Chitosan Composites with Bacterial Cellulose Nanofibers Doped with Nanosized Cerium Oxide: Characterization and Cytocompatibility Evaluation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Infrared Spectroscopy
2.2. Wide-Angle X-ray Scattering
2.3. Swelling Properties
2.4. Mechanical Properties
2.5. Thermal Analysis
2.6. Scanning Electron Microscopy
2.7. Culture of Multipotent Mesenchymal Stem Cells
2.7.1. Quantitative Analysis
2.7.2. Qualitative Analysis
3. Methods and Materials
3.1. Polysaccharides
3.2. Preparation of Composite Films
3.3. Characterization of Composites
3.4. Biocompatibility Testing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Puppi, D.; Chiellini, F. Biodegradable polymers for biomedical additive manufacturing. Appl. Mater. Today 2020, 20, 100700. [Google Scholar] [CrossRef]
- Strnad, S.; Zemljič, L.F. Cellulose–chitosan functional biocomposites. Polymers 2023, 15, 425. [Google Scholar] [CrossRef] [PubMed]
- Roman, D.L.; Ostafe, V.; Isvoran, A. Deeper inside the specificity of lysozyme when degrading chitosan. A structural bioinformatics study. J. Mol. Graph. Model. 2020, 100, 107676. [Google Scholar] [CrossRef] [PubMed]
- Di Martino, A.; Sittinger, M.; Risbud, M.V. Chitosan: A versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 2005, 26, 5983–5990. [Google Scholar] [CrossRef]
- Madni, A.; Kousar, R.; Naeem, N.; Wahid, F. Recent advancements in applications of chitosan-based biomaterials for skin tissue engineering. J. Bioresour. Bioprod. 2021, 6, 11–25. [Google Scholar] [CrossRef]
- Azmana, M.; Mahmood, S.; Hilles, A.R.; Rahman, A.; Arifin, M.A.B.; Ahmed, S. A review on chitosan and chitosan-based bionanocomposites: Promising material for combatting global issues and its applications. Int. J. Biol. Macromol. 2021, 185, 832–848. [Google Scholar] [CrossRef]
- Ling, S.; Chen, W.; Fan, Y.; Zheng, K.; Jin, K.; Yu, H.; Buehler, M.J.; Kaplan, D.L. Biopolymer nanofibrils: Structure, modeling, preparation, and applications. Prog. Polym. Sci. 2018, 85, 1–56. [Google Scholar] [CrossRef]
- Jin, T.; Liu, T.; Lam, E.; Moores, A. Chitin and chitosan on the nanoscale. Nanoscale Horiz. 2021, 6, 505–542. [Google Scholar] [CrossRef]
- Kiroshka, V.V.; Petrova, V.A.; Chernyakov, D.D.; Bozhkova, Y.O.; Kiroshka, K.V.; Baklagina, Y.G.; Romanov, D.P.; Kremnev, R.V.; Skorik, Y.A. Influence of chitosan-chitin nanofiber composites on cytoskeleton structure and the proliferation of rat bone marrow stromal cells. J. Mater. Sci. Mater. Med. 2017, 28, 21. [Google Scholar] [CrossRef]
- Petrova, V.A.; Golovkin, A.S.; Mishanin, A.I.; Romanov, D.P.; Chernyakov, D.D.; Poshina, D.N.; Skorik, Y.A. Cytocompatibility of bilayer scaffolds electrospun from chitosan/alginate-chitin nanowhiskers. Biomedicines 2020, 8, 305. [Google Scholar] [CrossRef]
- Shrivastav, P.; Pramanik, S.; Vaidya, G.; Abdelgawad, M.A.; Ghoneim, M.M.; Singh, A.; Abualsoud, B.M.; Amaral, L.S.; Abourehab, M.A. Bacterial cellulose as a potential biopolymer in biomedical applications: A state-of-the-art review. J. Mater. Chem. B 2022, 10, 3199–3241. [Google Scholar] [CrossRef]
- Petrova, V.A.; Gofman, I.V.; Golovkin, A.S.; Mishanin, A.I.; Dubashynskaya, N.V.; Khripunov, A.K.; Ivan’kova, E.M.; Vlasova, E.N.; Nikolaeva, A.L.; Baranchikov, A.E. Bacterial cellulose composites with polysaccharides filled with nanosized cerium oxide: Characterization and cytocompatibility assessment. Polymers 2022, 14, 5001. [Google Scholar] [CrossRef]
- Carvalho, T.; Guedes, G.; Sousa, F.L.; Freire, C.S.; Santos, H.A. Latest advances on bacterial cellulose-based materials for wound healing, delivery systems, and tissue engineering. Biotechnol. J. 2019, 14, 1900059. [Google Scholar] [CrossRef]
- Dai, L.; Nan, J.; Tu, X.; He, L.; Wei, B.; Xu, C.; Xu, Y.; Li, S.; Wang, H.; Zhang, J. Improved thermostability and cytocompatibility of bacterial cellulose/collagen composite by collagen fibrillogenesis. Cellulose 2019, 26, 6713–6724. [Google Scholar] [CrossRef]
- Petersen, N.; Gatenholm, P. Bacterial cellulose-based materials and medical devices: Current state and perspectives. Appl. Microbiol. Biotechnol. 2011, 91, 1277–1286. [Google Scholar] [CrossRef]
- Kim, J.; Cai, Z.; Chen, Y. Biocompatible bacterial cellulose composites for biomedical application. J. Nanotechnol. Eng. Med. 2010, 1, 011006. [Google Scholar] [CrossRef]
- Müller, F.A.; Müller, L.; Hofmann, I.; Greil, P.; Wenzel, M.M.; Staudenmaier, R. Cellulose-based scaffold materials for cartilage tissue engineering. Biomaterials 2006, 27, 3955–3963. [Google Scholar] [CrossRef]
- Pulkkinen, H.; Tiitu, V.; Lammentausta, E.; Hämäläinen, E.-R.; Kiviranta, I.; Lammi, M.J. Cellulose sponge as a scaffold for cartilage tissue engineering. Bio-Med. Mater. Eng. 2006, 16, S29–S35. [Google Scholar]
- Wang, J.; Wan, Y.; Huang, Y. Immobilisation of heparin on bacterial cellulose-chitosan nano-fibres surfaces via the cross-linking technique. IET Nanobiotechnol. 2012, 6, 52–57. [Google Scholar] [CrossRef]
- Ul-Islam, M.; Subhan, F.; Islam, S.U.; Khan, S.; Shah, N.; Manan, S.; Ullah, M.W.; Yang, G. Development of three-dimensional bacterial cellulose/chitosan scaffolds: Analysis of cell-scaffold interaction for potential application in the diagnosis of ovarian cancer. Int. J. Biol. Macromol. 2019, 137, 1050–1059. [Google Scholar] [CrossRef]
- Cazón, P.; Vázquez, M. Improving bacterial cellulose films by ex-situ and in-situ modifications: A review. Food Hydrocoll. 2021, 113, 106514. [Google Scholar] [CrossRef]
- Gong, T.; Xie, J.; Liao, J.; Zhang, T.; Lin, S.; Lin, Y. Nanomaterials and bone regeneration. Bone Res. 2015, 3, 15029. [Google Scholar] [CrossRef] [Green Version]
- Zienkiewicz-Strzałka, M.; Deryło-Marczewska, A.; Skorik, Y.A.; Petrova, V.A.; Choma, A.; Komaniecka, I. Silver nanoparticles on chitosan/silica nanofibers: Characterization and antibacterial activity. Int. J. Mol. Sci. 2019, 21, 166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, S.C.; Oliveira, L.; Freire, C.S.; Silvestre, A.J.; Neto, C.P.; Gandini, A.; Desbriéres, J. Novel transparent nanocomposite films based on chitosan and bacterial cellulose. Green Chem. 2009, 11, 2023–2029. [Google Scholar] [CrossRef]
- Phisalaphong, M.; Jatupaiboon, N. Biosynthesis and characterization of bacteria cellulose–chitosan film. Carbohydr. Polym. 2008, 74, 482–488. [Google Scholar] [CrossRef]
- Qian, H.; Liu, J.; Wang, X.; Pei, W.; Fu, C.; Ma, M.; Huang, C. The state-of-the-art application of functional bacterial cellulose-based materials in biomedical fields. Carbohydr. Polym. 2022, 300, 120252. [Google Scholar] [CrossRef]
- Shcherbakov, A.B.; Reukov, V.V.; Yakimansky, A.V.; Krasnopeeva, E.L.; Ivanova, O.S.; Popov, A.L.; Ivanov, V.K. CeO2 nanoparticle-containing polymers for biomedical applications: A review. Polymers 2021, 13, 924. [Google Scholar] [CrossRef]
- Hirst, S.M.; Karakoti, A.S.; Tyler, R.D.; Sriranganathan, N.; Seal, S.; Reilly, C.M. Anti-inflammatory properties of cerium oxide nanoparticles. Small 2009, 5, 2848–2856. [Google Scholar] [CrossRef]
- Hosseini, M.; Mozafari, M. Cerium oxide nanoparticles: Recent advances in tissue engineering. Materials 2020, 13, 3072. [Google Scholar] [CrossRef]
- Kargozar, S.; Baino, F.; Hoseini, S.J.; Hamzehlou, S.; Darroudi, M.; Verdi, J.; Hasanzadeh, L.; Kim, H.-W.; Mozafari, M. Biomedical applications of nanoceria: New roles for an old player. Nanomedicine 2018, 13, 3051–3069. [Google Scholar] [CrossRef]
- Serebrovska, Z.; Swanson, R.; Portnichenko, V.; Shysh, A.; Pavlovich, S.; Tumanovska, L.; Dorovskych, A.; Lysenko, V.; Tertykh, V.; Bolbukh, Y. Anti-inflammatory and antioxidant effect of cerium dioxide nanoparticles immobilized on the surface of silica nanoparticles in rat experimental pneumonia. Biomed. Pharmacother. 2017, 92, 69–77. [Google Scholar] [CrossRef]
- Petrova, V.A.; Dubashynskaya, N.V.; Gofman, I.V.; Golovkin, A.S.; Mishanin, A.I.; Aquino, A.D.; Mukhametdinova, D.V.; Nikolaeva, A.L.; Ivan’kova, E.M.; Baranchikov, A.E. Biocomposite films based on chitosan and cerium oxide nanoparticles with promising regenerative potential. Int. J. Biol. Macromol. 2023, 229, 329–343. [Google Scholar] [CrossRef]
- Zugenmaier, P. Order in cellulosics: Historical review of crystal structure research on cellulose. Carbohydr Polym 2021, 254, 117417. [Google Scholar]
- Wada, M.; Sugiyama, J.; Okano, T. Native celluloses on the basis of two crystalline phase (iα/iβ) system. J. Appl. Polym. Sci. 1993, 49, 1491–1496. [Google Scholar] [CrossRef]
- Wada, M.; Kondo, T.; Okano, T. Thermally induced crystal transformation from cellulose iα to iβ. Polym. J. 2003, 35, 155–159. [Google Scholar] [CrossRef] [Green Version]
- Baklagina, Y.G.; Klechkovskaya, V.V.; Kononova, S.V.; Petrova, V.A.; Poshina, D.N.; Orekhov, A.S.; Skorik, Y.A. Polymorphic modifications of chitosan. Crystallogr. Rep. 2018, 63, 303–313. [Google Scholar] [CrossRef]
- Gofman, I.V.; Nikolaeva, A.L.; Khripunov, A.K.; Ivan’kova, E.M.; Shabunin, A.S.; Yakimansky, A.V.; Romanov, D.P.; Popov, A.L.; Ermakov, A.M.; Solomevich, S.O. Bacterial cellulose-based nanocomposites containing ceria and their use in the process of stem cell proliferation. Polymers 2021, 13, 1999. [Google Scholar] [CrossRef]
- Ivanova, O.; Shekunova, T.; Ivanov, V.; Shcherbakov, A.; Popov, A.; Davydova, G.; Selezneva, I.; Kopitsa, G.; Tret’yakov, Y.D. One-stage synthesis of ceria colloid solutions for biomedical use. Dokl. Chem. 2011, 437, 638–641. [Google Scholar] [CrossRef]
- Bradbury, A.; Sakai, Y.; Shafmadeh, F. The chemistry of solid wood. Appl. Polym. Sci. 1979, 23, 3271–3283. [Google Scholar] [CrossRef]
- de Britto, D.; Campana-Filho, S.P. Kinetics of the thermal degradation of chitosan. Thermochim. Acta 2007, 465, 73–82. [Google Scholar] [CrossRef]
- López Gómez, F.A.; Mercê, A.; Alguacil, F.J.; López-Delgado, A. A kinetic study on the thermal behaviour of chitosan. J. Therm. Anal. Calorim. 2008, 91, 633–639. [Google Scholar] [CrossRef]
- Bolbasov, E.; Goreninskii, S.; Tverdokhlebov, S.; Mishanin, A.; Viknianshchuk, A.; Bezuidenhout, D.; Golovkin, A. Comparative study of the physical, topographical and biological properties of electrospinning pcl, plla, their blend and copolymer scaffolds. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Amsterdam, The Netherlands, 11–13 December 2017; p. 012012. [Google Scholar]
- Chen, L.; Yan, C.; Zheng, Z. Functional polymer surfaces for controlling cell behaviors. Mater. Today 2018, 21, 38–59. [Google Scholar] [CrossRef]
- Horie, M.; Nishio, K.; Kato, H.; Fujita, K.; Endoh, S.; Nakamura, A.; Miyauchi, A.; Kinugasa, S.; Yamamoto, K.; Niki, E.; et al. Cellular responses induced by cerium oxide nanoparticles: Induction of intracellular calcium level and oxidative stress on culture cells. J. Biochem. 2011, 150, 461–471. [Google Scholar] [CrossRef] [PubMed]
- Popov, A.L.; Popova, N.R.; Selezneva, I.I.; Akkizov, A.Y.; Ivanov, V.K. Cerium oxide nanoparticles stimulate proliferation of primary mouse embryonic fibroblasts in vitro. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 68, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Okano, T.; Yamada, N.; Okuhara, M.; Sakai, H.; Sakurai, Y. Mechanism of cell detachment from temperature-modulated, hydrophilic-hydrophobic polymer surfaces. Biomaterials 1995, 16, 297–303. [Google Scholar] [CrossRef]
- Kononova, S.V.; Kruchinina, E.V.; Petrova, V.A.; Baklagina, Y.G.; Klechkovskaya, V.V.; Orekhov, A.S.; Vlasova, E.N.; Popova, E.N.; Gubanova, G.N.; Skorik, Y.A. Pervaporation membranes of a simplex type with polyelectrolyte layers of chitosan and sodium hyaluronate. Carbohydr. Polym. 2019, 209, 10–19. [Google Scholar] [CrossRef]
- Buyanov, A.L.; Revel’skaya, L.; Kuznetzov, Y.P.; Khripunov, A.K. Cellulose–poly (acrylamide–acrylic acid) interpenetrating polymer network membranes for the pervaporation of water–ethanol mixtures. II. Effect of ionic group contents and cellulose matrix modification. J. Appl. Polym. Sci. 2001, 80, 1452–1460. [Google Scholar] [CrossRef]
- Buyanov, A.L.; Revel’skaya, L.G.; Kuznetzov, Y.P.; Shestakova, A.S. Cellulose–poly (acrylamide or acrylic acid) interpenetrating polymer network membranes for the pervaporation of water–ethanol mixtures. J. Appl. Polym. Sci. 1998, 69, 761–769. [Google Scholar] [CrossRef]
- Gofman, I.V.; Nikolaeva, A.L.; Khripunov, A.; Yakimansky, A.; Ivan’Kova, E.M.; Romanov, D.P.; Ivanova, O.g.S.; Teplonogova, M.A.; Ivanov, V.K. Impact of nano-sized cerium oxide on physico-mechanical characteristics and thermal properties of the bacterial cellulose films. Nanosyst. Phys. Chem. Math. 2018, 9, 754–762. [Google Scholar] [CrossRef]
- Zotkin, M.A.; Vikhoreva, G.A.; Kechek’yan, A.S. Thermal modification of chitosan films in the form of salts with various acids. Polym. Sci. Ser. B 2004, 46, 39–42. [Google Scholar]
- Goreninskii, S.; Guliaev, R.; Stankevich, K.; Danilenko, N.; Bolbasov, E.; Golovkin, A.; Mishanin, A.; Filimonov, V.; Tverdokhlebov, S. “Solvent/non-solvent” treatment as a method for non-covalent immobilization of gelatin on the surface of poly (l-lactic acid) electrospun scaffolds. Colloids Surf. B Biointerfaces 2019, 177, 137–140. [Google Scholar] [CrossRef]
Sample | Swelling Degree in Water (g/g) | Swelling Degree in 0.9% NaCl Solution, (g/g) |
---|---|---|
CS | 2.6 | - |
CS(80)-BCd(20) | 10.8 | 6.2 |
CS(80)-BCd(20)-CeONP(4) | 13.0 | 6.8 |
CS(80)-BCd(20)-CeONP(8) | 4.7 | 2.9 |
CS(95)-BCd(5) | 6.6 | 5.1 |
CS(95)-BCd(5)-CeONP(4) | 10.2 | 8.9 |
Sample | E (GPa) | σb (MPa) | εb (%) |
---|---|---|---|
CS | 4.55 ± 0.12 | 114 ± 5 | 30 ± 2 |
BCd | 11.7 ± 0.3 | 460 ± 17 | 3.6 ± 0.3 |
CS(95)-BCd(5) | 6.3 ± 0.4 | 110 ± 6 | 11 ± 2 |
CS(80)-BCd(20) | 6.7 ± 0.3 | 140 ± 6 | 4.5 ± 0.6 |
CS(95)-BCd(5)-CeONP(4) | 6.2 ± 0.5 | 118 ± 5 | 7 ± 1 |
CS(80)-BCd(20)-CeONP(4) | 7.0 ± 0.4 | 111 ± 6 | 3.7 ± 0.4 |
CS(80)- BCd (20)-CeONP(8) | 6.8 ± 0.2 | 110 ± 6 | 6 ± 1 |
CS(80)-BCd(20)-CeONP(8) in swollen state | (73 ± 3) × 10−3 | 22 ± 2 | 15 ± 2 |
Sample | τ5, °C | τ10, °C |
---|---|---|
CS(80)-BCd(20) | 243 | 256 |
CS(80)-BCd(20)-CeONP(8) | 239 | 255 |
Sample | Adhered Cells, cells/mm2 | Number of Spheroids | Spheroids’ Size, µm |
---|---|---|---|
CS(80)-BCd(20)—control | 216 ± 16 | 6.6 ± 0.9 | 64 ± 7 |
CS(80)-BCd(20)-CeONP(4) | 218 ± 22 | 8.2 ± 1.5 | 66 ± 6 |
CS(95)-BCd(5)-CeONP(4) | 199 ± 10 | 6.7 ± 0.6 | 141 ± 17 * |
CS(80)-BCd(20)-CeONP(8) | 300 ± 33 * | 6.8 ± 0.7 | 136 ± 12 * |
Sample | Separate cells | Type of Colonies | Cell Migration from Spheroids | |
---|---|---|---|---|
Elongated Cells | Rounded Cells | |||
Glass | multiple | - | flat colonies/monolayer | - |
CS(80)-BCd(20)—control | multiple | multiple | flat colonies + spheroids | ++ |
CS(80)-BCd(20)-CeONP(4) | multiple | multiple | flat colonies + spheroids | ++ |
CS(95)-BCd(5)-CeONP(4) | single | single | flat colonies + spheroids | +++ |
CS(80)-BCd(20)-CeONP(8) | single | single | flat colonies + spheroids | +++ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrova, V.A.; Gofman, I.V.; Dubashynskaya, N.V.; Golovkin, A.S.; Mishanin, A.I.; Ivan’kova, E.M.; Romanov, D.P.; Khripunov, A.K.; Vlasova, E.N.; Migunova, A.V.; et al. Chitosan Composites with Bacterial Cellulose Nanofibers Doped with Nanosized Cerium Oxide: Characterization and Cytocompatibility Evaluation. Int. J. Mol. Sci. 2023, 24, 5415. https://doi.org/10.3390/ijms24065415
Petrova VA, Gofman IV, Dubashynskaya NV, Golovkin AS, Mishanin AI, Ivan’kova EM, Romanov DP, Khripunov AK, Vlasova EN, Migunova AV, et al. Chitosan Composites with Bacterial Cellulose Nanofibers Doped with Nanosized Cerium Oxide: Characterization and Cytocompatibility Evaluation. International Journal of Molecular Sciences. 2023; 24(6):5415. https://doi.org/10.3390/ijms24065415
Chicago/Turabian StylePetrova, Valentina A., Iosif V. Gofman, Natallia V. Dubashynskaya, Alexey S. Golovkin, Alexander I. Mishanin, Elena M. Ivan’kova, Dmitry P. Romanov, Albert K. Khripunov, Elena N. Vlasova, Alexandra V. Migunova, and et al. 2023. "Chitosan Composites with Bacterial Cellulose Nanofibers Doped with Nanosized Cerium Oxide: Characterization and Cytocompatibility Evaluation" International Journal of Molecular Sciences 24, no. 6: 5415. https://doi.org/10.3390/ijms24065415
APA StylePetrova, V. A., Gofman, I. V., Dubashynskaya, N. V., Golovkin, A. S., Mishanin, A. I., Ivan’kova, E. M., Romanov, D. P., Khripunov, A. K., Vlasova, E. N., Migunova, A. V., Baranchikov, A. E., Ivanov, V. K., Yakimansky, A. V., & Skorik, Y. A. (2023). Chitosan Composites with Bacterial Cellulose Nanofibers Doped with Nanosized Cerium Oxide: Characterization and Cytocompatibility Evaluation. International Journal of Molecular Sciences, 24(6), 5415. https://doi.org/10.3390/ijms24065415