (88.27%) | 57,015,130 (84.61%) | 2,467,692 (3.66%) |
Comparison Group | Up-Regulated Genes | Down-Regulated Genes |
---|---|---|
E15_BM vs. E21_BM | CLEC3A, TCF21, NKX2-1, LOC101799083, RXFP2, NRN1, IFITM10, LOC101789807, LOC101800713, GDF5 | LOC113842946, LOC113844954, LOC101792564, CA4, LOC101803753, NKX2-2, LOC110353429, LOC113842952, LOC113842945, LOC101795455 |
E15_BM vs. E27_BM | ADRB3, NKX2-8, WNT9B, TMPRSS2, ZIC3, SERPINB5, PENK, LOC101805062, ANXA10, LOC113841609 | CA4, TRNAH-GUG, LOC113844954, LOC101793166, MLN, LOC101805201, LOC101793608, IL4I1, LOC101800226, SYCP2L |
E21_BM vs. E27_BM | LOC101795455, LOC106016676, LOC101804301, LOC101798615, LOC101794100, HEMGN, LOC101791390, SIAH3, MNX1, BD2 | CLEC3A, NPVF, TP53TG5, TRNAH-GUG, MLN, HS3ST5, PTCHD4, LOC113844884, LOC113844846, PTH |
ID | GO Terms | Number of DEGs | p-Value |
---|---|---|---|
GO:0008284 | positive regulation of cell proliferation | 113 | 0.0009 |
GO:0008285 | negative regulation of cell proliferation | 98 | 0.0049 |
GO:0008283 | cell proliferation | 85 | 0.0030 |
GO:0006457 | actin cytoskeleton organization | 52 | 0.0084 |
GO:0007409 | regulation of cell cycle | 44 | 0.0065 |
GO:0090305 | actin filament organization | 28 | 0.0066 |
GO:0045454 | positive regulation of cell growth | 27 | 0.0266 |
GO:0050919 | regulation of actin cytoskeleton organization | 19 | 0.0010 |
GO:0000278 | embryo development | 16 | 0.0003 |
GO:0043044 | skeletal muscle contraction | 12 | 0.0285 |
GO:0047496 | negative regulation of myoblast differentiation | 9 | 0.0164 |
GO:0016051 | myoblast differentiation | 9 | 0.0164 |
GO:0001953 | muscle cell differentiation | 8 | 0.0059 |
GO:0060394 | positive regulation of myotube differentiation | 7 | 0.0484 |
GO:0030048 | striated muscle contraction | 7 | 0.0484 |
GO:0045820 | regulation of skeletal muscle cell differentiation | 6 | 0.0213 |
GO:0021707 | embryonic body morphogenesis | 5 | 0.0405 |
GO:0051415 | striated muscle tissue development | 5 | 0.0405 |
GO:0051224 | skeletal muscle thin filament assembly | 5 | 0.0405 |
ID | Pathway Name | Number of DEGs | p-Value |
---|---|---|---|
ko04510 | Focal adhesion | 143 | 0.004168 |
ko04810 | Regulation of actin cytoskeleton | 133 | 0.001607 |
ko04310 | Wnt signaling pathway | 104 | 0.002853 |
ko04110 | Cell cycle | 85 | 0.000004 |
ko04910 | Insulin signaling pathway | 81 | 0.021021 |
ko04512 | ECM-receptor interaction | 77 | 0.007448 |
ko04520 | Adherens junction | 53 | 0.009627 |
Name | Sequences (5′-3′) | Accession No. | Length | Regulated |
---|---|---|---|---|
FYN | F: TTGCTGCCGCTTAGTAGTCC | XM_027454688.2 | 200 bp | Up |
R: TGCCAGGCTTCAGAGTCTTG | ||||
PTK2 | F: AATCCAGGCGACAAGTCACG | XM_038175670.1 | 178 bp | Up |
R: ATCCCGTGAGAACCAGGGTA | ||||
RHOA | F: ACGAGCACACAAGACGAGAG | NM_001310346.1 | 198 bp | Up |
R: ACCCGGACTTTTTCTTGCCA | ||||
PXN | F: TGAATCGGGACCTCTCTCCA | XM_038187676.1 | 203 bp | Down |
R: ACCATTCTGCTCCTCTCCCT | ||||
LAMB1 | F: AAGAAACGCTGAACAACGCC | XM_038175878.1 | 172 bp | Down |
R: TTCAGCTCGGTGTTGAGGAC | ||||
CTNNB1 | F: ATACCGCCCAGACGATCCTA | XM_027450106.2 | 138 bp | Up |
R: GGCAGACCATCAACTGGGTA | ||||
FGF9 | F: TCTGATGGCTCCCTTAGGTG | XM_005031210.5 | 127 bp | Up |
R: CTCAGACTGACCCAGGTGGT | ||||
ACTN1 | F: AGCAGACCAACGACTACATGC | XM_038179254.1 | 125 bp | Up |
R: AGCCTTGCGGAGGTGAGAAT | ||||
LAMC1 | F: CTTCAACCTCCAGAGCGGAC | XM_038182826.1 | 165 bp | Down |
R: TCAGGGCCAAATCCGAAGTG | ||||
LMO7 | F: CTTCCTCTGCCAAAGCACCT | XM_038183971.1 | 138 bp | Down |
R: TCTTCCCACTGACTGACCTG | ||||
LIMCH1 | F: ATCGAGCAAGTGACAGGCAG | XM_027457183.2 | 138 bp | Down |
R: AATGGGGGTCGGTAGTCTGT | ||||
PDPK1 | F: GAGCTACGTCCAGAAGCCAA | XM_027469114.2 | 127 bp | Up |
R: GCCGCCACACTTCATGTATC | ||||
β-actin | F: CCCTGTATGCCTCTGGTCG | EF667345 | 194 bp | |
R: CTCGGCTGTGGTGGTGAAG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Z.; Liu, X. Integration of Transcriptomics and Non-Targeted Metabolomics Reveals the Underlying Mechanism of Skeletal Muscle Development in Duck during Embryonic Stage. Int. J. Mol. Sci. 2023, 24, 5214. https://doi.org/10.3390/ijms24065214
Hu Z, Liu X. Integration of Transcriptomics and Non-Targeted Metabolomics Reveals the Underlying Mechanism of Skeletal Muscle Development in Duck during Embryonic Stage. International Journal of Molecular Sciences. 2023; 24(6):5214. https://doi.org/10.3390/ijms24065214
Chicago/Turabian StyleHu, Zhigang, and Xiaolin Liu. 2023. "Integration of Transcriptomics and Non-Targeted Metabolomics Reveals the Underlying Mechanism of Skeletal Muscle Development in Duck during Embryonic Stage" International Journal of Molecular Sciences 24, no. 6: 5214. https://doi.org/10.3390/ijms24065214
APA StyleHu, Z., & Liu, X. (2023). Integration of Transcriptomics and Non-Targeted Metabolomics Reveals the Underlying Mechanism of Skeletal Muscle Development in Duck during Embryonic Stage. International Journal of Molecular Sciences, 24(6), 5214. https://doi.org/10.3390/ijms24065214