Serum CXCL5 Detects Early Hepatocellular Carcinoma and Indicates Tumor Progression
Abstract
:1. Introduction
2. Results
2.1. Baseline Patient Characteristics
2.2. Identification of an HCC-Discriminant Chemokine Panel
2.3. Chemokines Associated with Tumor Stage and Spread
2.4. Etiology-Specific and Common Chemokine Profiles in HCC
3. Discussion
4. Materials and Methods
4.1. Patient Population
4.2. Clinical and Biochemical Parameters
4.3. Assay Methods
4.4. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AIH | autoimmune hepatitis |
ALBI | albumin–bilirubin |
ALT | alanine aminotransferase |
ALD | alcohol-related liver disease |
BCLC | Barcelona Clinic Liver Cancer |
CCL | C-C motif chemokine ligand |
CXCL | C-X-C motif chemokine ligand |
HBC | hepatitis B virus |
HCV | hepatitis C virus |
HCC | hepatocellular carcinoma |
INR | international normalized ratio |
IL | interleukin |
MELD | model for end-stage liver disease |
MVI | macrovascular invasion |
NAFLD | non-alcoholic fatty liver disease |
PBC | primary biliary cholangitis |
PSC | primary sclerosing cholangitis |
TME | tumor microenvironment |
References
- Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.S. Hepatocellular carcinoma. Nat. Rev. Dis. Prim. 2021, 7, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Sadai Mahmood, S.; Alhelu, A.J.; Ismael, K.I.; Jumaah, A.A.; Saeed, T.; Farhan Zghair, L.; Abdulkafi, A.Q. A cross-sectional study of Iraqi patients investigating HPSE SNPs and the incidence of hepatocellular carcinoma. J. Popul. Ther. Clin. Pharmacol. 2023, 30, 258–267. [Google Scholar]
- Roderburg, C.; Wree, A.; Demir, M.; Schmelzle, M.; Tacke, F. The role of the innate immune system in the development and treatment of hepatocellular carcinoma. Hepatic Oncol. 2020, 7, HEP17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pocino, K.; Stefanile, A.; Basile, V.; Napodano, C.; D’Ambrosio, F.; Di Santo, R.; Callà, C.A.M.; Gulli, F.; Saporito, R.; Ciasca, G.; et al. Cytokines and Hepatocellular Carcinoma: Biomarkers of a Deadly Embrace. J. Pers. Med. 2022, 13, 5. [Google Scholar] [CrossRef]
- Yang, Y.M.; Kim, S.Y.; Seki, E. Inflammation and Liver Cancer: Molecular Mechanisms and Therapeutic Targets. Semin. Liver Dis. 2019, 9, 26–42. [Google Scholar] [CrossRef]
- Roehlen, N.; Crouchet, E.; Baumert, T.F. Liver Fibrosis: Mechanistic Concepts and Therapeutic Perspectives. Cells 2020, 9, 875. [Google Scholar] [CrossRef] [Green Version]
- Greten, F.R.; Grivennikov, S.I. Inflammation and Cancer: Triggers, Mechanisms, and Consequences. Immunity 2019, 51, 27–41. [Google Scholar] [CrossRef]
- Lan, T.; Chen, L.; Wei, X. Inflammatory cytokines in cancer: Comprehensive understanding and clinical progress in gene therapy. Cells 2021, 10, 100. [Google Scholar] [CrossRef]
- Zajkowska, M.; Mroczko, B. Chemokines in Primary Liver Cancer. Int. J. Mol. Sci. 2022, 23, 8846. [Google Scholar] [CrossRef]
- Brandt, E.F.; Baues, M.; Wirtz, T.H.; May, J.-N.; Fischer, P.; Beckers, A.; Schüre, B.-C.; Sahin, H.; Trautwein, C.; Lammers, T.; et al. Chemokine CXCL10 Modulates the Tumor Microenvironment of Fibrosis-Associated Hepatocellular Carcinoma. Int. J. Mol. Sci. 2022, 23, 8112. [Google Scholar] [CrossRef]
- Debes, J.D.; van Tilborg, M.; Groothuismink, Z.M.A.; Hansen, B.E.; Schulze Zur Wiesch, J.; von Felden, J.; de Knegt, R.J.; Boonstra, A. Levels of Cytokines in Serum Associate With Development of Hepatocellular Carcinoma in Patients With HCV Infection Treated With Direct-Acting Antivirals. Gastroenterology 2018, 154, 515–517.e3. [Google Scholar] [CrossRef] [PubMed]
- Estevez, J.; Chen, V.L.; Podlaha, O.; Li, B.; Le, A.; Vutien, P.; Chang, E.T.; Rosenberg-Hasson, Y.; Jiang, Z.; Pflanz, S.; et al. Differential Serum Cytokine Profiles in Patients with Chronic Hepatitis B, C, and Hepatocellular Carcinoma. Sci. Rep. 2017, 7, 11867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koshiol, J.; Argirion, I.; Liu, Z.; Kim Lam, T.; O’Brien, T.R.; Yu, K.; McGlynn, K.A.; Petrick, J.L.; Pinto, L.; Chen, C.J.; et al. Immunologic markers and risk of hepatocellular carcinoma in hepatitis B virus- and hepatitis C virus-infected individuals. Aliment. Pharmacol. Ther. 2021, 54, 833–842. [Google Scholar] [CrossRef] [PubMed]
- Beudeker, B.J.B.; Groothuismink, Z.M.A.; van der Eijk, A.A.; Debes, J.D.; Boonstra, A. Circulating Cytokines Reflect the Etiology-Specific Immune Environment in Cirrhosis and HCC. Cancers 2022, 14, 4900. [Google Scholar] [CrossRef]
- Xue, D.; Zheng, Y.; Wen, J.; Han, J.; Tuo, H.; Liu, Y.; Peng, Y. Role of chemokines in hepatocellular carcinoma (Review). Oncol. Rep. 2021, 45, 809–823. [Google Scholar] [CrossRef]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef]
- Clària, J.; Stauber, R.E.; Coenraad, M.J.; Moreau, R.; Jalan, R.; Pavesi, M.; Amorós, À.; Titos, E.; Alcaraz-Quiles, J.; Oettl, K.; et al. Systemic inflammation in decompensated cirrhosis: Characterization and role in acute-on-chronic liver failure. Hepatology 2016, 64, 1249–1264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engelmann, C.; Clària, J.; Szabo, G.; Bosch, J.; Bernardi, M. Pathophysiology of decompensated cirrhosis: Portal hypertension, circulatory dysfunction, inflammation, metabolism and mitochondrial dysfunction. J. Hepatol. 2021, 75, S49–S66. [Google Scholar] [CrossRef]
- Albillos, A.; Martin-Mateos, R.; Van der Merwe, S.; Wiest, R.; Jalan, R.; Álvarez-Mon, M. Cirrhosis-associated immune dysfunction. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 112–134. [Google Scholar] [CrossRef]
- Mohr, R.; Jost-Brinkmann, F.; Özdirik, B.; Lambrecht, J.; Hammerich, L.; Loosen, S.H.; Luedde, T.; Demir, M.; Tacke, F.; Roderburg, C. Lessons From Immune Checkpoint Inhibitor Trials in Hepatocellular Carcinoma. Front. Immunol. 2021, 12, 1007. [Google Scholar] [CrossRef]
- Marra, F.; Tacke, F. Roles for chemokines in liver disease. Gastroenterology 2014, 147, 577–594.e1. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Chen, Y.; Cui, L.; Yang, K.; Wang, X.; Lei, L.; Zhang, Y.; Kong, X.; Lao, W.; Li, Z.; et al. CXCL8, CXCL9, CXCL10, and CXCL11 as biomarkers of liver injury caused by chronic hepatitis B. Front. Microbiol. 2022, 13, 1052917. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Jiang, R.; Meng, E.; Wu, H. CXCL5: A coachman to drive cancer progression. Front. Oncol. 2022, 12, 3899. [Google Scholar] [CrossRef]
- Zhou, S.L.; Zhou, Z.J.; Hu, Z.Q.; Li, X.; Huang, X.W.; Wang, Z.; Fan, J.; Dai, Z.; Zhou, J. CXCR2/CXCL5 axis contributes to epithelial-mesenchymal transition of HCC cells through activating PI3K/Akt/GSK-3β/Snail signaling. Cancer Lett. 2015, 358, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Nie, Y.; Jiang, M.C.; Liu, C.; Liu, Q.; Zhu, X. CXCL5 Has Potential to Be a Marker for Hepatocellular Carcinoma Prognosis and Was Correlating With Immune Infiltrates. Front. Oncol. 2021, 11, 637023. [Google Scholar] [CrossRef]
- Zhou, S.-L.; Dai, Z.; Zhou, Z.-J.; Wang, X.-Y.; Yang, G.-H.; Wang, Z.; Huang, X.-W.; Fan, J.; Zhou, J. Overexpression of CXCL5 mediates neutrophil infiltration and indicates poor prognosis for hepatocellular carcinoma. Hepatology 2012, 56, 2242–2254. [Google Scholar] [CrossRef]
- Li, L.; Xia, Y.; Ji, X.; Wang, H.; Zhang, Z.; Lu, P.; Ding, Q.; Wang, D.; Liu, M. MIG/CXCL9 exacerbates the progression of metabolic-associated fatty liver disease by disrupting Treg/Th17 balance. Exp. Cell Res. 2021, 407, 112801. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, C. The role of liver sinusoidal endothelial cells in cancer liver metastasis. Am. J. Cancer Res. 2021, 11, 1845–1860. [Google Scholar]
- Sahin, H.; Borkham-Kamphorst, E.; Kuppe, C.; Zaldivar, M.M.; Grouls, C.; Al-Samman, M.; Nellen, A.; Schmitz, P.; Heinrichs, D.; Berres, M.-L.; et al. Chemokine Cxcl9 attenuates liver fibrosis-associated angiogenesis in mice. Hepatology 2012, 55, 1610–1619. [Google Scholar] [CrossRef]
- Berres, M.-L.; Asmacher, S.; Lehmann, J.; Jansen, C.; Görtzen, J.; Klein, S.; Meyer, C.; Strunk, H.M.; Fimmers, R.; Tacke, F.; et al. CXCL9 is a prognostic marker in patients with liver cirrhosis receiving transjugular intrahepatic portosystemic shunt. J. Hepatol. 2015, 62, 332–339. [Google Scholar] [CrossRef]
- Wang, C.; Shi, J.; Xu, J.; Fu, Q.; Ding, Y.; Yang, J.; Liu, B.; Gao, Q.; Qin, J.; Liang, C. NLRC3 High Expression Represents a Novel Predictor for Positive Overall Survival Correlated With CCL5 and CXCL9 in HCC Patients. Front. Oncol. 2022, 12, 39. [Google Scholar] [CrossRef] [PubMed]
- Kadomoto, S.; Izumi, K.; Mizokami, A. The CCL20-CCR6 axis in cancer progression. Int. J. Mol. Sci. 2020, 1, 1–18. [Google Scholar]
- Pan, X.; Kaminga, A.C.; Wen, S.W.; Liu, A. Chemokines in hepatocellular carcinoma: A meta-analysis. Carcinogenesis 2020, 41, 1682–1694. [Google Scholar] [CrossRef] [PubMed]
- Peiseler, M.; Schwabe, R.; Hampe, J.; Kubes, P.; Heikenwälder, M.; Tacke, F. Immune mechanisms linking metabolic injury to inflammation and fibrosis in fatty liver disease—Novel insights into cellular communication circuits. J. Hepatol. 2022, 77, 1136–1160. [Google Scholar] [CrossRef] [PubMed]
- Guilliams, M.; Scott, C.L. Liver macrophages in health and disease. Immunity 2022, 55, 1515–1529. [Google Scholar] [CrossRef]
- Wallace, S.J.; Tacke, F.; Schwabe, R.F.; Henderson, N.C. Understanding the cellular interactome of non-alcoholic fatty liver disease. JHEP Rep. 2022, 4, 100524. [Google Scholar] [CrossRef]
- GuilGuilliams, M.; Bonnardel, J.; Haest, B.; Vanderborght, B.; Wagner, C.; Remmerie, A.; Bujko, A.; Martens, L.; Thoné, T.; Browaeys, R.; et al. Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. Cell 2022, 185, 379–396.e38. [Google Scholar] [CrossRef]
- Li, X.; Yao, W.; Yuan, Y.; Chen, P.; Li, B.; Li, J.; Chu, R.; Song, H.; Xie, D.; Jiang, X.; et al. Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma. Gut 2017, 66, 157–167. [Google Scholar] [CrossRef]
- Yao, W.; Ba, Q.; Li, X.; Li, H.; Zhang, S.; Yuan, Y.; Wang, F.; Duan, X.; Li, J.; Zhang, W.; et al. A Natural CCR2 Antagonist Relieves Tumor-associated Macrophage-mediated Immunosuppression to Produce a Therapeutic Effect for Liver Cancer. EBioMedicine 2017, 22, 58–67. [Google Scholar] [CrossRef] [Green Version]
- Li, B.-H.; Jiang, W.; Zhang, S.; Huang, N.; Sun, J.; Yang, J.; Li, Z.-F. The spleen contributes to the increase in PMN-MDSCs in orthotopic H22 hepatoma mice. Mol. Immunol. 2020, 125, 95–103. [Google Scholar] [CrossRef]
- He, H.; Wu, J.; Zang, M.; Wang, W.; Chang, X.; Chen, X.; Wang, R.; Wu, Z.; Wang, L.; Wang, D.; et al. CCR6+ B lymphocytes responding to tumor cell-derived CCL20 support hepatocellular carcinoma progression via enhancing angiogenesis. Am. J. Cancer Res. 2017, 7, 1151–1163. [Google Scholar]
- Benkheil, M.; Van Haele, M.; Roskams, T.; Laporte, M.; Noppen, S.; Abbasi, K.; Delang, L.; Neyts, J.; Liekens, S. CCL20, a direct-acting pro-angiogenic chemokine induced by hepatitis C virus (HCV): Potential role in HCV-related liver cancer. Exp. Cell Res. 2018, 372, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Argirion, I.; Brown, J.; Jackson, S.; Pfeiffer, R.M.; Lam, T.K.; O’Brien, T.R.; Yu, K.J.; McGlynn, K.A.; Petrick, J.L.; Pinto, L.A.; et al. Association between Immunologic Markers and Cirrhosis in Individuals from a Prospective Chronic Hepatitis C Cohort. Cancers 2022, 14, 5280. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Lu, P.; Fujii, C.; Nakamoto, Y.; Gao, J.L.; Kaneko, S.; Murphy, P.M.; Mukaida, N. Essential contribution of a chemokine, CCL3, and its receptor, CCR1, to hepatocellular carcinoma progression. Int. J. Cancer 2006, 118, 1869–1876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, F.; Li, X.; Chen, S.; Zeng, Q.; Zhao, Y.; Luo, F. Tumor-associated macrophage or chemokine ligand CCL17 positively regulates the tumorigenesis of hepatocellular carcinoma. Med. Oncol. 2016, 33, 17. [Google Scholar] [CrossRef]
- Nagata, N.; Chen, G.; Xu, L.; Ando, H. An Update on the Chemokine System in the Development of NAFLD. Med. 2022, 58, 761. [Google Scholar] [CrossRef]
- Li, L.; Xu, L.; Yan, J.; Zhen, Z.-J.; Ji, Y.; Liu, C.-Q.; Lau, W.Y.; Zheng, L.; Xu, J. CXCR2-CXCL1 axis is correlated with neutrophil infiltration and predicts a poor prognosis in hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 2015, 34, 129. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Hu, X.; Yu, S.; Yi, P.; Chen, R.; Huang, Z.; Huang, Y.; Huang, Y.; Zhou, R.; Fan, X. Hepatic stellate cell-released CXCL1 aggravates HCC malignant behaviors through the MIR4435-2HG/miR-506-3p/TGFB1 axis. Cancer Sci. 2022, 114, 504–520. [Google Scholar] [CrossRef]
- Marchesini, G.; Day, C.P.; Dufour, J.F.; Canbay, A.; Nobili, V.; Ratziu, V.; Tilg, H.; Roden, M.; Gastsaldelli, A.; Yki-Järvinen, H.; et al. EASL-EASD-EASO Clinical Practice Guidelines for the Management of Non-Alcoholic Fatty Liver Disease. Obes. Facts. 2016, 9, 65–90. [Google Scholar] [CrossRef] [Green Version]
- Thursz, M.; Gual, A.; Lackner, C.; Mathurin, P.; Moreno, C.; Spahr, L.; Sterneck, M.; Cortez-Pinto, H. EASL Clinical Practice Guidelines: Management of alcohol-related liver disease. J. Hepatol. 2018, 69, 154–181. [Google Scholar] [CrossRef] [Green Version]
- Lohse, A.W.; Chazouillères, O.; Dalekos, G.; Drenth, J.; Heneghan, M.; Hofer, H.; Lammert, F.; Lenzi, M. EASL clinical practice guidelines: Autoimmune hepatitis. J. Hepatol. 2015, 63, 971–1004. [Google Scholar]
- Chazouilleres, O.; Beuers, U.; Bergquist, A.; Karlsen, T.H.; Levy, C.; Samyn, M.; Schramm, C.; Trauner, M. EASL Clinical Practice Guidelines on sclerosing cholangitis. J. Hepatol. 2022, 77, 761–806. [Google Scholar] [CrossRef] [PubMed]
- Strassburg, C.P.; Beckebaum, S.; Geier, A.; Gotthardt, D.; Klein, R.; Melter, M.; Schott, E.; Spengler, U.; Tacke, F.; Trauner, M.; et al. S2k Leitlinie Autoimmune Lebererkrankungen: AWMF-Reg. Nr. 021-27. Z. Gastroenterol. 2017, 55, 1135–1226. [Google Scholar]
- Zoller, H.; Schaefer, B.; Vanclooster, A.; Griffiths, B.; Bardou-Jacquet, E.; Corradini, E.; Porto, G.; Ryan, J.; Cornberg, M. EASL Clinical Practice Guidelines on haemochromatosis. J. Hepatol. 2022, 77, 479–502. [Google Scholar] [CrossRef]
- Lampertico, P.; Agarwal, K.; Berg, T.; Buti, M.; Janssen, H.L.A.; Papatheodoridis, F.Z.; Tacke, F. EASL 2017 Clinical Practice Guidelines on the Management of Hepatitis B Virus Infection. J. Hepatol. 2017, 67, 370–398. [Google Scholar] [CrossRef] [Green Version]
- Mutimer, D.; Aghemo, A.; Diepolder, H.; Negro, F.; Robaeys, G.; Ryder, S.; Zoulim, F. EASL Clinical Practice Guidelines: Management of hepatitis C virus infection. J. Hepatol. 2014, 60, 392–420. [Google Scholar]
- Galle, P.R.; Forner, A.; Llovet, J.M.; Mazzaferro, V.; Piscaglia, F.; Raoul, J.L.; Schirmacher, P.; Vilgrain, V. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2018, 69, 182–236. [Google Scholar] [CrossRef] [Green Version]
- Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fàbrega, J.; Burrel, M.; Garcia-Criado, Á.; Kelley, R.K.; Galle, P.R.; Mazzaferro, V.; Salem, R.; et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J. Hepatol. 2022, 76, 681–693. [Google Scholar] [CrossRef]
Feature | Patients with HCC (n = 97) | Patients with Cirrhosis (n = 125) | * p-Value |
---|---|---|---|
Sex, female, n (%) | 21 (22%) | 40 (32%) | 0.087 |
Age median (range), years | 66 (43–85) | 54 (25–71) | <0.001 |
Child Pugh Score, % (n) A B C | 77.3% (75) 21.6% (21) - NA = 1 | 42.4% (53) 45.6% (57) 8% (10) NA = 5 | <0.001 |
MELD score median (range) | 9.7 (5.7–25.3) | 14.3 (6.4–36.6) | <0.001 |
ALBI, % (n) Grade 1 Grade 2 Grade 3 | 37.1% (36) 50.5% (49) 11.3% (11) | 15.8% (16) 49.5% (50) 34.6% (35) | <0.001 |
ALT median (range), U/L | 44 (6–219) | 34 (6–392) | 0.012 |
Albumin median (range), g/L | 37.5 (1.0–51.2) | 33 (2.8–48) | <0.001 |
Bilirubin median (range), mg/dL | 1.1 (0.1–10) | 2 (0.3–29.1) | <0.001 |
Creatinin median (range), mg/dL | 0.8 (0.4–2) | 0.9 (0.5–4.3) | 0.003 |
INR (range) | 1.2 (0.9–2.1) | 1.4 (0.8–4.6) | <0.001 |
BCLC, % (n) 0 A B C NA | 10% (8) 16.2% (13) 43.8% (35) 30% (24) 17.5% (17) | - | - |
Macrovascular invasion in HCC, % (n) NA | 18.5% (18) 4% (4) | ||
Underlying etiology, % (n) | 0.046 | ||
Viral hepatitis | 32% (31) | 19.2% (24) | |
Alcohol | 34% (33) | 35.2% (44) | |
NAFLD | 21.6% (21) | 24% (30) | |
Cholestatic/autoimmune (PBC, PSC, AIH) | 4.1% (4) | 10.4% (13) | |
Other origin | 8.2% (8) | 10.4% (13) |
Viral Cirrhosis with HCC (n = 31) | Viral Cirrhosis (n = 23) | p-Value | |
CCL25 | 0.8 (0–34.6) | 3.5 (0–90.8) | 0.002 |
CXCL5 | 190.3 (13.5–1967.2) | 74.7 (5.5–1032.7) | <0.001 |
CXCL9 | 393.8 (158–1316.5) | 269.1 (42.8–2150.7) | 0.025 |
CXCL10 | 482.1 (11.7–1035.3) | 246 (18.6–1493) | 0.003 |
NAFLD Cirrhosis with HCC (n = 21) | NAFLD Cirrhosis (n = 30) | p-Value | |
CXCL5 | 231.1 (72.4–856.3) | 107 (18.4–702.7) | 0.008 |
CXCL9 | 381.7 (88.8–2325.4) | 172 (41.8–3782.2) | 0.002 |
CXCL10 | 263.5 (131.4–999.5) | 125.8 (22.8–736.8) | <0.001 |
ALD Cirrhosis with HCC (n = 33) | ALD Cirrhosis (n = 44) | p-Value | |
CCL2 | 230.2 (19.5–507.1) | 145.7 (50.2–778.7) | 0.001 |
CCL25 | 1,5 (0–32.2) | 3.8 (0–166.3) | <0.001 |
CXCL1 | 78.9 (15.5–364) | 50.9 (4.7–336.2) | 0.009 |
CXCL5 | 190.5 (44.7–1155.6) | 83.8 (14.6–873.4) | 0.001 |
CXCL9 | 292.9 (121.3–1396.3) | 124.8 (29.2–609.4) | <0.001 |
CXCL10 | 294.9 (143.7–673.3) | 121.3 (24.8–570.4) | <0.001 |
CXCL11 | 23 (11.8–50.1) | 18.4 (3.9–52.6) | 0.023 |
Cholestatic/Autoimmune Cirrhosis with HCC (n = 4) | Cholestatic/Autoimmune Cirrhosis (n = 14) | p-Value | |
CCL3 | 18.9 (8–28.2) | 97.4 (41.7–613.7) | 0.003 |
CXCL5 | 382.7 (159.9–524.1) | 86 (18.9–220.9) | 0.003 |
CXCL10 | 318.5 (112.9–518.2) | 72.8 (26.4–356.8) | 0.046 |
HCC Due to Other Etiologies (n = 8) | Cirrhosis Due to Other Etiologies (n = 13) | p-Value | |
CCL17 | 390.6 (106.1–595.6) | 148.8 (29.8–740.5) | 0.002 |
CXCL1 | 268.5 (79.6–411.7) | 72.9 (37.1–360.9) | 0.016 |
CXCL5 | 780.3 (565.4–2206-3) | 131.8 (14–512.6) | <0.001 |
CXCL9 | 391.4 (167.3–2358.8) | 88.1 (34.7–887.6) | 0.003 |
CXCL10 | 248.9 (169.6–456.4) | 47.6 (25.8–381) | 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laschtowitz, A.; Lambrecht, J.; Puengel, T.; Tacke, F.; Mohr, R. Serum CXCL5 Detects Early Hepatocellular Carcinoma and Indicates Tumor Progression. Int. J. Mol. Sci. 2023, 24, 5295. https://doi.org/10.3390/ijms24065295
Laschtowitz A, Lambrecht J, Puengel T, Tacke F, Mohr R. Serum CXCL5 Detects Early Hepatocellular Carcinoma and Indicates Tumor Progression. International Journal of Molecular Sciences. 2023; 24(6):5295. https://doi.org/10.3390/ijms24065295
Chicago/Turabian StyleLaschtowitz, Alena, Joeri Lambrecht, Tobias Puengel, Frank Tacke, and Raphael Mohr. 2023. "Serum CXCL5 Detects Early Hepatocellular Carcinoma and Indicates Tumor Progression" International Journal of Molecular Sciences 24, no. 6: 5295. https://doi.org/10.3390/ijms24065295
APA StyleLaschtowitz, A., Lambrecht, J., Puengel, T., Tacke, F., & Mohr, R. (2023). Serum CXCL5 Detects Early Hepatocellular Carcinoma and Indicates Tumor Progression. International Journal of Molecular Sciences, 24(6), 5295. https://doi.org/10.3390/ijms24065295