Mouse Models of Mineral Bone Disorders Associated with Chronic Kidney Disease
Abstract
:1. Introduction and Rational for Mouse Models of CKD–MBD
2. The Mouse Model to Mimic Human CKD–MBD
3. Mouse Models of CKD–MBD
3.1. Induction of CKD
3.2. CKD Mouse Models Combined with High- or Low-Phosphate Diet
3.3. Impact of Strain, Gender, Age
4. Analysis of CKD–MBD Mouse Model
4.1. Biochemical Parameters: Assessment of CKD
4.2. Further Biochemical Measurements
5. Bone Analysis
5.1. Histomorphometry
5.2. High-Resolution Imaging
5.3. Other Bone Exploration Methods Used
6. Mouse Models of CKD–MBD with Low and High Turnover ROD
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ziolkowska, H.; Paniczyk-Tomaszewska, M.; Debinski, A.; Polowiec, Z.; Sawicki, A.; Sieniawska, M. Bone biopsy results and serum bone turnover parameters in uremic children. Acta Paediatr. 2000, 89, 666–671. [Google Scholar] [CrossRef] [PubMed]
- Drueke, T.B.; Massy, Z.A. Changing bone patterns with progression of chronic kidney disease. Kidney Int. 2016, 89, 289–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drueke, T.B. Hyperparathyroidism in Chronic Kidney Disease; De Groot, L.J., Chrousos, G., Dungan, K., Feingold, K.R., Grossman, A., Hershman, J.M., Koch, C., Korbonits, M., McLachlan, R., New, M., et al., Eds.; Endotext: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Foley, R.N.; Parfrey, P.S.; Sarnak, M.J. Epidemiology of cardiovascular disease in chronic renal disease. J. Am. Soc. Nephrol. 1998, 9 (Suppl. S12), S16–S23. [Google Scholar] [CrossRef]
- Hruska, K.A.; Choi, E.T.; Memon, I.; Davis, T.K.; Mathew, S. Cardiovascular risk in chronic kidney disease (CKD): The CKD-mineral bone disorder (CKD-MBD). Pediatr. Nephrol. 2010, 25, 769–778. [Google Scholar] [CrossRef] [Green Version]
- Ketteler, M.; Block, G.A.; Evenepoel, P.; Fukagawa, M.; Herzog, C.A.; McCann, L.; Moe, S.M.; Shroff, R.; Tonelli, M.A.; Toussaint, N.D.; et al. Executive summary of the 2017 KDIGO Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD) Guideline Update: What’s changed and why it matters. Kidney Int. 2017, 92, 26–36. [Google Scholar] [CrossRef] [Green Version]
- Moe, S.; Drueke, T.; Cunningham, J.; Goodman, W.; Martin, K.; Olgaard, K.; Ott, S.; Sprague, S.; Lameire, N.; Eknoyan, G.; et al. Definition, evaluation, and classification of renal osteodystrophy: A position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2006, 69, 1945–1953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevens, L.A.; Djurdjev, O.; Cardew, S.; Cameron, E.C.; Levin, A. Calcium, phosphate, and parathyroid hormone levels in combination and as a function of dialysis duration predict mortality: Evidence for the complexity of the association between mineral metabolism and outcomes. J. Am. Soc. Nephrol. 2004, 15, 770–779. [Google Scholar] [CrossRef] [Green Version]
- Bakkaloglu, S.A.; Wesseling-Perry, K.; Pereira, R.C.; Gales, B.; Wang, H.J.; Elashoff, R.M.; Salusky, I.B. Value of the new bone classification system in pediatric renal osteodystrophy. Clin. J. Am. Soc. Nephrol. 2010, 5, 1860–1866. [Google Scholar] [CrossRef] [Green Version]
- Nickolas, T.L.; Stein, E.; Cohen, A.; Thomas, V.; Staron, R.B.; McMahon, D.J.; Leonard, M.B.; Shane, E. Bone mass and microarchitecture in CKD patients with fracture. J. Am. Soc. Nephrol. 2010, 21, 1371–1380. [Google Scholar] [CrossRef]
- Wesseling-Perry, K.; Pereira, R.C.; Tseng, C.H.; Elashoff, R.; Zaritsky, J.J.; Yadin, O.; Sahney, S.; Gales, B.; Juppner, H.; Salusky, I.B. Early skeletal and biochemical alterations in pediatric chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2012, 7, 146–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- West, S.L.; Jamal, S.A. Determination of bone architecture and strength in men and women with stage 5 chronic kidney disease. Semin Dial. 2012, 25, 397–402. [Google Scholar] [CrossRef]
- Kidney Disease: Improving Global Outcomes CKDMBDWG Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int. Suppl. 2009, 76, S1–S130. [Google Scholar]
- Bakkaloglu, S.A.; Bacchetta, J.; Lalayiannis, A.D.; Leifheit-Nestler, M.; Stabouli, S.; Haarhaus, M.; Reusz, G.; Groothoff, J.; Schmitt, C.P.; Evenepoel, P.; et al. Bone evaluation in paediatric chronic kidney disease: Clinical practice points from the European Society for Paediatric Nephrology CKD-MBD and Dialysis working groups and CKD-MBD working group of the ERA-EDTA. Nephrol. Dial. Transplant. 2021, 36, 413–425. [Google Scholar] [CrossRef] [PubMed]
- Bacchetta, J.; Farlay, D.; Abelin-Genevois, K.; Lebourg, L.; Cochat, P.; Boivin, G. Bone impairment in oxalosis: An ultrastructural bone analysis. Bone 2015, 81, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Hohenfellner, K.; Rauch, F.; Ariceta, G.; Awan, A.; Bacchetta, J.; Bergmann, C.; Bechtold, S.; Cassidy, N.; Deschenes, G.; Elenberg, E.; et al. Management of bone disease in cystinosis: Statement from an international conference. J. Inherit. Metab. Dis. 2019, 42, 1019–1029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evenepoel, P.; D’Haese, P.; Bacchetta, J.; Cannata-Andia, J.; Ferreira, A.; Haarhaus, M.; Mazzaferro, S.; Lafage Proust, M.H.; Salam, S.; Spasovski, G.; et al. Bone biopsy practice patterns across Europe: The European renal osteodystrophy initiative-a position paper. Nephrol. Dial. Transplant. 2017, 32, 1608–1613. [Google Scholar] [CrossRef] [Green Version]
- Shobeiri, N.; Adams, M.A.; Holden, R.M. Vascular calcification in animal models of CKD: A review. Am. J. Nephrol. 2010, 31, 471–481. [Google Scholar] [CrossRef]
- Gagnon, R.F.; Gallimore, B. Characterization of a mouse model of chronic uremia. Urol Res. 1988, 16, 119–126. [Google Scholar] [CrossRef]
- Matsumoto, T.; Fukushima, S.; Kanasaki, T.; Hagino, S. Relationship between aortic mineral elements and osteodystrophy in mice with chronic kidney disease. Biol. Trace Elem. Res. 2012, 150, 278–284. [Google Scholar] [CrossRef]
- Nikolov, I.G.; Joki, N.; Nguyen-Khoa, T.; Ivanovski, O.; Phan, O.; Lacour, B.; Drueke, T.B.; Massy, Z.A.; Dos Reis, L.M.; Jorgetti, V.; et al. Chronic kidney disease bone and mineral disorder (CKD-MBD) in apolipoprotein E-deficient mice with chronic renal failure. Bone 2010, 47, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Moe, S.M.; Chen, N.X.; Seifert, M.F.; Sinders, R.M.; Duan, D.; Chen, X.; Liang, Y.; Radcliff, J.S.; White, K.E.; Gattone, V.H. A rat model of chronic kidney disease-mineral bone disorder. Kidney Int. 2009, 75, 176–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Florens, N.; Lemoine, S.; Pelletier, C.C.; Rabeyrin, M.; Juillard, L.; Soulage, C.O. Adenine Rich Diet Is Not a Surrogate of 5/6 Nephrectomy in Rabbits. Nephron 2017, 135, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Chacar, F.C.; Kogika, M.M.; Zafalon, R.V.A.; Brunetto, M.A. Vitamin D Metabolism and Its Role in Mineral and Bone Disorders in Chronic Kidney Disease in Humans, Dogs and Cats. Metabolites 2020, 10, 499. [Google Scholar] [CrossRef]
- Rabe, M.; Schaefer, F. Non-Transgenic Mouse Models of Kidney Disease. Nephron 2016, 133, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.C.; Zuo, Y.; Fogo, A.B. Models of chronic kidney disease. Drug Discov. Today Dis. Models 2010, 7, 13–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrukhova, O.; Schuler, C.; Bergow, C.; Petric, A.; Erben, R.G. Augmented Fibroblast Growth Factor-23 Secretion in Bone Locally Contributes to Impaired Bone Mineralization in Chronic Kidney Disease in Mice. Front. Endocrinol. 2018, 9, 311. [Google Scholar] [CrossRef] [Green Version]
- Cejka, D.; Parada-Rodriguez, D.; Pichler, S.; Marculescu, R.; Kramer, I.; Kneissel, M.; Gross, T.; Reisinger, A.; Pahr, D.; Monier-Faugere, M.C.; et al. Only minor differences in renal osteodystrophy features between wild-type and sclerostin knockout mice with chronic kidney disease. Kidney Int. 2016, 90, 828–834. [Google Scholar] [CrossRef] [Green Version]
- Davies, M.R.; Lund, R.J.; Mathew, S.; Hruska, K.A. Low turnover osteodystrophy and vascular calcification are amenable to skeletal anabolism in an animal model of chronic kidney disease and the metabolic syndrome. J. Am. Soc. Nephrol. 2005, 16, 917–928. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.; Ginsberg, C.; Seifert, M.; Agapova, O.; Sugatani, T.; Register, T.C.; Freedman, B.I.; Monier-Faugere, M.C.; Malluche, H.; Hruska, K.A. CKD-induced wingless/integration1 inhibitors and phosphorus cause the CKD-mineral and bone disorder. J. Am. Soc. Nephrol. 2014, 25, 1760–1773. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.; Ginsberg, C.; Sugatani, T.; Monier-Faugere, M.C.; Malluche, H.; Hruska, K.A. Early chronic kidney disease-mineral bone disorder stimulates vascular calcification. Kidney Int. 2014, 85, 142–150. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, E.A.; Lund, R.J.; Martin, K.J.; McCartney, J.E.; Tondravi, M.M.; Sampath, T.K.; Hruska, K.A. Treatment of a murine model of high-turnover renal osteodystrophy by exogenous BMP-7. Kidney Int. 2002, 61, 1322–1331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heveran, C.M.; Ortega, A.M.; Cureton, A.; Clark, R.; Livingston, E.W.; Bateman, T.A.; Levi, M.; King, K.B.; Ferguson, V.L. Moderate chronic kidney disease impairs bone quality in C57Bl/6J mice. Bone 2016, 86, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, H.T.; Wang, Y.N.; Shao, S.Z.; Fu, S.; Huang, X.P.; Wang, X.H. High calcium diet alleviates 5/6 nephrectomy-induced bone deteriorations of lumbar vertebrae in mice. Exp. Ther. Med. 2018, 15, 3483–3488. [Google Scholar] [CrossRef] [Green Version]
- Kadokawa, S.; Matsumoto, T.; Naito, H.; Tanaka, M. Assessment of Trabecular Bone Architecture and Intrinsic Properties of Cortical bone Tissue in a Mouse Model of Chronic Kidney Disease. J. Hard Tissue Biol. 2011, 20, 78–86. [Google Scholar] [CrossRef] [Green Version]
- Kaesler, N.; Verhulst, A.; De Mare, A.; Deck, A.; Behets, G.J.; Hyusein, A.; Evenepoel, P.; Floege, J.; Marx, N.; Babler, A.; et al. Sclerostin deficiency modifies the development of CKD-MBD in mice. Bone 2018, 107, 115–123. [Google Scholar] [CrossRef]
- Lau, W.L.; Linnes, M.; Chu, E.Y.; Foster, B.L.; Bartley, B.A.; Somerman, M.J.; Giachelli, C.M. High phosphate feeding promotes mineral and bone abnormalities in mice with chronic kidney disease. Nephrol. Dial. Transplant. 2013, 28, 62–69. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.M.; Chu, E.Y.; El-Abbadi, M.M.; Foster, B.L.; Tompkins, K.A.; Giachelli, C.M.; Somerman, M.J. Characterization of mandibular bone in a mouse model of chronic kidney disease. J. Periodontol. 2010, 81, 300–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Xue, C.; Wang, L.; Tang, D.; Huang, J.; Zhao, Y.; Chen, Y.; Zhao, D.; Shi, Q.; Wang, Y.; et al. Osteoprotective effects of osthole in a mouse model of 5/6 nephrectomy through inhibiting osteoclast formation. Mol. Med. Rep. 2016, 14, 3769–3776. [Google Scholar] [CrossRef] [Green Version]
- Lund, R.J.; Davies, M.R.; Brown, A.J.; Hruska, K.A. Successful treatment of an adynamic bone disorder with bone morphogenetic protein-7 in a renal ablation model. J. Am. Soc. Nephrol. 2004, 15, 359–369. [Google Scholar] [CrossRef] [Green Version]
- Mathew, S.; Lund, R.J.; Strebeck, F.; Tustison, K.S.; Geurs, T.; Hruska, K.A. Reversal of the adynamic bone disorder and decreased vascular calcification in chronic kidney disease by sevelamer carbonate therapy. J. Am. Soc. Nephrol. 2007, 18, 122–130. [Google Scholar] [CrossRef] [Green Version]
- Nikolov, I.G.; Joki, N.; Nguyen-Khoa, T.; Guerrera, I.C.; Maizel, J.; Benchitrit, J.; Machado dos Reis, L.; Edelman, A.; Lacour, B.; Jorgetti, V.; et al. Lanthanum carbonate, like sevelamer-HCl, retards the progression of vascular calcification and atherosclerosis in uremic apolipoprotein E-deficient mice. Nephrol. Dial. Transplant. 2012, 27, 505–513. [Google Scholar] [CrossRef]
- Sugatani, T.; Agapova, O.A.; Fang, Y.; Berman, A.G.; Wallace, J.M.; Malluche, H.H.; Faugere, M.C.; Smith, W.; Sung, V.; Hruska, K.A. Ligand trap of the activin receptor type IIA inhibits osteoclast stimulation of bone remodeling in diabetic mice with chronic kidney disease. Kidney Int. 2017, 91, 86–95. [Google Scholar] [CrossRef] [Green Version]
- Zaloszyc, A.; Choquet, P.; Sayeh, A.; Bartosova, M.; Schaefer, B.; Huegel, U.; Aubertin-Kirch, G.; Healy, C.; Severac, F.; Rizzo, S.; et al. Inactivation of Osteoblast PKC Signaling Reduces Cortical Bone Mass and Density and Aggravates Renal Osteodystrophy in Mice with Chronic Kidney Disease on High Phosphate Diet. Int. J. Mol. Sci 2022, 23, 6404. [Google Scholar] [CrossRef]
- Zheng, C.M.; Hsu, Y.H.; Wu, C.C.; Lu, C.L.; Liu, W.C.; Zheng, J.Q.; Lin, Y.F.; Chiu, H.W.; Chang, T.J.; Shyu, J.F.; et al. Osteoclast-Released Wnt-10b Underlies Cinacalcet Related Bone Improvement in Chronic Kidney Disease. Int. J. Mol. Sci 2019, 20, 2800. [Google Scholar] [CrossRef] [Green Version]
- Kaludjerovic, J.; Komaba, H.; Sato, T.; Erben, R.G.; Baron, R.; Olauson, H.; Larsson, T.E.; Lanske, B. Klotho expression in long bones regulates FGF23 production during renal failure. FASEB J. 2017, 31, 2050–2064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Guo, Y.; Zou, H.; Sun, N.; Zhao, D.; Liu, W.; Dong, Y.; Cheng, G.; Yuan, Q. Effect of estrogen deficiency on the fixation of titanium implants in chronic kidney disease mice. Osteoporos Int. 2015, 26, 1073–1080. [Google Scholar] [CrossRef]
- Barreto, F.C.; de Oliveira, R.B.; Benchitrit, J.; Louvet, L.; Rezg, R.; Poirot, S.; Jorgetti, V.; Drueke, T.B.; Riser, B.L.; Massy, Z.A. Effects of pyrophosphate delivery in a peritoneal dialysis solution on bone tissue of apolipoprotein-E knockout mice with chronic kidney disease. J. Bone Miner. Metab. 2014, 32, 636–644. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, S.; Zhao, D.; Zou, H.; Sun, N.; Liang, X.; Dard, M.; Lanske, B.; Yuan, Q. Vitamin D supplementation enhances the fixation of titanium implants in chronic kidney disease mice. PLoS ONE 2014, 9, e95689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, N.; Guo, Y.; Liu, W.; Densmore, M.; Shalhoub, V.; Erben, R.G.; Ye, L.; Lanske, B.; Yuan, Q. FGF23 neutralization improves bone quality and osseointegration of titanium implants in chronic kidney disease mice. Sci. Rep. 2015, 5, 8304. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Sun, N.; Duan, X.; Xu, X.; Zheng, L.; Seriwatanachai, D.; Wang, Y.; Yuan, Q. Estrogen Deficiency Leads to Further Bone Loss in the Mandible of CKD Mice. PLoS ONE 2016, 11, e0148804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metzger, C.E.; Swallow, E.A.; Stacy, A.J.; Allen, M.R. Adenine-induced chronic kidney disease induces a similar skeletal phenotype in male and female C57BL/6 mice with more severe deficits in cortical bone properties of male mice. PLoS ONE 2021, 16, e0250438. [Google Scholar] [CrossRef]
- Tani, T.; Fujiwara, M.; Orimo, H.; Shimizu, A.; Narisawa, S.; Pinkerton, A.B.; Millan, J.L.; Tsuruoka, S. Inhibition of tissue-nonspecific alkaline phosphatase protects against medial arterial calcification and improves survival probability in the CKD-MBD mouse model. J. Pathol. 2020, 250, 30–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tani, T.; Orimo, H.; Shimizu, A.; Tsuruoka, S. Development of a novel chronic kidney disease mouse model to evaluate the progression of hyperphosphatemia and associated mineral bone disease. Sci. Rep. 2017, 7, 2233. [Google Scholar] [CrossRef] [Green Version]
- Frauscher, B.; Artinger, K.; Kirsch, A.H.; Aringer, I.; Moschovaki-Filippidou, F.; Ketszeri, M.; Schabhuttl, C.; Rainer, P.P.; Schmidt, A.; Stojakovic, T.; et al. A New Murine Model of Chronic Kidney Disease-Mineral and Bone Disorder. Int. J. Endocrinol. 2017, 2017, 1659071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiu, H.W.; Hou, Y.C.; Lu, C.L.; Lu, K.C.; Liu, W.C.; Shyu, J.F.; Chang, J.F.; Zheng, C.M. Cinacalcet Improves Bone Parameters Through Regulation of Osteoclast Endoplasmic Reticulum Stress, Autophagy, and Apoptotic Pathways in Chronic Kidney Disease-Mineral and Bone Disorder. J. Bone Miner. Res. 2022, 37, 215–225. [Google Scholar] [CrossRef]
- Liu, S.; Song, W.; Boulanger, J.H.; Tang, W.; Sabbagh, Y.; Kelley, B.; Gotschall, R.; Ryan, S.; Phillips, L.; Malley, K.; et al. Role of TGF-beta in a mouse model of high turnover renal osteodystrophy. J. Bone Miner. Res. 2014, 29, 1141–1157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabbagh, Y.; Graciolli, F.G.; O’Brien, S.; Tang, W.; dos Reis, L.M.; Ryan, S.; Phillips, L.; Boulanger, J.; Song, W.; Bracken, C.; et al. Repression of osteocyte Wnt/beta-catenin signaling is an early event in the progression of renal osteodystrophy. J. Bone Miner. Res. 2012, 27, 1757–1772. [Google Scholar] [CrossRef]
- Stubbs, J.R.; He, N.; Idiculla, A.; Gillihan, R.; Liu, S.; David, V.; Hong, Y.; Quarles, L.D. Longitudinal evaluation of FGF23 changes and mineral metabolism abnormalities in a mouse model of chronic kidney disease. J. Bone Miner. Res. 2012, 27, 38–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, M.J.; Sugatani, T.; Agapova, O.A.; Fang, Y.; Gaut, J.P.; Faugere, M.C.; Malluche, H.H.; Hruska, K.A. The activin receptor is stimulated in the skeleton, vasculature, heart, and kidney during chronic kidney disease. Kidney Int. 2018, 93, 147–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dussold, C.; Gerber, C.; White, S.; Wang, X.; Qi, L.; Francis, C.; Capella, M.; Courbon, G.; Wang, J.; Li, C.; et al. DMP1 prevents osteocyte alterations, FGF23 elevation and left ventricular hypertrophy in mice with chronic kidney disease. Bone Res. 2019, 7, 12. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Gillihan, R.; He, N.; Fields, T.; Liu, S.; Green, T.; Stubbs, J.R. Dietary phosphate restriction suppresses phosphaturia but does not prevent FGF23 elevation in a mouse model of chronic kidney disease. Kidney Int. 2013, 84, 713–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christov, M.; Clark, A.R.; Corbin, B.; Hakroush, S.; Rhee, E.P.; Saito, H.; Brooks, D.; Hesse, E.; Bouxsein, M.; Galjart, N.; et al. Inducible podocyte-specific deletion of CTCF drives progressive kidney disease and bone abnormalities. JCI Insight 2018, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiavi, S.C.; Tang, W.; Bracken, C.; O’Brien, S.P.; Song, W.; Boulanger, J.; Ryan, S.; Phillips, L.; Liu, S.; Arbeeny, C.; et al. Npt2b deletion attenuates hyperphosphatemia associated with CKD. J. Am. Soc. Nephrol. 2012, 23, 1691–1700. [Google Scholar] [CrossRef] [Green Version]
- Hsu, S.N.; Stephen, L.A.; Dillon, S.; Milne, E.; Javaheri, B.; Pitsillides, A.A.; Novak, A.; Millan, J.L.; MacRae, V.E.; Staines, K.A.; et al. Increased PHOSPHO1 expression mediates cortical bone mineral density in renal osteodystrophy. J. Endocrinol. 2022, 254, 153–167. [Google Scholar] [CrossRef]
- Gardinier, J.D.; Daly-Seiler, C.S.; Zhang, C. Osteocytes’ expression of the PTH/PTHrP receptor has differing effects on endocortical and periosteal bone formation during adenine-induced CKD. Bone 2020, 133, 115186. [Google Scholar] [CrossRef]
- Tatsumoto, N.; Arioka, M.; Yamada, S.; Takahashi-Yanaga, F.; Tokumoto, M.; Tsuruya, K.; Kitazono, T.; Sasaguri, T. Inhibition of GSK-3beta increases trabecular bone volume but not cortical bone volume in adenine-induced uremic mice with severe hyperparathyroidism. Physiol. Rep. 2016, 4, e13010. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Li, Y.; Chen, F.; Yin, S.; Liu, Z.; Cao, W. Klotho preservation via histone deacetylase inhibition attenuates chronic kidney disease-associated bone injury in mice. Sci. Rep. 2017, 7, 46195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hewitson, T.D.; Ono, T.; Becker, G.J. Small animal models of kidney disease: A review. Methods Mol. Biol. 2009, 466, 41–57. [Google Scholar]
- Nutrient Requirements of Laboratory Animals: 1995, 4th ed.; The National Academies Press: Washington DC, USA, 1995. [CrossRef]
- Gu, X.; Yang, B. Methods for Assessment of the Glomerular Filtration Rate in Laboratory Animals. Kidney Dis 2022, 8, 381–391. [Google Scholar] [CrossRef]
- Scarfe, L.; Schock-Kusch, D.; Ressel, L.; Friedemann, J.; Shulhevich, Y.; Murray, P.; Wilm, B.; de Caestecker, M. Transdermal Measurement of Glomerular Filtration Rate in Mice. J. Vis. Exp. 2018, e58520. [Google Scholar]
- Weigand, T.; Colbatzky, F.; Pfeffer, T.; Garbade, S.F.; Klingbeil, K.; Colbatzky, F.; Becker, M.; Zemva, J.; Bulkescher, R.; Schurfeld, R.; et al. A Global Cndp1-Knock-Out Selectively Increases Renal Carnosine and Anserine Concentrations in an Age- and Gender-Specific Manner in Mice. Int. J. Mol. Sci. 2020, 21, 4887. [Google Scholar] [CrossRef]
- Mondritzki, T.; Steinbach, S.M.L.; Boehme, P.; Hoffmann, J.; Kullmann, M.; Schock-Kusch, D.; Vogel, J.; Kolkhof, P.; Sandner, P.; Bischoff, E.; et al. Transcutaneous glomerular filtration rate measurement in a canine animal model of chronic kidney disease. J. Pharmacol. Toxicol. Methods 2018, 90, 7–12. [Google Scholar] [CrossRef]
- Jiang, K.; Tang, H.; Mishra, P.K.; Macura, S.I.; Lerman, L.O. Measurement of Murine Single-Kidney Glomerular Filtration Rate Using Dynamic Contrast-Enhanced MRI. Magn. Reson. Med. 2018, 79, 2935–2943. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, A.; Shulhevich, Y.; Geraci, S.; Hesser, J.; Stsepankou, D.; Neudecker, S.; Koenig, S.; Heinrich, R.; Hoecklin, F.; Pill, J.; et al. Transcutaneous measurement of renal function in conscious mice. Am. J. Physiol. Renal Physiol. 2012, 303, F783–F788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, S.; Meyer, M.; Turk, T.R.; Wilde, B.; Feldkamp, T.; Assert, R.; Wu, K.; Kribben, A.; Witzke, O. Serum cystatin C in mouse models: A reliable and precise marker for renal function and superior to serum creatinine. Nephrol. Dial. Transplant. 2009, 24, 1157–1161. [Google Scholar] [CrossRef] [Green Version]
- Erben, R.G.; Glosmann, M. Histomorphometry in Rodents. Methods Mol. Biol. 2019, 1914, 411–435. [Google Scholar]
- Parfitt, A.M.; Drezner, M.K.; Glorieux, F.H.; Kanis, J.A.; Malluche, H.; Meunier, P.J.; Ott, S.M.; Recker, R.R. Bone histomorphometry: Standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J. Bone Miner. Res. 1987, 2, 595–610. [Google Scholar] [CrossRef]
- Hernandez, J.D.; Wesseling, K.; Pereira, R.; Gales, B.; Harrison, R.; Salusky, I.B. Technical approach to iliac crest biopsy. Clin. J. Am. Soc. Nephrol. 2008, 3 (Suppl. S3), S164–S169. [Google Scholar] [CrossRef] [Green Version]
- Dempster, D.W.; Compston, J.E.; Drezner, M.K.; Glorieux, F.H.; Kanis, J.A.; Malluche, H.; Meunier, P.J.; Ott, S.M.; Recker, R.R.; Parfitt, A.M. Standardized nomenclature, symbols, and units for bone histomorphometry: A 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J. Bone Miner. Res. 2013, 28, 2–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ott, S.M. Bone histomorphometry in renal osteodystrophy. Semin Nephrol. 2009, 29, 122–132. [Google Scholar] [CrossRef]
- Hiller, R.G.; Patecki, M.; Neunaber, C.; Reifenrath, J.; Kielstein, J.T.; Kielstein, H. A comparative study of bone biopsies from the iliac crest, the tibial bone, and the lumbar spine. BMC Nephrol. 2017, 18, 134. [Google Scholar] [CrossRef] [Green Version]
- Hou, Y.; Li, X.; Sun, L.; Qu, Z.; Jiang, L.; Du, Y. Phosphorus and mortality risk in end-stage renal disease: A meta-analysis. Clin. Chim. Acta 2017, 474, 108–113. [Google Scholar] [CrossRef]
- Chappard, C. Microarchitecture assessment of human trabecular bone: Description of methods. Med. Sci. 2012, 28, 1111–1115. [Google Scholar]
- Chappard, D.; Basle, M.F.; Legrand, E.; Audran, M. Trabecular bone microarchitecture: A review. Morphologie 2008, 92, 162–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalle Carbonare, L.; Valenti, M.T.; Bertoldo, F.; Zanatta, M.; Zenari, S.; Realdi, G.; Lo Cascio, V.; Giannini, S. Bone microarchitecture evaluated by histomorphometry. Micron 2005, 36, 609–616. [Google Scholar] [CrossRef]
- Lespessailles, E.; Chappard, C.; Bonnet, N.; Benhamou, C.L. Imaging techniques for evaluating bone microarchitecture. Jt. Bone Spine 2006, 73, 254–261. [Google Scholar] [CrossRef]
- Dempster, D.W.; Cosman, F.; Kurland, E.S.; Zhou, H.; Nieves, J.; Woelfert, L.; Shane, E.; Plavetic, K.; Muller, R.; Bilezikian, J.; et al. Effects of daily treatment with parathyroid hormone on bone microarchitecture and turnover in patients with osteoporosis: A paired biopsy study. J. Bone Miner. Res. 2001, 16, 1846–1853. [Google Scholar] [CrossRef] [PubMed]
- Kapadia, R.D.; Stroup, G.B.; Badger, A.M.; Koller, B.; Levin, J.M.; Coatney, R.W.; Dodds, R.A.; Liang, X.; Lark, M.W.; Gowen, M. Applications of micro-CT and MR microscopy to study pre-clinical models of osteoporosis and osteoarthritis. Technol. Health Care 1998, 6, 361–372. [Google Scholar] [CrossRef] [PubMed]
- Muller, R.; Van Campenhout, H.; Van Damme, B.; Van Der Perre, G.; Dequeker, J.; Hildebrand, T.; Ruegsegger, P. Morphometric analysis of human bone biopsies: A quantitative structural comparison of histological sections and micro-computed tomography. Bone 1998, 23, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Bouxsein, M.L.; Boyd, S.K.; Christiansen, B.A.; Guldberg, R.E.; Jepsen, K.J.; Muller, R. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J. Bone Miner. Res. 2010, 25, 1468–1486. [Google Scholar] [CrossRef]
- Zaloszyc, A.; Schmitt, C.P.; Sayeh, A.; Higel, L.; Gros, C.I.; Bornert, F.; Aubertin-Kirch, G.; Dillenseger, J.P.; Goetz, C.; Constantinesco, A.; et al. Frequent, quantitative bone planar scintigraphy for determination of bone anabolism in growing mice. PeerJ 2021, 9, e12355. [Google Scholar] [CrossRef] [PubMed]
- Ng, A.H.; Willett, T.L.; Alman, B.A.; Grynpas, M.D. Development, validation and characterization of a novel mouse model of Adynamic Bone Disease (ABD). Bone 2014, 68, 57–66. [Google Scholar] [CrossRef] [PubMed]
(a) Summary of non-genetic mouse models of CKD–MBD. | ||||||||
Previous Reports | CKD Mice Model and Intervention | Genetic Strain | Number Gender, Age at CKD | Time Interval between CKD Induction and Bone Analysis | Diet | ROD | Objective of the Study | |
Gagnon et al. [19] | Surgery | C57BL/6 | 87 F, 7 weeks | 6 weeks | Standard | Osteitis fibrosa, high turnover | CKD model description | |
Matsumoto et al. [20] | Surgery | NA | 16 M 6 weeks | 20 weeks | HP | Osteitis fibrosa, high turnover | Relation of aortic mineral elements and ROD | |
Gonzalez et al. [32] | Surgery and BMP-7 treatment ±CaCO3 | C57BL/6 | 33 M, 7 weeks | 3 to 6 weeks | Standard | Osteitis fibrosa, high turnover | Impact of exogenous BMP-7 | |
Heveran et al. [33] | Surgery | C57BL/6 | 26 M 11 weeks | 11 weeks | Standard | Osteitis fibrosa, high turnover | Bone quality in CKD | |
Hou et al. [34] | Surgery | C57BL/6 | 36 M 9 weeks | 12 weeks | HCD | Osteitis fibrosa, high turnover | Role of calcium supplementation on ROD | |
Kadokawa et al. [35] | Surgery | Crlj:CD1 | 16 M 7 weeks | 3 to 19 weeks | Standard, HP | Osteitis fibrosa, high turnover | Mechanical properties, age relation | |
Lau et al. [37] | Surgery | DBA/2 | 21 F 20 weeks | 12 weeks | Standard, HP | Osteitis fibrosa, high turnover | Effect of normal and HP diet in CKD–MBD | |
Lee et al. [38] | Surgery | DBA/2 | n > 16 20 weeks | 13 weeks | Standard, HP | Osteitis fibrosa, high turnover | Mandible in CKD mice with HP and standard diet | |
Li et al. [39] | Surgery and Osthole treatment | C57BL/6 | 26 10 weeks | 8 weeks | Standard | Osteitis fibrosa, high turnover | Effect of osthole in ROD | |
Lund et al. [40] | Surgery, Calcitriol and/or BMP-7 treatment | C57BL/6 | 50 M, 14 weeks | 12 weeks | Standard, low phosphate | Adynamic bone disorder, low turnover | Role of exogenous BMP-7 | |
Zheng et al. [45] | Surgery and cinacalcet treatment | C57BL/6 | 18 M 6 to 8 weeks | 8 weeks | Standard | Osteitis fibrosa, high turnover | Effects of cinacalcet on ROD | |
Zhang et al. [47] | Surgery, Titanium implants, Ovariectomy | C57BL/6 | 40 9 weeks | 12 weeks | Standard | Unknown | Titanium implant in CKD and estrogen deficiency | |
Liu et al. [49] | Surgery, Titanium implants and vitamin D treatment | C57BL/6 | 30 F 10 weeks | 13 weeks | Standard | Unknown | Role of vitamin D in fixation of titanium implants | |
Sun et al. [50] | Surgery, Titanium implants and FGF23 antibody | C57BL/6 | 32 F 10 weeks | 12 weeks | Standard | Unknown | Implant osseointegration in CKD mice with FGF23 neutralization | |
Guo et al. [51] | Surgery Ovariectomy | C57BL/6 | 40 F 11 weeks | 12 weeks | Standard | Unknown | Role of estrogens on mandible in CKD | |
Metzger et al. [52] | Adenine treatment | C57BL/6 | 32 M/F 16 weeks | 10 weeks | Standard | Osteitis fibrosa, high turnover | Evaluation of gender effect in CKD-related ROD | |
Tani et al. [53] | Adenine treatment and TNAP inhibitor treatment | C57BL/6 | 38 M 8 weeks | 12 weeks | HP | Osteitis fibrosa, high turnover | Effects of TNAP inhibitor in CKD–MBD | |
Tani et al. [54] | Adenine treatment | C57BL/6 | 35 M 9 weeks | 12 weeks | Standard or HP 2, 4, 6 weeks | Osteitis fibrosa, high turnover | Description of a new CKD–MBD model and role of HP diet | |
Frauscher et al. [55] | HP diet | DBA/2 | 8 F 8 weeks | 12 weeks | HP 4 and 7 days | Low turnover | Description of a new CKD–MBD model and role of HP diet | |
Chiu et al. [56] | Adenine diet and cinacalcet treatment | C57BL/6 | 20 M 8 weeks | 6 weeks | HP | Osteitis fibrosa, high turnover | Effect of cinacalcet on ROD | |
Abbreviations: CKD, chronic kidney disease; CKD–MBD, chronic kidney disease–mineral bone disorder F, female, M, male; NA, not available; TNAP, tissue-nonspecific alkaline phosphatase; HP, high phosphate; HCD, high calcium diet; ROD, renal osteodystrophy; duration of CKD in the surgical model starts after the second surgery. | ||||||||
(b) Summary of genetic mouse models of CKD–MBD. | ||||||||
Previous Reports | CKD Mice Model and Intervention | Genetic Strain | Number Gender, Age at CKD | Genetic Background | Time Interval between CKD Induction and Bone Analysis | Diet | ROD | Objective of the Study |
Liu et al. [57] | PKD model and TGF β antibody treatment | C57BL/6 | >30 M | Jck mice | 12 or 16 weeks of age | HP | Osteitis fibrosa, high turnover | TGF β Neutralization effect |
Sabbagh et al. [58] | PKD model | C57BL/6 | >40 F | jck mice | 6 to 15 weeks of age | HP | Osteitis fibrosa, high turnover | Temporal biochemical and morphometric changes in PKD model |
Stubbs et al. [59] | Autosomal recessive Alport model | NA | >40 F/M | Col4a3−/−FGF23þ/eGFP | 8 to 14 weeks of age | Standard | Osteitis fibrosa, high turnover | Temporal changes of FGF23 |
Williams et al. [60] | X-linked Alport model and ligand trap of the RAPIIA treatment | C57BL/6 | 46 M | Col4a5y/− | 28.5 weeks of age | Standard | Osteitis fibrosa, high turnover | Effect of ligand trap of the RAP IIA |
Dussold et al. [61] | Autosomal recessive Alport model and DMP1 treatment | C57BL/6 | >48 M | Col4a3−/−DMP1TG | 8 and 23 weeks of age | Standard | Osteitis fibrosa, high turnover | Role of DMP1 using genetic and therapeutic approaches |
Zhang et al. [62] | Autosomal recessive Alport model | NA | >96 F/M | Col4a3−/− | 8 and 12 weeks of age | Standard/low phosphate/phosphate deficient | Unknown | Impact of phosphate restriction on FGF23 metabolism |
Christov et al. [63] | Podocytopathy model | C57BL/6 | n > 40 M/F 6 weeks | Pod−/− | 8 weeks | Standard | Osteomalacia, low turnover | Description of a new CKD–MBD model with inducible podocyte-specific deletion |
Abbreviations: CKD, chronic kidney disease; PKD, polycystic kidney disease; KO, knockout; RAPIIA, activin receptor type IIA; F, female, M, male; HFC, high fat/cholesterol; HF, high fat; NA, not available; HFC, high fat/cholesterol; HP, high phosphate; ROD, renal osteodystrophy. | ||||||||
(c) Summary of mouse models of CKD with genetic modifications. | ||||||||
Previous Reports | CKD Mice Model and Intervention | Genetic Strain | Number Gender, Age at CKD | Genetic Background | Time Interval between CKD Induction and Bone Analysis | Diet | ROD | Objective of the Study |
Nikolov et al. [21] | Surgery | C57BL/6 | 48 F 10 weeks | APO-E−/− | 10 weeks | Standard | Osteitis fibrosa, high turnover | Evaluation of vascular and bone axis in APO-E−/− mice |
Andrukhova et al. [27] | Surgery | C57BL/6 | 38 M 13 weeks | FGF23−/−VDR−/− | 8 weeks | HCD lactose | Osteitis fibrosa, high turnover | Role of FGF23 |
Cejka et al. [28] | Surgery | C57BL/6 | 73 F 14 weeks | SOST−/− | 12 weeks | Standard | Moderately increased turnover | Role of Sclerostin |
Davis et al [29] | Surgery, BMP-7 and CaCO3 treatment | C57BL/6 | 64 F/M 14 weeks | Ldlr−/− * | 14 weeks | Standard, HFC | Adynamic bone disorder, low turnover | Exogenous BMP-7 role in CKD and metabolic syndrome |
Fang et al. [30] | Surgery and Dkk1 antibody | C57BL/6 | >40 14 weeks | Ldlr−/− * | 8 weeks | HF | Adynamic bone disorder, low turnover | Effect of neutralization of DKK1 in early CKD |
Fang et al. [31] | Surgery | C57BL/6 | >40 14 weeks | Ldlr−/− * | 8 and 14 weeks | HF | Adynamic bone disorder, low turnover | Description of CKD–MBD physiopathology in early CKD |
Kaesler et al. [36] | Surgery | C57BL/6 | n > 34 F 36 to 38 weeks | SOST−/− | 12 weeks | HP | Osteitis fibrosa, high turnover | Role of Sclerostin |
Mathew et al. [41] | Surgery, Sevelamer treatment | C57BL/6 | n > 60 F/M 12 weeks | Ldlr−/− * | 16 weeks | Standard, HFC | Adynamic bone disorder, low turnover | Sevelamer effect in CKD and metabolic syndrome |
Nikolov et al. [42] | Surgery, lanthanum and sevelamer treatment | C57BL/6 | 48 F 10 weeks | APO-E−/− | 10 weeks | Standard | Osteitis fibrosa, high turnover | Sevelamer and Lanthanum effect in CKD and metabolic syndrome |
Sugatani et al. [43] | Surgery, ligand trap of the RAPIIA treatment | C57BL/6 | 56 M 14 weeks | Ldlr−/− * | 14 weeks | HF | Low turnover /high turnover | Effect of ligand trap RAP type II A |
Zaloszyc et al. [44] | Surgery | C57BL/6 | >60 M 12 weeks | Gαq/11−/− | 12 weeks | Standard HP | Osteitis fibrosa, high turnover | Role of specific osteoblast inactivation of PKC |
Kaludjevoric et al. [46] | Surgery or adenine treatment | NA | 80 F/M 7 weeks | Prx1-Cre; Klotho fl/fl | 8 weeks | Standard | Osteitis fibrosa, high turnover | Role of klotho in CKD using klotho knockout in long bone mice |
Barreto et al. [48] | Surgery, intraperitoneal pyrophosphate injection | NA | 114 F 10weeks | APO-E−/− | 10 and 16 weeks | Standard | Osteitis fibrosa, high turnover | Effect of pyrophosphate |
Schiavi et al. [64] | Adenine treatment, sevelamer treatment | NA | >48 | Npt2b−/− | 5 weeks | Standard, HP | Osteitis fibrosa, high turnover | Sevelamer effect in CKD and Npt2b−/− model |
Hsu et al. [65] | Adenine treatment | C57BL/6 | 24 M 5 weeks | Phospho1−/− | 8 weeks | Standard | Osteitis fibrosa, high turnover | Role of PHOSPHO1 |
Gardinier et al. [66] | Adenine treatment | C57BL/6 | 20 M/F 8 weeks | PPRcKO | 6 weeks | Standard | Low turnover | Role of PPR in CKD osteocytes |
Tatsumoto et al. [67] | Adenine treatment and lithium chloride treatment | C57BL/6 | 24 M 8 weeks | GSK-3β+/− | 6 weeks | Standard | Osteitis fibrosa, high turnover | Effects of GSK-3βinhibition by genetic and treatment |
Lin et al. [68] | Adenine treatment, Klotho knockdown via siRN, TSA treatment | C57BL/6 | 24 M | Klotho−/− | 6 weeks | Standard | Osteitis fibrosa Osteitis fibrosa, high turnover | Role of Klotho loss and therapeutic effect of klotho restoration via TSA |
Abbreviations: CKD, chronic kidney disease; KO, knockout; F, female, M, male; receptor; NA, not available; SOST, sclerostin; HFC, high fat/cholesterol; HP, high phosphate; HCD, high calcium diet; TSA, trichostatin A; fl, flox; ROD, renal osteodystrophy; PPR, PTH/P; H-related protein type 1 receptor; GSK, glycogen synthase kinase; RAPIIA, activin receptor type IIA; * Ldlr−/− leads to a mild form of CK; the model is associated with surgery to induce more severe CKD. |
Type of Renal Osteodystrophy | Histomorphometric Description |
---|---|
Osteitis fibrosa | Increased turnover, normal mineralization |
Osteomalacia | Decreased turnover, abnormal mineralization |
Adynamic bone disorder | Decreased turnover, normal mineralization (decreased cellularity) |
Mixed osteopathy | Increased turnover, abnormal mineralization |
Parameter | Abbreviation | Main Finding (Number of Articles) | |
---|---|---|---|
Structural parameters | Cortex width | Ct. Wth | unmodified (1) |
Bone volume per Total Volume | BV/TV | unmodified (13), increased (7), decreased (6) | |
Trabecular thickness | Tb.Th | unmodified (9), increased (3), decreased (2) | |
Trabecular number | Tb.N | unmodified (9), increased (5), decreased (1) | |
Trabecular spacing | Tb.Sp | unmodified (8), decreased (4) | |
Bone surface area | BS/TV | unmodified (1) | |
Wall thickness | WTh | unmodified (1), decreased (1) | |
Remodeling static parameters resorption | Osteoclast surface | Oc.S/BS | Increased (9), unmodified (7) |
Osteoclast number | Oc.N | unmodified (1), increased (1) | |
Osteoclast number per Bone perimeter or surface | N.Oc./B.Pm or BS | unmodified (7), increased (6) | |
Osteoclast volume density | NOc/T.Ar | increased (2), unmodified (1) | |
Eroded surface | ES/BS | Increased (6), unmodified (6), decreased (1) | |
Remodeling static parameters formation | Osteoid volume | OV/BV | increased (8), unmodified (7), decreased (2) |
Osteoid thickness | O.Th | unmodified (4), increased (4) | |
Osteoid surface | OS/BS | increased (8), unmodified (3) | |
Osteoblast density | NOb/T.Ar | increased (2), unmodified (1) | |
Osteoblast number | Ob.N | unmodified (3), increased (2), decreased (1) | |
Osteoblast perimeter or surface density | Nob/BPm | increased (3), unmodified (3), decreased (1) | |
Osteoblast surface | Ob.S/BS | unmodified (5), increased (4), decreased (1) | |
Remodeling dynamic parameters | Mineralizing surfaces per bone surface | MS/BS | unmodified (7), decreased (3), increased (1) |
Mineralizing surfaces per Osteoid Surface | MS/OS | decreased (4), unmodified (2) | |
Single-labeled surface | sLS/BS | unmodified (2) | |
Double-labeled surface | dLS/BS | unmodified (2) | |
Mineral apposition rate | MAR | unmodified (11), increased (5), decreased (2) | |
Bone formation rate | BFR/BS | unmodified (12), decreased (5), increased (1) | |
Adjusted apposition rate | Aj.Ar | increased (4), unmodified (3), decreased (1) | |
Mineralization Lag Time | MLT (day) | unmodified (5), increased (3), decreased (1) |
Cortical Parameters | Abbreviations | Main Finding |
---|---|---|
Average cortical thickness | Ct.Th | decreased (13), unmodified (5) |
Cortical bone volume per Total volume | Ct.BV/TV | decreased (6), unmodified (1) |
Cortical mean bone mineral density | Ct BMD | decreased (9), unmodified (3) |
Total volume | TV | decreased (1) |
Total cross-sectional area inside the periostal envelope | Tt.Ar | unmodified (3), increased (1), decreased (1) |
Marrow area | Ma.Ar | unmodified (1) |
Bone area fraction | Ct.Ar/Tt.Ar | increased (2), unmodified (1) |
Cortical bone area | Ct.Ar | decreased (4), unmodified (3), increased (1) |
Cortical Bone Porosity | Ct.por | increased (6), unmodified (1) |
Trabecular parameters | abbreviations | Main finding |
Mean bone mineral density | BMD or TMD (total or trabecular) | decreased (9), unmodified (3), increased (1) |
Bone volume per Total volume | BV/TV | decreased (11), unmodified (7), increased (5) |
Trabecular thickness | Tb.Th | unmodified (10), decreased (7), increased (1) |
Trabecular number | Tb.N | unmodified (9), decreased (8), increased (3) |
Trabecular spacing | Tb.Sp | unmodified (9), increased (8), decreased (1) |
Connectivity density | Conn.D | unmodified (3), decreased (3) |
Structure model index | SMI | decreased (3), increased (1), unmodified (1) |
Anisotropy | DA | unmodified (2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaloszyc, A.; Bernardor, J.; Bacchetta, J.; Laverny, G.; Schmitt, C.P. Mouse Models of Mineral Bone Disorders Associated with Chronic Kidney Disease. Int. J. Mol. Sci. 2023, 24, 5325. https://doi.org/10.3390/ijms24065325
Zaloszyc A, Bernardor J, Bacchetta J, Laverny G, Schmitt CP. Mouse Models of Mineral Bone Disorders Associated with Chronic Kidney Disease. International Journal of Molecular Sciences. 2023; 24(6):5325. https://doi.org/10.3390/ijms24065325
Chicago/Turabian StyleZaloszyc, Ariane, Julie Bernardor, Justine Bacchetta, Gilles Laverny, and Claus Peter Schmitt. 2023. "Mouse Models of Mineral Bone Disorders Associated with Chronic Kidney Disease" International Journal of Molecular Sciences 24, no. 6: 5325. https://doi.org/10.3390/ijms24065325
APA StyleZaloszyc, A., Bernardor, J., Bacchetta, J., Laverny, G., & Schmitt, C. P. (2023). Mouse Models of Mineral Bone Disorders Associated with Chronic Kidney Disease. International Journal of Molecular Sciences, 24(6), 5325. https://doi.org/10.3390/ijms24065325