Mechanism Repositioning Based on Integrative Pharmacology: Anti-Inflammatory Effect of Safflower in Myocardial Ischemia–Reperfusion Injury
Abstract
:1. Introduction
2. Results
2.1. Effect of Safflower for Protection against MIR Injury in Mice
2.2. Identification and Characterization of Chemical Constituents in Safflower
2.3. Target Prediction and Functional Enrichment
2.4. Screening of Key Components and Hub Genes
2.5. The Mechanism and Molecular Docking
2.6. Safflower Inhibits Inflammation-Related Factors in MIR Mice
3. Discussion
4. Materials and Methods
4.1. Data Preparation
4.1.1. Preparation of Safflower
4.1.2. Animals
4.2. Pharmacological Evaluation
4.2.1. Induction and Treatment of MIR-Injured Mice
4.2.2. Echocardiography
4.2.3. TTC/Evans Blue Staining
4.2.4. Detection of Biochemical Markers in the Blood
4.2.5. TUNEL Assay
4.3. Data Collection
4.3.1. Component Identification
4.3.2. Mass Spectrometry Conditions
4.3.3. Data Processing
4.4. Mechanism Prediction
4.4.1. Prediction of the Targets of Safflower
4.4.2. Collection of MIR-Related Targets
4.4.3. Functional Analysis and Network Construction
4.4.4. Hub Target and Key Component Screening
- (1)
- Hub target screening:
- (2)
- Key component screening:
- ①
- Network topological analysis: The degree value of the network was calculated to screen for core compounds. The degree values of the core compounds were higher than the median. For components, the median degree value is 8;
- ②
- Literature mining: A systematic search was performed on PubMed using the following sets of keywords: the “name” of the ingredients, “myocardial ischemia–reperfusion,” and “cardiac ischemia reperfusion.” Studies included in this search were those published from 1967 to November 2022. The literature mainly focuses on animal studies, and none of the ingredients has been found to be used clinically for the treatment of MIR injury. Articles related to the combinations of ingredients were also included. In the selected studies, the following data were meticulously reviewed and extracted: “infarct size detection,” “cardiac function detection” or “serum parameters.” The median of the number of studies was calculated to filter the key compounds;
- ③
- Quantitative analysis: The response values of the compounds were ranked according to UPLC-QTOF-MS/MS to screen for components with response values above the median.
4.4.5. Molecular Docking Simulation
4.5. Mechanism Verification
4.5.1. Quantitative Real-Time Reverse Transcription-Polymerase Chain Reaction (qRT-PCR)
4.5.2. Western Blot
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AAR | Area at risk |
ADME | Absorption, distribution, metabolism, and excretion |
AHSYB | Anhydrosafflor yellow B |
AMI | Acute myocardial infarction |
ANOVA | One-way analysis of variance |
BP | Biological process |
BPI | Base peak intensity |
CC | Cellular component |
dUTP | 2′-deoxyuridine 5′-triphosphate |
EF | Ejection fraction |
ESI | Electrospray ionization |
FS | Fractional shortening |
GO | Gene ontology |
HSYA | Hydroxysafflor yellow A |
HSYB | Hydroxysafflor yellow B |
HSYC | Hydroxy red anthocyanin C |
IS | Infarct area |
KEGG | Kyoto Encyclopedia of Genes and Genomes analyses |
LAD | Left anterior descending |
LDH | Lactate dehydrogenase |
LVSP | Left ventricular systolic pressure |
MF | Molecular function |
MIRI | Myocardial ischemia–reperfusion injury |
PK-PD | Pharmacokinetics-pharmacodynamics |
qRT-PCR | Quantitative real-time polymerase chain reaction |
SEM | Standard error of mean |
SOD | Superoxide dismutase |
TCM | Traditional Chinese medicine |
TCMIP | Traditional Chinese medicine integrative pharmacology |
TTC | Triphenyl tetrazolium chloride |
TUNEL | Terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling |
UPLC-QTOF-MS/MS | Ultra-performance liquid chromatography–quadrupole time-of-flight-tandem mass spectrometer |
References
- Reed, G.W.; Rossi, J.E.; Cannon, C.P. Acute myocardial infarction. Lancet 2017, 389, 197–210. [Google Scholar] [CrossRef] [PubMed]
- Woodman, O.L.; Chin, K.Y.; Thomas, C.J.; Ng, D.C.H.; May, C.N. Flavonols and flavones-protecting against myocardial ischemia/reperfusion injury by targeting protein kinases. Curr. Med. Chem. 2018, 25, 4402–4415. [Google Scholar] [CrossRef] [PubMed]
- Hausenloy, D.J.; Chilian, W.; Crea, F.; Davidson, S.M.; Ferdinandy, P.; Garcia-Dorado, D.; van Royen, N.; Schulz, R.; Heusch, G. The coronary circulation in acute myocardial ischaemia/reperfusion injury: A target for cardioprotection. Cardiovasc. Res. 2019, 115, 1143–1155. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez, B.; Heusch, G.; Ovize, M.; Vande, W.F. Evolving therapies for myocardial ischemia/reperfusion injury. J. Am. Coll. Cardiol. 2015, 65, 1454–1471. [Google Scholar] [CrossRef] [Green Version]
- Hao, P.; Jiang, F.; Cheng, J.; Ma, L.; Zhang, Y.; Zhao, Y. Traditional Chinese medicine for cardiovascular disease: Evidence and potential mechanisms. J. Am. Coll. Cardiol. 2017, 69, 2952–2966. [Google Scholar] [CrossRef]
- Dong, M.; Jun, H.; Li, Y.; Ming, M.; Hong, C. Traditional Chinese medicine for myocardial infarction: An overview. Int. J. Clin. Pract. 2013, 67, 1254–1260. [Google Scholar] [CrossRef]
- Liang, B.; Gu, N. Traditional Chinese medicine for coronary artery disease treatment: Clinical evidence from randomized controlled trials. Front. Cardiovasc. Med. 2021, 8, 702110. [Google Scholar] [CrossRef]
- Heusch, G.; Gersh, B.J. The pathophysiology of acute myocardial infarction and strategies of protection beyond reperfusion: A continual challenge. Eur. Heart J. 2017, 38, 774–784. [Google Scholar] [CrossRef] [Green Version]
- Yue, S.; Tang, Y.; Li, S.; Duan, J.A. Chemical and biological properties of quinochalcone C-glycosides from the florets of Carthamus tinctorius. Molecules 2013, 18, 15220–15254. [Google Scholar] [CrossRef]
- Feng, X.; Li, Y.; Wang, Y.; Li, L.; Little, P.J.; Xu, S.W.; Liu, S. Danhong injection in cardiovascular and cerebrovascular diseases: Pharmacological actions, molecular mechanisms, and therapeutic potential. Pharmacol. Res. 2019, 139, 62–75. [Google Scholar] [CrossRef] [Green Version]
- Ming, Z.Y.; Jiang, J.G.; Wu, J.L.; Chen, J.H. Effects of Carthamus tinctorius L. injection on cardial function after acute myocardial ischemia and reperfusion in rats. J. Xianning Med. Coll. 2022, 16, 29–31. [Google Scholar]
- Chen, D.B.; Dong, L.Y.; Fang, M.; Chen, Z.W.; Ma, C.G. Effects of Pretreatment of Extracts of Honghua (Flos carthami) on Ischemia-Reperfusion Myocardium. J. Tradit. Chin. Med. 2006, 47, 138–141. [Google Scholar]
- Xu, H.; Zhang, Y.; Wang, P.; Zhang, J.; Chen, H.; Zhang, L.; Xia Du, X.; Zhao, C.; Wu, D.; Liu, F.; et al. A comprehensive review of integrative pharmacology-based investigation: A paradigm shift in traditional Chinese medicine. Acta Pharm. Sin. B 2021, 11, 1379–1399. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Wu, J.; Gu, J.; Weng, H.; Wang, J.; Wang, T.; Liang, X.; Cao, L. Modular characteristics and mechanism of action of herbs for endometriosis treatment in Chinese medicine: A data mining and network pharmacology-based identification. Front. Pharmacol. 2020, 11, 147. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Xu, C.; Huo, X.; Hao, H.; Wan, Q.; Chen, H.; Zhang, X.; Breyer, R.M.; Huang, Y.; Cao, X. The cyclooxygenase-1/mPGES-1/endothelial prostaglandin EP4 receptor pathway constrains myocardial ischemia-reperfusion injury. Nat. Commun. 2019, 10, 1888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Ma, Y.; Zhang, Y.; Li, D.; Yang, H.; Liang, R. Rapid identification of chemical composition in safflower with UHPLC-LTQ-Orbitrap. China J. Chin. Mater. Med. 2015, 40, 1347–1354. [Google Scholar]
- Li, S.; Yuan, M.; Zhang, L. Simultaneous determination of four coumaroylspermidine constituents in Carthamus tinctorius by HPLC-DAD. China J. Chin. Mater. Med. 2016, 41, 1480–1484. [Google Scholar]
- Farzaei, M.H.; Singh, A.K.; Kumar, R.; Croley, C.R.; Pandey, A.K.; Coy-Barrera, E.; Patra, J.K.; Das, G.; Kerry, R.G.; Annunziata, G.; et al. Targeting inflammation by flavonoids: Novel therapeutic strategy for metabolic disorders. Int. J. Mol. Sci. 2019, 20, 4957. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zhang, B.; Zhang, N. Network target for screening synergistic drug combinations with application to traditional Chinese medicine. BMC Syst. Biol. 2011, 20, S10. [Google Scholar] [CrossRef] [Green Version]
- Song, G.; Jin, M.; Du, Y.; Cao, L.; Xu, H. UPLC-QTOF-MS/MS based screening and identification of the metabolites in rat bile after oral administration of imperatorin. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1022, 21–29. [Google Scholar] [CrossRef]
- Zhang, L.; Shen, H.; Xu, J.; Xu, J.-D.; Li, Z.-L.; Wu, J.; Zou, Y.-T.; Liu, L.-F.; Li, S.-L. UPLC-QTOF-MS/MS-guided isolation and purification of sulfur-containing derivatives from sulfur-fumigated edible herbs, a case study on ginseng. Food Chem. 2018, 246, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Ha, T.; Liu, L.; Kelley, J.; Kao, R.; Williams, D.; Li, C. Toll-like receptors: New players in myocardial ischemia/reperfusion injury. Antioxid. Redox Signal 2011, 15, 1875–1893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Shi, D.; Guo, M. The roles of PKC-delta and PKC-epsilon in myocardial ischemia/reperfusion injury. Pharmacol. Res. 2021, 170, 105716. [Google Scholar] [CrossRef] [PubMed]
- Kolchin, I.N.; Maksiutina, N.P.; Balanda, P.P.; Luĭk, A.I.; Bulakh, V.N.; Moĭbenko, A.A. Kardioprotektornoe deĭstvie kvertsetina pri éksperimental’noĭ okkliuzii i reperfuzii koronarnoĭ arterii u sobak [The cardioprotective action of quercetin in experimental occlusion and reperfusion of the coronary artery in dogs]. Farmakol Toksikol 1991, 54, 20–23. [Google Scholar]
- Annapurna, A.; Reddy, C.S.; Akondi, R.B.; Rao, S.R. Cardioprotective actions of two bioflavonoids, quercetin and rutin, in experimental myocardial infarction in both normal and streptozotocin-induced type I diabetic rats. J Pharm Pharmacol 2009, 61, 1365–1374. [Google Scholar] [CrossRef]
- Xiao, D.; Gu, Z.; Qian, Z. Effects of quercetin on platelet and reperfusion-induced arrhythmias in rats. Zhongguo Yao Li Xue Bao 1993, 14, 505–508. [Google Scholar]
- Challa, S.R.; Akula, A.; Metla, S.; Gopal, P.N. Partial role of nitric oxide in infarct size limiting effect of quercetin and rutin against ischemia-reperfusion injury in normal and diabetic rats. Indian J. Exp. Biol. 2011, 49, 207–210. [Google Scholar]
- Brookes, P.S.; Digerness, S.B.; Parks, D.A.; Darley-Usmar, V. Mitochondrial function in response to cardiac ischemia-reperfusion after oral treatment with quercetin. Free Radic. Biol. Med. 2002, 32, 1220–1228. [Google Scholar] [CrossRef]
- Ahmed, L.A.; Salem, H.A.; Attia, A.S.; El-Sayed, M.E. Enhancement of amlodipine cardioprotection by quercetin in ischaemia/reperfusion injury in rats. J. Pharm. Pharmacol. 2009, 61, 1233–1241. [Google Scholar] [CrossRef]
- Liu, H.; Guo, X.; Chu, Y.; Lu, S. Heart protective effects and mechanism of quercetin preconditioning on anti-myocardial ischemia reperfusion (IR) injuries in rats. Gene 2014, 545, 149–155. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Wu, Y.; Ke, J.; He, X.; Wang, Y. Quercetin postconditioning attenuates myocardial ischemia/reperfusion injury in rats through the PI3K/Akt pathway. Braz. J. Med. Biol. Res. 2013, 46, 861–867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, L.; Xia, J.; Ye, D.; Liu, J.; Chen, J.; Wang, G. Effects of quercetin on gene and protein expression of NOX and NOS after myocardial ischemia and reperfusion in rabbit. Cardiovasc. Ther. 2009, 27, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yu, Z.; Huang, X.; Gao, Y.; Wang, X.; Gu, J.; Xue, S. Peroxisome proliferator-activated receptor γ (PPARγ) mediates the protective effect of quercetin against myocardial ischemia-reperfusion injury via suppressing the NF-κB pathway. Am. J. Transl. Res. 2016, 8, 5169–5186. [Google Scholar] [PubMed]
- Bartekova, M.; Radosinska, J.; Pancza, D.; Barancik, M.; Ravingerova, T. Cardioprotective effects of quercetin against ischemia-reperfusion injury are age-dependent. Physiol. Res. 2016, 65, S101–S107. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Yang, Y.; Song, Y.; Zhang, Y.; Li, Y. Protective roles of quercetin in acute myocardial ischemia and reperfusion injury in rats. Mol. Biol. Rep. 2012, 39, 11005–11009. [Google Scholar] [CrossRef]
- Liu, Y.; Song, Y.; Li, S.; Mo, L. Cardioprotective Effect of Quercetin against ischemia/reperfusion injury is mediated through NO system and mitochondrial K-ATP channels. Cell J. 2021, 23, 184–190. [Google Scholar] [PubMed]
- Tang, J.; Lu, L.; Liu, Y.; Ma, J.; Yang, L.; Li, L.; Guo, H.; Yu, S.; Ren, J.; Bai, H.; et al. Quercetin improves ischemia/reperfusion-induced cardiomyocyte apoptosis in vitro and in vivo study via SIRT1/PGC-1α signaling. J. Cell Biochem. 2019, 120, 9747–9757. [Google Scholar] [CrossRef]
- Dong, L.; Chen, F.; Xu, M.; Yao, L.; Zhang, Y.; Zhuang, Y. Quercetin attenuates myocardial ischemia-reperfusion injury via downregulation of the HMGB1-TLR4-NF-κB signaling pathway. Am. J. Transl. Res. 2018, 10, 1273–1283. [Google Scholar]
- El-Sayed, S.S.; Shahin, R.M.; Fahmy, A.; Elshazly, S.M. Quercetin ameliorated remote myocardial injury induced by renal ischemia/reperfusion in rats: Role of Rho-kinase and hydrogen sulfide. Life Sci. 2021, 287, 120144. [Google Scholar] [CrossRef]
- Liu, C.; Yao, L.; Hu, Y.; Zhao, B. Effect of quercetin-loaded mesoporous silica nanoparticles on myocardial ischemia-reperfusion injury in rats and its mechanism. Int. J. Nanomed. 2021, 16, 741–752. [Google Scholar] [CrossRef]
- Zhao, L.; Zhou, Z.; Zhu, C.; Fu, Z.; Yu, D. Luteolin alleviates myocardial ischemia reperfusion injury in rats via Siti1/NLRP3/NF-κB pathway. Int. Immunopharmacol. 2020, 85, 106680. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhang, C.; Zhu, H.; Wang, S.; Zhou, Y.; Zhao, J.; Xia, Y.; Li, D. Luteolin modulates SERCA2a via Sp1 upregulation to attenuate myocardial ischemia/reperfusion injury in mice. Sci. Rep. 2020, 10, 15407. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Li, M.; Tian, Y.; Liu, J.; Shan, J. Luteolin inhibits ROS-activated MAPK pathway in myocardial ischemia/reperfusion injury. Life Sci. 2015, 122, 15–25. [Google Scholar] [CrossRef]
- Zhang, X.; Du, Q.; Yang, Y.; Wang, J.; Dou, S.; Liu, C.; Duan, J. The protective effect of Luteolin on myocardial ischemia/reperfusion (I/R) injury through TLR4/NF-κB/NLRP3 inflammasome pathway. Biomed. Pharmacother. 2017, 91, 1042–1052. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Qin, H.; Li, Z.; Xue, S.; Huang, B.; Liu, X.; Wang, D. Luteolin alleviates ischemia/reperfusion injury-induced no-reflow by regulating Wnt/β-catenin signaling in rats. Microvasc. Res. 2022, 139, 104266. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Luo, H.; Qiao, C. SHP-1/STAT3 Interaction is related to luteolin-induced myocardial ischemia protection. Inflammation 2022, 45, 88–99. [Google Scholar] [CrossRef]
- Yang, J.; Wang, J.; Zhou, X.; Xiao, C.; Lou, Y.; Tang, L.; Zhang, F.; Qian, L. Luteolin alleviates cardiac ischemia/reperfusion injury in the hypercholesterolemic rat via activating Akt/Nrf2 signaling. Naunyn. Schmiedebergs Arch. Pharmacol. 2018, 391, 719–728. [Google Scholar] [CrossRef]
- Xiao, C.; Xia, M.; Wang, J.; Zhou, X.; Lou, Y.; Tang, L.; Zhang, F.; Yang, J.; Qian, L. Luteolin attenuates cardiac ischemia/reperfusion injury in diabetic rats by modulating Nrf2 antioxidative function. Oxid. Med. Cell Longev. 2019, 2019, 2719252. [Google Scholar] [CrossRef]
- Bian, C.; Xu, T.; Zhu, H.; Pan, D.; Liu, Y.; Luo, Y.; Wu, P.; Li, D. Luteolin inhibits ischemia/reperfusion-induced myocardial injury in rats via downregulation of microRNA-208b-3p. PLoS ONE 2015, 10, e0144877. [Google Scholar] [CrossRef]
- Wei, B.; Lin, Q.; Ji, Y.; Zhao, Y.; Ding, L.; Zhou, W.; Zhang, L.; Gao, C.; Zhao, W. Luteolin ameliorates rat myocardial ischaemia-reperfusion injury through activation of peroxiredoxin II. Br. J. Pharmacol. 2018, 175, 3315–3332. [Google Scholar] [CrossRef]
- Liao, P.; Hung, L.; Chen, Y.; Kuan, Y.; Zhang, F.; Lin, R.; Shih, H.; Tsai, S.; Huang, S. Cardioprotective effects of luteolin during ischemia-reperfusion injury in rats. Circ. J. 2011, 75, 443–450. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Yan, R.; Ma, P.; Fu, P.; Tian, H.; Wang, L. Effects of luteolin in different doses on the cardiomyocyte apoptosis in rats with myocardial ischemia reperfusion. J. Biol. Regul. Homeost Agents 2020, 34, 2311–2315. [Google Scholar] [PubMed]
- Qi, L.; Pan, H.; Li, D.; Fang, F.; Chen, D.; Sun, H. Luteolin improves contractile function and attenuates apoptosis following ischemia-reperfusion in adult rat cardiomyocytes. Eur. J. Pharmacol. 2011, 668, 201–207. [Google Scholar] [CrossRef]
- Zhang, R.; Li, D.; Xu, T.; Zhu, S.; Pan, H.; Fang, F.; Wu, X.; Sun, H. Antioxidative effect of luteolin pretreatment on simulated ischemia/reperfusion injury in cardiomyocyte and perfused rat heart. Chin. J. Integr. Med. 2017, 23, 518–527. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Qian, L.; Zhang, F.; Wang, J.; Ai, H.; Tang, L.; Wang, H. Cardioprotective effects of luteolin on ischemia/reperfusion injury in diabetic rats are modulated by eNOS and the mitochondrial permeability transition pathway. J. Cardiovasc. Pharmacol. 2015, 65, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Huang, J.; Zhang, Z.; Gao, H.; Li, J.; Shen, M.; Cao, F.; Wang, H. Luteolin limits infarct size and improves cardiac function after myocardium ischemia/reperfusion injury in diabetic rats. PLoS ONE 2012, 7, e33491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, Y.; Li, L.; Wang, L.; Shang, P.; Pan, D.; Liu, Y.; Xu, T.; Li, D. Downregulation of microRNA-23a confers protection against myocardial ischemia/reperfusion injury by upregulating tissue factor pathway inhibitor 2 following luteolin pretreatment in rats. Chin. Med. J. (Engl.) 2023. [Google Scholar] [CrossRef] [PubMed]
- Wang, I.; Lin, J.; Lee, W.; Liu, C.; Lin, T.; Yang, K. Baicalein and luteolin inhibit ischemia/reperfusion-induced ferroptosis in rat cardiomyocytes. Int. J. Cardiol. 2023, 375, 74–86. [Google Scholar] [CrossRef]
- Pan, D.; Li, D. At the crossroads from bench to bedside: Luteolin is a promising pharmacological agent against myocardial ischemia reperfusion injury. Ann. Transl. Med. 2016, 23, 475. [Google Scholar] [CrossRef] [Green Version]
- Nai, C.; Xuan, H.; Zhang, Y.; Shen, M.; Xu, T.; Pan, D.; Zhang, C.; Zhang, Y.; Li, D. Luteolin exerts cardioprotective effects through improving sarcoplasmic reticulum Ca(2+)-ATPase activity in rats during ischemia/reperfusion in vivo. Evid. Based. Complement Alternat. Med. 2015, 2015, 365854. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Yao, X.; Huang, K.; Zhang, J.; Xiao, J.; Guo, J.; Wei, D.; Xiang, B. Low-dose dexamethasone in combination with luteolin improves myocardial infarction recovery by activating the antioxidative response. Biomed. Pharmacother. 2022, 151, 113121. [Google Scholar] [CrossRef] [PubMed]
- Fang, F.; Li, D.; Pan, H.; Chen, D.; Qi, L.; Zhang, R.; Sun, H. Luteolin inhibits apoptosis and improves cardiomyocyte contractile function through the PI3K/Akt pathway in simulated ischemia/reperfusion. Pharmacology 2011, 88, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Xu, T.; Luo, Y.; Zhang, Y.; Xuan, H.; Ma, Y.; Pan, D.; Li, D.; Zhu, H. Luteolin enhances sarcoplasmic reticulum Ca2+-ATPase activity through p38 MAPK signaling thus improving rat cardiac function after ischemia/reperfusion. Cell Physiol. Biochem. 2017, 41, 999–1010. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Sun, J.; Lv, S.; Xie, T.; Wang, X. Apigenin alleviates myocardial reperfusion injury in rats by downregulating miR-15b. Med. Sci. Monit 2019, 25, 2764–2776. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yang, J.; Hu, J.; Li, X.; Zhang, X.; Li, Z. Apigenin attenuates myocardial ischemia/reperfusion injury via the inactivation of p38 mitogen-activated protein kinase. Mol. Med. Rep. 2015, 12, 6873–6878. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Chen, L.; Xiao, Y. Apigenin protects against ischemia-/hypoxia-induced myocardial injury by mediating pyroptosis and apoptosis. In Vitro Cell Dev. Biol. Anim. 2020, 56, 307–312. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, Y.; Lin, L.; Zhou, J. Apigenin suppresses the apoptosis of H9C2 rat cardiomyocytes subjected to myocardial ischemia-reperfusion injury via upregulation of the PI3K/Akt pathway. Mol. Med. Rep. 2018, 18, 1560–1570. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Lai, S.; Luo, Y.; Wan, Q.; Wu, Q.; Wan, L.; Qi, W.; Liu, J. Nutritional preconditioning of Apigenin alleviates myocardial ischemia/reperfusion injury via the mitochondrial pathway mediated by Notch1/Hes1. Oxid. Med. Cell Longev. 2019, 2019, 7973098. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Xu, L.; Sun, A.; Fu, X.; Zhang, L.; Jing, L.; Lu, A.; Dong, Y.; Jia, Z. Protective effect of apigenin on ischemia/reperfusion injury of the isolated rat heart. Cardiovasc. Toxicol. 2015, 15, 241–249. [Google Scholar]
- Jeong, J.; Ha, Y.; Jin, Y.; Lee, E.; Kim, J.; Kim, H.; Seo, H.; Lee, J.; Kang, S.; Kim, Y.; et al. Rutin from Lonicera japonica inhibits myocardial ischemia/reperfusion-induced apoptosis in vivo and protects H9c2 cells against hydrogen peroxide-mediated injury via ERK1/2 and PI3K/Akt signals in vitro. Food Chem. Toxicol. 2009, 47, 1569–1576. [Google Scholar] [CrossRef]
- Bhandary, B.; Piao, C.; Kim, D.S.; Lee, G.H.; Chae, S.W.; Kim, H.R.; Chae, H.J. The protective effect of rutin against ischemia/reperfusion-associated hemodynamic alteration through antioxidant activity. Arch. Pharm. Res. 2012, 35, 1091–1097. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wang, C.; Zhang, L.; Lv, J.; Ni, H. Rutin alleviates hypoxia/reoxygenation-induced injury in myocardial cells by up-regulating SIRT1 expression. Chem. Biol. Interact. 2019, 297, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Wang, R.; Wang, M.; Fu, J.; Zhang, Q.; Sun, G.; Sun, X. Hydroxysafflor Yellow A Ameliorates Myocardial Ischemia/Reperfusion Injury by Suppressing Calcium Overload and Apoptosis. Oxid. Med. Cell Longev. 2021, 2021, 6643615. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Ding, T.; Ni, B.; Jing, Y.; Liu, S. Hydroxysafflor Yellow A mitigated myocardial ischemia/reperfusion injury by inhibiting the activation of the JAK2/STAT1 pathway. Int. J. Mol. Med. 2019, 44, 405–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Min, J.; Wei, C. Hydroxysafflor yellow A cardioprotection in ischemia-reperfusion (I/R) injury mainly via Akt/hexokinase II independent of ERK/GSK-3β pathway. Biomed. Pharmacother. 2017, 87, 419–426. [Google Scholar] [CrossRef]
- Hu, T.; Wei, G.; Xi, M.; Yan, J.; Wu, X.; Wang, Y.; Zhu, Y.; Wang, C.; Wen, A. Synergistic cardioprotective effects of Danshensu and hydroxysafflor yellow A against myocardial ischemia-reperfusion injury are mediated through the Akt/Nrf2/HO-1 pathway. Int. J. Mol. Med. 2016, 38, 83–94. [Google Scholar] [CrossRef] [Green Version]
- Ye, J.X.; Wang, M.; Wang, R.Y.; Liu, H.T.; Qi, Y.D.; Fu, J.H.; Zhang, Q.; Zhang, B.G.; Sun, X.B. Hydroxysafflor yellow A inhibits hypoxia/reoxygenation-induced cardiomyocyte injury via regulating the AMPK/NLRP3 inflammasome pathway. Int. Immunopharmacol. 2020, 82, 106316. [Google Scholar] [CrossRef]
- Liu, Y.N.; Zhou, Z.M.; Chen, P. Evidence that hydroxysafflor yellow A protects the heart against ischaemia-reperfusion injury by inhibiting mitochondrial permeability transition pore opening. Clin. Exp. Pharmacol. Physiol. 2008, 35, 211–216. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, Y.; Wang, Y.; Li, X.; Xiang, M.; Bian, C.; Chen, P. Upregulation of heme oxygenase-1 expression by hydroxysafflor yellow A conferring protection from anoxia/reoxygenation-induced apoptosis in H9c2 cardiomyocytes. Int. J. Cardiol. 2012, 160, 95–101. [Google Scholar] [CrossRef]
- Han, D.; Wei, J.; Zhang, R.; Ma, W.; Shen, C.; Feng, Y.; Xia, N.; Xu, D.; Cai, D.; Li, Y.; et al. Hydroxysafflor yellow A alleviates myocardial ischemia/reperfusion in hyperlipidemic animals through the suppression of TLR4 signaling. Sci. Rep. 2016, 6, 35319. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Ren, H.; Han, J.; Wang, W.; Zheng, Q.; Wang, D. Protective effects of Kaempferol against myocardial ischemia/reperfusion injury in isolated rat heart via antioxidant activity and inhibition of glycogen synthase kinase-3β. Oxid. Med. Cell Longev. 2015, 2015, 481405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.S.; Ha, K.C.; Kwon, D.Y.; Kim, M.S.; Kim, H.R.; Chae, S.W.; Chae, H.J. Kaempferol protects ischemia/reperfusion-induced cardiac damage through the regulation of endoplasmic reticulum stress. Immunopharmacol. Immunotoxicol. 2008, 30, 257–270. [Google Scholar] [CrossRef] [PubMed]
- Suchal, K.; Malik, S.; Gamad, N.; Malhotra, R.K.; Goyal, S.N.; Chaudhary, U.; Bhatia, J.; Ojha, S.; Arya, D.S. Kaempferol Attenuates Myocardial Ischemic Injury via Inhibition of MAPK Signaling Pathway in Experimental Model of Myocardial Ischemia-Reperfusion Injury. Oxid. Med. Cell Longev. 2016, 2016, 7580731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.; Zhang, X.; Li, D.; Hao, W.; Meng, F.; Wang, B.; Han, J.; Zheng, Q. Kaempferide Protects against Myocardial Ischemia/Reperfusion Injury through Activation of the PI3K/Akt/GSK-3β Pathway. Mediators Inflamm. 2017, 2017, 5278218. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Liao, Z.; Huang, L.; Liu, D.; Yin, D.; He, M. Kaempferol protects cardiomyocytes against anoxia/reoxygenation injury via mitochondrial pathway mediated by SIRT1. Eur. J. Pharmacol. 2015, 761, 245–253. [Google Scholar] [CrossRef]
- Fan, Z.; Cai, L.; Wang, S.; Wang, J.; Chen, B. Baicalin prevents myocardial ischemia/reperfusion injury through inhibiting ACSL4 mediated ferroptosis. Front. Pharmacol. 2021, 12, 628988. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Li, X.; Song, L. Baicalin regulates macrophages polarization and alleviates myocardial ischaemia/reperfusion injury via inhibiting JAK/STAT pathway. Pharm. Biol. 2020, 58, 655–663. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, S.; Xu, C.; Sun, Y.; Sui, S.; Zhang, Z.; Luan, Y. The protective of Baicalin on myocardial ischemia-reperfusion injury. Curr. Pharm. Biotechnol. 2020, 21, 1386–1393. [Google Scholar] [CrossRef]
- Luan, Y.; Sun, C.; Wang, J.; Jiang, W.; Xin, Q.; Zhang, Z.; Wang, Y. Baicalin attenuates myocardial ischemia-reperfusion injury through Akt/NF-κB pathway. J. Cell. Biochem. 2019, 120, 3212–3219. [Google Scholar] [CrossRef]
- Bai, J.; Wang, Q.; Qi, J.; Yu, H.; Wang, C.; Wang, X.; Ren, Y.; Yang, F. Promoting effect of baicalin on nitric oxide production in CMECs via activating the PI3K-AKT-eNOS pathway attenuates myocardial ischemia-reperfusion injury. Phytomedicine 2019, 63, 153035. [Google Scholar] [CrossRef]
- Wang, X.; He, F.; Liao, Y.; Song, X.; Zhang, M.; Qu, L.; Luo, T.; Zhou, S.; Ling, Y.; Guo, J.; et al. Baicalin pretreatment protects against myocardial ischemia/reperfusion injury by inhibiting mitochondrial damage-mediated apoptosis. Int. J. Cardiol. 2013, 168, 4343–4345. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Chen, H.; Qin, J.; Chen, N.; Lu, S.; Jin, J.; Li, Y. Baicalin improves cardiac outcome and survival by suppressing drp1-mediated mitochondrial fission after cardiac arrest-induced myocardial damage. Oxid. Med. Cell. Longev. 2021, 2021, 8865762. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.; Luan, Y.; Zhang, Z.; Cheng, G.; Qi, T.; Sun, C. Baicalin protects the myocardium from reperfusion-induced damage in isolated rat hearts via the antioxidant and paracrine effect. Exp. Ther. Med. 2014, 7, 254–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, W.B.; Zhao, W.; Chen, H.; Wu, Y.Y.; Wang, Y.; Fu, G.S.; Yang, X.J. Baicalin protects H9c2 cardiomyocytes against hypoxia/reoxygenation-induced apoptosis and oxidative stress through activation of mitochondrial aldehyde dehydrogenase 2. Clin. Exp. Pharmacol. Physiol. 2018, 45, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Lu, N.; Han, J.; Chen, X.; Hao, W.; Xu, W.; Liu, X.; Ye, L.; Zheng, Q. Eriodictyol attenuates myocardial ischemia-reperfusion injury through the activation of JAK2. Front. Pharmacol. 2018, 9, 33. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Ji, R.; Han, M. Eriodictyol protects H9c2 cardiomyocytes against the injury induced by hypoxia/reoxygenation by iproving the dysfunction of mitochondria. Exp. Ther. Med. 2019, 17, 551–557. [Google Scholar]
- Yan, H.; Zou, Y.; Zou, C. Mechanism of Qingfei Paidu decoction for treatment of COVID-19: Analysis based on network pharmacology and molecular docking technology. J. South Med. Univ. 2020, 40, 616–623. [Google Scholar]
- Li, S.; Chen, Y.; Ding, Q.; Ye, D.; Chun, D.; Xing, H.; Fei, L.; Niu, L.; Wu, R. Network Pharmacology Evaluation Method Guidance-Draft. World J. Gastroenterol. 2021, 202, 146–154. [Google Scholar] [CrossRef]
- Akhlaghi, M.; Bandy, B. Mechanisms of flavonoid protection against myocardial ischemia-reperfusion injury. J. Mol. Cell. Cardiol. 2009, 46, 309–317. [Google Scholar] [CrossRef]
- Davidson, S.; Ferdinandy, P.; Andreadou, I.; Bøtker, H.E.; Heusch, G.; Ibáñez, B.; Ovize, M.; Schulz, R.; Yellon, D.M.; Hausenloy, D.J.; et al. Multitarget strategies to reduce myo-cardial ischemia/reperfusion injury: JACC review topic of the week. J. Am. Coll. Cardiol. 2019, 73, 89–99. [Google Scholar] [CrossRef]
- Budas, G.R.; Churchill, E.N.; Mochly, R.D. Cardioprotective mechanisms of PKC isozyme-selective activators and inhibitors in the treatment of ischemia-reperfusion injury. Pharmacol. Res. 2007, 55, 523–536. [Google Scholar] [CrossRef] [PubMed]
- Clemente, M.A.; Gómez, M.; Villena, G.R.; Lalama, D.V.; García, P.J.; Martínez, F.; Sánchez-Cabo, F.; Fuster, V.; Oliver, E.; Ibáñez, B. Metoprolol exerts a non-class effect against ischaemia-reperfusion injury by abrogating exacerbated inflammation. Eur. Heart J. 2020, 41, 4425–4440. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Peng, J.; Zhang, X. A clinical study of safflower yellow injection in treating coronary heart disease angina pectoris with Xin-blood stagnation syndrome. Chin. J. Integr. Med. 2005, 11, 222–225. [Google Scholar] [PubMed]
- Lu, Q.; Xu, J.; Li, Q.; Wu, W.; Wu, Y.; Xie, J.; Yang, X. Therapeutic efficacy and safety of safflower injection in the treatment of acute coronary syndrome. Evid. Based Complement. Altern. Med. 2021, 16, 6617772. [Google Scholar] [CrossRef]
- Ruyvaran, M.; Zamani, A.; Mohamadian, A.; Zarshenas, M.M.; Eftekhari, M.H.; Pourahmad, S.; Abarghooei, E.F.; Akbari, A.; Nimrouzi, M. Safflower (Carthamus tinctorius L.) oil could improve abdominal obesity, blood pressure, and insulin resistance in patients with metabolic syndrome: A randomized, double-blind, placebo-controlled clinical trial. J. Ethnopharmacol. 2022, 10, 114590. [Google Scholar] [CrossRef]
- Chen, Y.; Li, M.; Wen, J.; Pan, X.; Deng, Z.; Chen, J.; Chen, G.; Yu, L.; Tang, Y.; Li, G.; et al. Pharmacological activities of safflower yellow and its clinical applications. Evid. Based Complement Altern. Med. 2022, 27, 2108557. [Google Scholar] [CrossRef]
- Zhou, W.; Lai, X.; Wang, X.; Yao, X.; Wang, W.; Li, S. Network pharmacology to explore the anti-inflammatory mechanism of Xuebijing in the treatment of sepsis. Phytomedicine 2021, 85, 153543. [Google Scholar] [CrossRef]
- Zhang, L.-L.; Tian, K.; Tang, Z.-H.; Chen, X.-J.; Bian, Z.-X.; Wang, Y.-T.; Lu, J.-J. Phytochemistry and pharmacology of Carthamus tinctorius L. Am. J. Chin. Med. 2016, 44, 197–226. [Google Scholar] [CrossRef]
- Wang, C.; Mehendale, S.R.; Calway, T.; Yuan, C.S. Botanical flavonoids on coronary heart disease. Am. J. Chin. Med. 2011, 39, 661–671. [Google Scholar] [CrossRef]
- González, R.; Ballester, I.; López-Posadas, R.; Suárez, M.D.; Zarzuelo, A.; Augustin, O.M.; de Medina, F.S. Effects of flavonoids and other polyphenols on inflammation. Crit. Rev. Food Sci. Nutr. 2011, 51, 331–362. [Google Scholar] [CrossRef]
- Maleki, S.J.; Crespo, J.F.; Cabanillas, B. Anti-inflammatory effects of flavonoids. Food Chem. 2019, 299, 125124. [Google Scholar] [CrossRef] [PubMed]
- Serafini, M.; Peluso, I.; Raguzzini, A. Flavonoids as anti-inflammatory agents. Proc. Nutr. Soc. 2010, 69, 273–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, R.V.; Mistry, B.M.; Shinde, S.K.; Syed, R.; Singh, V.; Shin, H.S. Therapeutic potential of quercetin as a cardiovascular agent. Eur. J. Med. Chem. 2018, 155, 889–904. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yao, J.; Han, C.; Yang, J.; Chaudhry, M.T.; Wang, S.; Liu, H.; Yin, Y. Quercetin, inflammation and immunity. Nutrients 2016, 8, 167. [Google Scholar] [CrossRef] [Green Version]
- Aziz, N.; Kim, M.Y.; Cho, J.Y. Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies. J. Ethnopharmacol. 2018, 225, 342–358. [Google Scholar] [CrossRef]
- Nabavi, S.F.; Braidy, N.; Gortzi, O.; Sobarzo-Sanchez, E.; Daglia, M.; Skalicka-Woźniak, K.; Mohammad Nabavi, S. Luteolin as an anti-inflammatory and neuroprotective agent: A brief review. Brain Res. Bull. 2015, 2015, 119. [Google Scholar] [CrossRef]
- Devi, K.P.; Malar, D.S.; Nabavi, S.F.; Sureda, A.; Xiao, J.; Nabavi, S.M.; Daglia, M. Kaempferol and inflammation: From chemistry to medicine. Pharmacol. Res. 2015, 2015, 99. [Google Scholar] [CrossRef]
- Dabeek, W.M.; Marra, M.V. Dietary quercetin and kaempferol: Bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients 2019, 11, 2288. [Google Scholar] [CrossRef] [Green Version]
- Salehi, B.; Venditti, A.; Sharifi-Rad, M.; Kręgiel, D.; Sharifi-Rad, J.; Durazzo, A.; Lucarini, M.; Santini, A.; Souto, E.B.; Novellino, E.; et al. The therapeutic potential of apigenin. Int. J. Mol. Sci. 2019, 20, 1305. [Google Scholar] [CrossRef] [Green Version]
- Dinda, B.; Dinda, S.; DasSharma, S.; Banik, R.; Chakraborty, A.; Dinda, M. Therapeutic potentials of baicalin and its aglycone, baicalein against inflammatory disorders. Eur. J. Med. Chem. 2017, 131, 68–80. [Google Scholar] [CrossRef]
- Islam, A.; Islam, M.S.; Rahman, M.K.; Uddin, M.N.; Akanda, M.R. The pharmacological and biological roles of eriodictyol. Arch. Pharm. Res. 2020, 43, 582–592. [Google Scholar] [CrossRef]
- Wang, C.; Ma, H.; Zhang, S.; Wang, Y.; Liu, J.; Xiao, X. Safflor yellow B suppresses pheochromocytoma cell (PC12) injury induced by oxidative stress via antioxidant system and Bcl-2 /Bax pathway. Naunyn-Schmiedeberg’s Arch. Pharm. 2009, 380, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Qu, C.; Zhu, W.; Dong, K.; Pan, Z.; Chen, Y.; Chen, X.; Liu, X.; Xu, W.; Lin, H.; Zheng, Q.; et al. Inhibitory effect of hydroxysafflor yellow B on the proliferation of human breast cancer MCF-7 cells. Recent Patents Anti-Cancer Drug Discov. 2019, 14, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Capanoglu, E.; Jassbi, A.R.; Miron, A. Advance on the flavonoid C-glycosides and Health Benefits. Crit. Rev. Food Sci. Nutr. 2016, 56, S29–S45. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Wang, P.; Jiao, Y.; Zhang, X.; Chen, D.; Xu, H. Hydroxysafflor yellow A: A systematical review on botanical resources, physicochemical properties, drug delivery system, pharmacokinetics, and pharmacological effects. Front. Pharmacol. 2020, 11, 579332. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Lu, P.; Han, C.; Yu, C.; Chen, M.; He, F.; Yi, D.; Wu, L. Hydroxysafflor yellow A (HSYA) from flowers of Carthamus tinctorius L. and its vasodilatation effects on pulmonary artery. Molecules 2012, 17, 14918–14927. [Google Scholar] [CrossRef]
- Ganeshpurkar, A.; Saluja, A.K. The pharmacological potential of rutin. Saudi Pharm. J. 2017, 25, 149–164. [Google Scholar] [CrossRef] [Green Version]
- Duan, J.; Wang, J.; Guan, Y.; Yin, Y.; Wei, G.; Cui, J.; Zhou, D.; Zhu, Y.; Quan, W.; Xi, M.; et al. Safflor yellow A protects neonatal rat cardiomyocytes against anoxia/reoxygenation injury in vitro. Acta Pharmacol. Sin. 2013, 34, 487–495. [Google Scholar] [CrossRef] [Green Version]
- Boezio, B.; Audouze, K.; Ducrot, P.; Taboureau, O. Network-based approaches in pharmacology. Mol. Inform. 2017, 36, 1700048. [Google Scholar] [CrossRef] [Green Version]
- Bayat, P.; Farshchi, M.; Yousefian, M.; Mahmoudi, M.; Yazdian-Robati, R. Flavonoids, the compounds with anti-inflammatory and immunomodulatory properties, as promising tools in multiple sclerosis (MS) therapy: A systematic review of preclinical evidence. Int. Immunopharmacol. 2021, 95, 107562. [Google Scholar] [CrossRef]
- Hu, M.; Wu, B.; Liu, Z. Bioavailability of polyphenols and flavonoids in the era of precision medicine. Mol. Pharm. 2017, 14, 2861–2863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, H.-Y.; Zhang, Y.-Q.; Liu, Z.-M.; Chen, T.; Lv, C.-Y.; Tang, S.; Zhang, X.-B.; Zhang, W.; Li, Z.-Y.; Zhou, R.-R.; et al. ETCM: An encyclopaedia of traditional Chinese medicine. Nucleic Acids Res. 2019, 47, 976–982. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Li, H.; Ma, X.; Zhang, K.; Ma, Z.; Tu, P. Protective effects of purified safflower extract on myocardial ischemia in vivo and in vitro. Phytomedicine 2009, 16, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Chu, D.; Liu, W.; Huang, Z.; Liu, S.; Fu, X.; Liu, K. Pharmacokinetics and excretion of hydroxysafflor yellow A, a potent neuroprotective agent from safflower, in rats and dogs. Planta Med. 2006, 72, 418–423. [Google Scholar] [CrossRef] [Green Version]
Targets | Degree | Closeness | Betweenness |
---|---|---|---|
PRKCA | 46 | 0.46939 | 0.13402 |
AKT1 | 38 | 0.45609 | 0.11656 |
PIK3CG | 36 | 0.39558 | 0.04650 |
CSNK2A1 | 36 | 0.38609 | 0.03410 |
CSNK2B | 36 | 0.38609 | 0.03410 |
HSPA2 | 35 | 0.38983 | 0.03284 |
PTGS1 | 27 | 0.38609 | 0.08554 |
MAPK1 | 26 | 0.42037 | 0.05791 |
HK1 | 23 | 0.34773 | 0.03794 |
TNF | 19 | 0.36508 | 0.02730 |
PTK2B | 19 | 0.34183 | 0.01179 |
INS | 14 | 0.36842 | 0.01911 |
PPARG | 13 | 0.35698 | 0.01304 |
IL1β | 13 | 0.34183 | 0.01452 |
IL6 | 13 | 0.35385 | 0.01586 |
PPP3R1 | 13 | 0.37182 | 0.01717 |
PPP3CA | 13 | 0.37182 | 0.01717 |
ATP1A1 | 12 | 0.33472 | 0.05071 |
BCL2L1 | 12 | 0.33612 | 0.00845 |
NFκBIA | 11 | 0.35385 | 0.00975 |
PPARA | 11 | 0.34328 | 0.00984 |
PTGS2 | 10 | 0.34773 | 0.01090 |
CASP3 | 10 | 0.33612 | 0.00581 |
TLR4 | 10 | 0.35698 | 0.01096 |
VEGFA | 9 | 0.35076 | 0.00812 |
LCN2 | 8 | 0.32525 | 0.00361 |
PLA2G2A | 8 | 0.34475 | 0.01259 |
EGF | 8 | 0.33895 | 0.01847 |
CYP2C9 | 8 | 0.33612 | 0.00471 |
TRPV1 | 7 | 0.32394 | 0.01434 |
ICAM1 | 7 | 0.32924 | 0.00425 |
Component | Targets | Degree | Response | Literature Mining |
---|---|---|---|---|
Quercetin (+40) | PRKCA, AKT1, ACTB, CSNK2A1, CSNK2B, PIK3CG, HSPA2, PTK2B, PPARG, BCL2L1, PPARA, LCN2 | 12 | 233,661 | 17 [24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40] |
Luteolin (-44, +55) | PRKCA, AKT1, ACTB, CSNK2A1, CSNK2B, PIK3CG, HSPA2, PTK2B, PPARG, BCL2L1, PPARA, LCN2 | 12 | 90,094 | 23 [41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63] |
Apigenin (-47, +58) | PRKCA, AKT1, ACTB, CSNK2A1, CSNK2B, PIK3CG, HSPA2, PTK2B | 11 | 175,455 | 6 [64,65,66,67,68,69] |
Rutin (+33) | PRKCA, ACTB, CSNK2A1, CSNK2B, PIK3CG, HSPA2, CYP2C9 | 7 | 732,202 | 4 [25,70,71,72] |
HSYA (-11, +17) | PTGS1, HK1 | 2 | 4,210,682 | 8 [73,74,75,76,77,78,79,80] |
Kaempferol (-42, +44) | PRKCA, AKT1, ACTB, CSNK2A1, CSNK2B, PIK3CG, HSPA2, PTK2B, PPARG, PPARA | 12 | 876,007 | 5 [81,82,83,84,85] |
Baicalin (-40, +51) | PRKCA, AKT1, ACTB, CSNK2A1, CSNK2B, PIK3CG, HSPA2, PTK2B, | 8 | 73,419 | 9 [86,87,88,89,90,91,92,93,94] |
Eriodictyol (+23) | PRKCA, AKT1, ACTB, CSNK2A1, CSNK2B, PIK3CG, HSPA2, PTK2B, CYP2C9 | 9 | 306,217 | 2 [95,96] |
6-hydroxyapigenin (-48, +46) | PRKCA, AKT1, ACTB, CSNK2A1, CSNK2B, PIK3CG, HSPA2, PTK2B, PPARG, BCL2L1, PPARA, LCN2 | 12 | 338,578 | 0 |
6-Hydroxykaempferol (-32, +35) | PRKCA, AKT1, ACTB, CSNK2A1, CSNK2B, PIK3CG, HSPA2, PTK2B, PPARG, BCL2L1, PPARA, LCN2 | 12 | 1,375,662 | 0 |
6-Hydroxykaempferol 3-Rutinoside-6-glucoside | ACTB, CSNK2A1, CSNK2B, PIK3CG, HSPA2, PTGS1, HK1 | 9 | 1,632,678 | 0 |
Gene | Forward Primer | Reward Primer |
---|---|---|
NFκBia | CAAATGGTGAAGGAGCTGCG | CCAAGTGCAGGAACGAGTCT |
NFκB1 | AGCAACCAAAACAGAGGGGA | TGCAAATTTTGACCTGTGGGT |
IL6 | ACAACCACGGCCTTCCCTACTT | CACGATTTCCCAGAGAACATGTG |
IL1β | TGAAGTTGACGGACCCCAAA | TGATGTGCTGCTGTGAGATT |
MCP-1 | GGCTCAGCCAGATGCAGTTAAC | GCCTACTCATTGGGATCATCTTG |
IL-18 | CAGGCCTGACATCTTCTGCAA | TCTGACATGGCAGCCATTGT |
TNF-α | AAGCCTGTAGCCCACGTCGTA | GGCACCACTAGTTGGTTGTCTTTG |
β-actin | CCTGAGCGCAAGTACTCTGTGT | GCTGATCCACATCTGCTGGAA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, F.; Jiang, H.; Zhang, T.; Chen, H.; Li, W.; Li, X.; Wang, P.; Xu, H. Mechanism Repositioning Based on Integrative Pharmacology: Anti-Inflammatory Effect of Safflower in Myocardial Ischemia–Reperfusion Injury. Int. J. Mol. Sci. 2023, 24, 5313. https://doi.org/10.3390/ijms24065313
Zhao F, Jiang H, Zhang T, Chen H, Li W, Li X, Wang P, Xu H. Mechanism Repositioning Based on Integrative Pharmacology: Anti-Inflammatory Effect of Safflower in Myocardial Ischemia–Reperfusion Injury. International Journal of Molecular Sciences. 2023; 24(6):5313. https://doi.org/10.3390/ijms24065313
Chicago/Turabian StyleZhao, Feng, Hong Jiang, Tong Zhang, Hong Chen, Weijie Li, Xin Li, Ping Wang, and Haiyu Xu. 2023. "Mechanism Repositioning Based on Integrative Pharmacology: Anti-Inflammatory Effect of Safflower in Myocardial Ischemia–Reperfusion Injury" International Journal of Molecular Sciences 24, no. 6: 5313. https://doi.org/10.3390/ijms24065313
APA StyleZhao, F., Jiang, H., Zhang, T., Chen, H., Li, W., Li, X., Wang, P., & Xu, H. (2023). Mechanism Repositioning Based on Integrative Pharmacology: Anti-Inflammatory Effect of Safflower in Myocardial Ischemia–Reperfusion Injury. International Journal of Molecular Sciences, 24(6), 5313. https://doi.org/10.3390/ijms24065313