Pilot Study on the Impact of Polymorphisms Linked to Multi-Kinase Inhibitor Metabolism on Lenvatinib Side Effects in Patients with Advanced Thyroid Cancer
Abstract
:1. Introduction
2. Results
2.1. Patients
2.2. Correlation between SNPs and Side Effects
2.2.1. Diarrhea
2.2.2. Nausea, Vomiting and Epigastric Pain
2.2.3. Oral Mucositis and Xerostomia
2.2.4. Hypertension and Proteinuria
2.2.5. Asthenia
2.2.6. Anorexia and Weight Loss
2.2.7. Hand Foot Syndrome
2.2.8. Correlation between SNPs and Response to Lenvatinib Treatment
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. DNA Extraction and SNPs Analysis
4.3. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cabanillas, M.E.; Ryder, M.; Jimenez, C. Targeted Therapy for Advanced Thyroid Cancer: Kinase Inhibitors and Beyond. Endocr. Rev. 2019, 40, 1573–1604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matrone, A.; Valerio, L.; Pieruzzi, L.; Giani, C.; Cappagli, V.; Lorusso, L.; Agate, L.; Puleo, L.; Viola, D.; Bottici, V.; et al. Protein kinase inhibitors for the treatment of advanced and progressive radiorefractory thyroid tumors: From the clinical trials to the real life. Best Pract. Res. Clin. Endocrinol. Metab. 2017, 31, 319–334. [Google Scholar] [CrossRef]
- Wells, S.A., Jr.; Robinson, B.G.; Gagel, R.F.; Dralle, H.; Fagin, J.A.; Santoro, M.; Baudin, E.; Elisei, R.; Jarzab, B.; Vasselli, J.R.; et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: A randomized, double-blind phase III trial. J. Clin. Oncol. 2012, 30, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Elisei, R.; Schlumberger, M.J.; Müller, S.P.; Schöffski, P.; Brose, M.S.; Shah, M.H.; Licitra, L.; Jarząb, B.; Medvedev, V.; Kreissl, M.C.; et al. Cabozantinib in progressive medullary thyroid cancer. J. Clin. Oncol. 2013, 31, 3639–3646. [Google Scholar] [CrossRef] [Green Version]
- Brose, M.S.; Nutting, C.M.; Jarzab, B.; Elisei, R.; Siena, S.; Bastholt, L.; de la Fouchardiere, C.; Pacini, F.; Paschke, R.; Shong, Y.K.; et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: A randomised, double-blind, phase 3 trial. Lancet 2014, 384, 319–328. [Google Scholar] [CrossRef] [Green Version]
- Schlumberger, M.; Tahara, M.; Wirth, L.J.; Robinson, B.; Brose, M.S.; Elisei, R.; Habra, M.A.; Newbold, K.; Shah, M.H.; Hoff, A.O.; et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N. Engl. J. Med. 2015, 372, 621–630. [Google Scholar] [CrossRef] [Green Version]
- Subbiah, V.; Kreitman, R.J.; Wainberg, Z.A.; Cho, J.Y.; Schellens, J.H.M.; Soria, J.C.; Wen, P.Y.; Zielinski, C.; Cabanillas, M.E.; Urbanowitz, G.; et al. Dabrafenib and Trametinib Treatment in Patients with Locally Advanced or Metastatic BRAF V600-Mutant Anaplastic Thyroid Cancer. J. Clin. Oncol. 2018, 36, 7–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradford, D.; Larkins, E.; Mushti, S.L.; Rodriguez, L.; Skinner, A.M.; Helms, W.S.; Price, L.S.L.; Zirkelbach, J.F.; Li, Y.; Liu, J.; et al. FDA Approval Summary: Selpercatinib for the Treatment of Lung and Thyroid Cancers with RET Gene Mutations or Fusions. Clin. Cancer Res. 2021, 27, 2130–2135. [Google Scholar] [CrossRef]
- Kim, J.; Bradford, D.; Larkins, E.; Pai-Scherf, L.H.; Chatterjee, S.; Mishra-Kalyani, P.S.; Wearne, E.; Helms, W.S.; Ayyoub, A.; Bi, Y.; et al. FDA Approval Summary: Pralsetinib for the Treatment of Lung and Thyroid Cancers with RET Gene Mutations or Fusions. Clin. Cancer Res. 2021, 27, 5452–5456. [Google Scholar] [CrossRef] [PubMed]
- Indra, R.; Vavrová, K.; Pompach, P.; Heger, Z.; Hodek, P. Identification of Enzymes Oxidizing the Tyrosine Kinase Inhibitor Cabozantinib: Cabozantinib Is Predominantly Oxidized by CYP3A4 and Its Oxidation Is Stimulated by cyt b5 Activity. Biomedicines 2020, 8, 547. [Google Scholar] [CrossRef] [PubMed]
- Indra, R.; Pompach, P.; Martínek, V.; Takácsová, P.; Vavrová, K.; Heger, Z.; Adam, V.; Eckschlager, T.; Kopečková, K.; Arlt, V.M.; et al. Identification of Human Enzymes Oxidizing the Anti-Thyroid-Cancer Drug Vandetanib and Explanation of the High Efficiency of Cytochrome P450 3A4 in its Oxidation. Int. J. Mol. Sci. 2019, 20, 3392. [Google Scholar]
- Fogli, S.; Gianfilippo, G.; Cucchiara, F.; Del Re, M.; Valerio, L.; Elisei, R.; Danesi, R. Clinical pharmacology and drug-drug interactions of lenvatinib in thyroid cancer. Crit Rev. Oncol. Hematol. 2021, 163, 103366. [Google Scholar] [CrossRef]
- Vavrová, K.; Indra, R.; Pompach, P.; Heger, Z.; Hodek, P. The impact of individual human cytochrome P450 enzymes on oxidative metabolism of anticancer drug lenvatinib. Biomed. Pharmacother. 2022, 145, 112391. [Google Scholar] [CrossRef] [PubMed]
- Abumiya, M.; Mita, A.; Takahashi, S.; Yoshioka, T.; Kameoka, Y.; Takahashi, N.; Miura, M. Effects of polymorphisms in NR1I2, CYP3A4, and ABC transporters on the steady-state plasma trough concentrations of bosutinib in Japanese patient with chronic myeloid leukemia. Med. Oncol. 2018, 35, 90. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, H.; Iihara, H.; Hirose, C.; Fukuda, Y.; Kitahora, M.; Kaito, D.; Yanase, K.; Endo, J.; Ohno, Y.; Suzuki, A.; et al. Effects of pharmacokinetics-related genetic polymorphisms on the side effect profile of afatinib in patients with non-small cell lung cancer. Lung Cancer 2019, 134, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Kato, H.; Sassa, N.; Miyazaki, M.; Takeuchi, M.; Asai, M.; Iwai, A.; Noda, Y.; Gotoh, M.; Yamada, K. Association of axitinib plasma exposure and genetic polymorphisms of ABC transporters with axitinib-induced toxicities in patients with renal cell carcinoma. Cancer Chemother. Pharmacol. 2016, 78, 855–862. [Google Scholar] [CrossRef]
- Ozeki, T.; Nagahama, M.; Fujita, K.; Suzuki, A.; Sugino, K.; Ito, K.; Miura, M. Influence of CYP3A4/5 and ABC transporter polymorphisms on lenvatinib plasma trough concentrations in Japanese patients with thyroid cancer. Sci. Rep. 2019, 9, 5404. [Google Scholar] [CrossRef] [Green Version]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef] [PubMed]
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21, 263–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matrone, A.; Prete, A.; Nervo, A.; Ragni, A.; Agate, L.; Molinaro, E.; Giani, C.; Valerio, L.; Minaldi, E.; Piovesan, A.; et al. Lenvatinib as a salvage therapy for advanced metastatic medullary thyroid cancer. J. Endocrinol. Investig. 2021, 44, 2139–2151. [Google Scholar] [CrossRef]
- Dubbelman, A.-C.; Rosing, H.; Nijenhuis, C.; Huitema, A.D.R.; Mergui-Roelvink, M.; Gupta, A.; Verbel, D.; Thompson, G.; Shumaker, R.; Schellens, J.H.M.; et al. Pharmacokinetics and excretion of (14)C-lenvatinib in patients with advanced solid tumors or lymphomas. Investig. New Drugs 2015, 33, 233–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boss, D.S.; Glen, H.; Beijnen, J.H.; Keesen, M.; Morrison, R.; Tait, B.; Copalu, W.; Mazur, A.; Wanders, J.; O’brien, J.P.; et al. A phase I study of E7080, a multitargeted tyrosine kinase inhibitor, in patients with advanced solid tumours. Br. J. Cancer 2012, 106, 1598–1604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, B.; Zou, T.; Qin, W.; Shen, X.; Su, Y.; Li, J.; Chen, Y.; Zhang, Z.; Sun, H.; Zheng, Y.; et al. Inhibition of EGFR Overcomes Acquired Lenvatinib Resistance Driven by STAT3-ABCB1 Signaling in Hepatocellular Carcinoma. Cancer Res. 2022, 82, 3845–3857. [Google Scholar] [CrossRef] [PubMed]
- Shumaker, R.; Aluri, J.; Fan, J.; Martinez, G.; Thompson, G.A.; Ren, M. Effects of Ketoconazole on the Pharmacokinetics of Lenvatinib (E7080) in Healthy Participants. Clin. Pharmacol. Drug Dev. 2015, 4, 155–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics of Patients, n = 18 | |
---|---|
Age at TKI start, years | |
Median (range) | 69 (30–96) |
Mean ± SD | 67.5 ± 13.8 |
Gender, n (%) | |
Female | 11 (61) |
Male | 7 (39) |
Histology, n (%) | |
DTC | 8 (44.5) |
PDTC | 8 (44.5) |
MTC | 2 (11) |
Site of metastasis, n (%) | |
Distant metastasis | 13 (72.3) |
Local disease | 5 (27.7) |
Patients with of bone metastasis, n (%) | 6 (33.3) |
Numbers of anatomical site involved, n (%) | |
1 | 5 (27.8) |
2 | 4 (22.2) |
≥3 | 9 (50) |
Initial dosage, n (%) | |
24 mg | 14 (77.7) |
14 mg | 4 (22.3) |
Lenvatinib line of treatment, n (%) | |
First | 14 (77.8) |
Second/third | 2 (22.2) |
Best response | |
PD | 1 (5.5) |
PR | 8 (44.5) |
SD | 9 (50) |
Time to reach the best response, months | |
Median (range) | 7.4 (1.9–21.2) |
Mean ± SD | 8.8 ± 6 |
Duration of lenvatinib treatment, months | |
Median (range) | 25.9 (2.7–52.9) |
Mean ± SD | 23.0 ± 15.1 |
Adverse Event | AE Presence n (%) | Grade 1 n (%) | Grade 2 n (%) | Grade 3 n (%) | Duration of the AE (Months) Mean ± SD Median (Range) | Duration of the G Max AE (Months) Mean ± SD Median (Range) |
---|---|---|---|---|---|---|
Diarrhea | 14 (77.8) | 9 (64.3) | 3 (21.4) | 2 (14.3) | 5.8 ± 3.7 5.2 (0.3–12) | 4.7 ± 4.4 4.2 (0.06–12) |
Nausea, vomiting and epigastric pain | 12 (66.7) | 9 (75) | 3 (25) | 0 (0) | 4.5 ± 4.8 2.5 (0.03–12) | 4.2 ± 4.8 1.9 (0.03–11.9) |
Oral mucositis and xerostomia | 15 (83.4) | 11 (73.4) | 3 (20) | 1 (6.6) | 7.5 ± 4.4 8.6 (1–12) | 6.0 ± 4.5 4.2 (1–12) |
Hypertension | 13 (72.3) | 2 (15.3) | 7 (53.8) | 4 (30.9) | 9.2 ± 4.2 30 (2.6–12) | 9.1 ± 3.9 30 (2.6–12) |
Proteinuria | 5 (29.4) | 2 (40) | 1 (20) | 2 (40) | 4.9 ± 4.3 2 (1.3–9.7) | 1.24 ± 0.7 1.3 (0.33–2) |
Asthenia | 13 (76.5) | 7 (53.8) | 4 (30.8) | 2 (15.4) | 7.6 ± 4.3 7.3 (1.4–12) | 5.5 ± 4.9 4.6 (0.13–12) |
Anorexia | 13 (76.5) | 7 (53.8) | 2 (15.4) | 4 (30.8) | 7.9 ± 4.7 10.3 (0.6–12) | 5.6 ± 5.1 3.8 (0.13–12) |
Hand-foot syndrome | 9 (50) | 4 (44.4) | 5 (55.6) | 0 (0) | 6.6 ± 4.3 5.8 (1.3–12) | 6.0 ± 4.3 4.5 (1.3–12) |
Weight loss | 11 (61.1) | 4 (36.4) | 5 (45.4) | 2 (18.2) | * | * |
Gene | Polymorphism | Type of SNP (Ensembl Database) | Observed Allele Frequency in Our Cohort (%) | Allele Frequency in the European Population (%) | Genotype (n = 18) |
---|---|---|---|---|---|
CYP3A4 | rs2687116 | Intronic | A: 94.4 C: 5.6 | A: 97 C: 3 | AA: 16 AC: 2 CC: 0 |
rs2242480 | Intronic | G: 91.7 A: 8.3 | G: 92 A:8 | GG: 16 GA: 1 AA: 1 | |
CYP3A5 | rs776746 | Splice acceptor variant | C: 86.2 T: 13.8 | C: 94 T:6 | CC: 15 CT: 1 TT: 2 |
ABCB1 | rs2032582 | p.S893A | G: 55.5 T: 44.5 | G: 59 T: 41 | GG: 4 GT: 12 TT: 2 |
rs1045642 | p.Ile1145Met | T: 41.6 C: 58.4 | T: 52 C: 48 | CC: 5 CT: 11 TT: 2 | |
rs2235048 | Intronic | C: 38.9 T: 61.1 | C: 52 T: 48 | CC: 2 CT: 10 TT: 6 | |
ABCG2 | rs2231142 | p.Gln141Glu | C: 88.9 A: 11.1 | C: 91 A: 9 | CC: 14 CA: 4 AA: 0 |
Presence/Absence of Diarrhoea | Grade of Diarrhoea | ||||
---|---|---|---|---|---|
Gene | Polymorphism | p Value (Genotype Level) | p Value (Allele Level) | p Value (Genotype Level) | p Value (Allele Level) |
CYP3A4 | rs2687116 | 0.42 | 0.43 | 0.26 | 0.29 |
CYP3A4 | rs2242480 | 0.64 | 0.3 | 0.03 * | 0.04 * |
CYP3A5 | rs776746 | 0.64 | 0.33 | 0.03 * | 0.04 * |
ABCB1 | rs2032582 | 0.27 | 0.72 | 0.72 | 0.71 |
ABCB1 | rs1045642 | 0.28 | 0.17 | 0.37 | 0.67 |
ABCB1 | rs2235048 | 0.22 | 0.12 | 0.11 | 0.24 |
ABCG2 | rs2231142 | 0.08 | 0.89 | 0.4 | 0.45 |
Diarrhea (Months) | ||||
---|---|---|---|---|
Allele | <1 | 1–4 | >4 | p |
CYP3A4 rs2242480 | ||||
A | 3 | 0 | 0 | 0.015 * |
G | 5 | 6 | 14 | |
CYP3A5 rs776746 | ||||
C | 5 | 6 | 14 | 0.018 * |
T | 3 | 0 | 0 |
Presence/Absence of Nausea, Vomiting and Epigastric Pain | Grade of Nausea, Vomiting and Epigastric Pain | ||||
---|---|---|---|---|---|
Gene | Polymorphism | p Value (Genotype Level) | p Value (Allele Level) | p Value (Genotype Level) | p Value (Allele Level) |
CYP3A4 | rs2687116 | 0.28 | 0.29 | 0.37 | 0.42 |
CYP3A4 | rs2242480 | 0.56 | 0.19 | 0.67 | 0.3 |
CYP3A5 | rs776746 | 0.56 | 0.19 | 0.67 | 0.28 |
ABCB1 | rs2032582 | 0.37 | 0.71 | 0.13 | 0.16 |
ABCB1 | rs1045642 | 0.17 | 0.18 | 0.08 | 0.1 |
ABCB1 | rs2235048 | 0.1 | 0.12 | 0.06 | 0.019 * |
ABCG2 | rs2231142 | 0.68 | 0.67 | 0.7 | 0.72 |
Oral Mucositis and Xerostomia (Months) | |||
---|---|---|---|
Genotype | 1–4 | >4 | p |
ABCG2 rs2231142 | |||
CC | 2 | 9 | 0.039 * |
CA | 3 | 1 |
Presence/Absence of Hypertension | Grade of Hypertension | ||||
---|---|---|---|---|---|
Gene | Polymorphism | p Value (Genotype Level) | p Value (Allele Level) | p Value (Genotype Level) | p Value (Allele Level) |
CYP3A4 | rs2687116 | 0.35 | 0.38 | 0.68 | 0.64 |
CYP3A4 | rs2242480 | 0.02 * | 0.001 * | 0.54 | 0.39 |
CYP3A5 | rs776746 | 0.02 * | 0.0013 * | 0.91 | 0.8 |
ABCB1 | rs2032582 | 0.61 | 0.76 | 0.5 | 0.47 |
ABCB1 | rs1045642 | 0.27 | 0.74 | 0.08 | 0.25 |
ABCB1 | rs2235048 | 0.27 | 0.74 | 0.09 | 0.25 |
ABCG2 | rs2231142 | 0.65 | 0.7 | 0.27 | 0.28 |
Presence/Absence of Asthenia | Grade of Asthenia | ||||
---|---|---|---|---|---|
Gene | Polymorphism | p Value (Genotype Level) | p Value (Allele Level) | p Value (Genotype Level) | p Value (Allele Level) |
CYP3A4 | rs2687116 | 0.4 | 0.9 | 0.72 | 0.74 |
CYP3A4 | rs2242480 | 0.7 | 0.56 | 0.08 | 0.02 * |
CYP3A5 | rs776746 | 0.7 | 0.56 | 0.08 | 0.022 * |
ABCB1 | rs2032582 | 0.24 | 0.4 | 0.14 | 0.11 |
ABCB1 | rs1045642 | 0.64 | 0.4 * | 0.28 | 0.49 |
ABCB1 | rs2235048 | 0.64 | 0.82 | 0.28 | 0.49 |
ABCG2 | rs2231142 | 0.28 | 0.9 | 0.017 * | 0.028 * |
Presence/Absence of Weight Loss | Grade of Weight Loss | ||||
---|---|---|---|---|---|
Gene | Polymorphism | p Value (Genotype Level) | p Value (Allele Level) | p Value (Genotype Level) | p Value (Allele Level) |
CYP3A4 | rs2687116 | 0.5 | 0.49 | 0.28 | 0.2 |
CYP3A4 | rs2242480 | 0.79 | 0.39 | 0.17 | 0.15 |
CYP3A5 | rs776746 | 0.79 | 0.39 | 0.17 | 0.15 |
ABCB1 | rs2032582 | 0.3 | 0.18 | 0.18 | 0.94 |
ABCB1 | rs1045642 | 0.003 * | 0.014 * | 0.8 | 0.49 |
ABCB1 | rs2235048 | 0.003 * | 0.02 * | 0.8 | 0.29 |
ABCG2 | rs2231142 | 0.61 | 0.22 | 0.06 | 0.14 |
Best Response | Time Interval | ||||
---|---|---|---|---|---|
Gene | Polymorphism | p Value (Genotype Level) | p Value (Allele Level) | p Value (Genotype Level) | p Value (Allele Level) |
CYP3A4 | rs2687116 | 0.14 | 0.97 | 0.17 | 0.26 |
CYP3A4 | rs2242480 | 0.68 | 0.87 | 0.013 * | <0.0001 * |
ABCB1 | rs2032582 | 0.24 | 0.57 | 0.14 | 0.6 |
ABCB1 | rs1045642 | 0.5 | 0.66 | 0.11 | 0.08 |
ABCB1 | rs2235048 | 0.3 | 0.43 | 0.11 | 0.07 |
ABCG2 | rs2231142 | 0.13 | 0.31 | 0.5 | 0.57 |
CYP3A5 | rs776746 | 0.68 | 0.87 | 0.013 * | <0.0001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cantara, S.; Dalmiglio, C.; Marzocchi, C.; Sagnella, A.; Brilli, L.; Trimarchi, A.; Maino, F.; Valerio, L.; Castagna, M.G. Pilot Study on the Impact of Polymorphisms Linked to Multi-Kinase Inhibitor Metabolism on Lenvatinib Side Effects in Patients with Advanced Thyroid Cancer. Int. J. Mol. Sci. 2023, 24, 5496. https://doi.org/10.3390/ijms24065496
Cantara S, Dalmiglio C, Marzocchi C, Sagnella A, Brilli L, Trimarchi A, Maino F, Valerio L, Castagna MG. Pilot Study on the Impact of Polymorphisms Linked to Multi-Kinase Inhibitor Metabolism on Lenvatinib Side Effects in Patients with Advanced Thyroid Cancer. International Journal of Molecular Sciences. 2023; 24(6):5496. https://doi.org/10.3390/ijms24065496
Chicago/Turabian StyleCantara, Silvia, Cristina Dalmiglio, Carlotta Marzocchi, Alfonso Sagnella, Lucia Brilli, Andrea Trimarchi, Fabio Maino, Laura Valerio, and Maria Grazia Castagna. 2023. "Pilot Study on the Impact of Polymorphisms Linked to Multi-Kinase Inhibitor Metabolism on Lenvatinib Side Effects in Patients with Advanced Thyroid Cancer" International Journal of Molecular Sciences 24, no. 6: 5496. https://doi.org/10.3390/ijms24065496
APA StyleCantara, S., Dalmiglio, C., Marzocchi, C., Sagnella, A., Brilli, L., Trimarchi, A., Maino, F., Valerio, L., & Castagna, M. G. (2023). Pilot Study on the Impact of Polymorphisms Linked to Multi-Kinase Inhibitor Metabolism on Lenvatinib Side Effects in Patients with Advanced Thyroid Cancer. International Journal of Molecular Sciences, 24(6), 5496. https://doi.org/10.3390/ijms24065496