A Comprehensive Ab Initio Study of Halogenated A···U and G···C Base Pair Geometries and Energies
Abstract
:1. Introduction
2. Results and Discussion
2.1. PDB Survey on Halogenated Nucleic Acids
2.2. Preliminary MEP Study
2.3. Energetic Study
2.4. QTAIM and NCIplot Analyses
2.5. Selected PDB Examples
3. Materials and Methods
3.1. Calculations on Base Pair Complexes (Binding Modes a, b, c and d)
3.2. Calculations on Selected X-ray Structures
3.3. Molecular Electrostatic Potential Calculations (MEP)
3.4. QTAIM Analysis
3.5. NCIplot Analysis
4. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lehn, J.M. Supramolecular Chemistry: Concepts and Perspectives, 1st ed.; Wiley VCH: Weinheim, Germany, 1995. [Google Scholar]
- Schneider, H.J. Supramolecular Systems in Biomedical Fields, 1st ed.; RSC Publishing: Cambridge, UK, 2013. [Google Scholar]
- Steed, A.W.; Atwood, J.L. Supramolecular Chemistry, 1st ed.; John Wily & Sons, Ltd.: Chichester, UK, 2009. [Google Scholar]
- Cragg, P.J. Supramolecular Chemistry: From Biological Inspiration to Biomedical Applications, 1st ed.; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar]
- Williams, D.H.; Stephens, E.; O’Brien, D.P.; Zhou, M. Understanding Noncovalent Interactions: Ligand Binding Energy and Catalytic Efficiency from Ligand-Induced Reductions in Motion within Receptors and Enzymes. Angew. Chem. Int. Ed. 2004, 43, 6596–6616. [Google Scholar] [CrossRef]
- Vargas Jentzsch, A.; Emery, D.; Mareda, J.; Nayak, S.K.; Metrangolo, P.; Resnati, G.; Sakai, N.; Matile, S. Transmembrane anion transport mediated by halogen-bond donors. Nat. Commun. 2012, 3, 905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartlett, G.J.; Choudhary, A.; Raines, R.T.; Woolfson, D.N. n→π* interactions in proteins. Nat. Chem. Biol. 2010, 6, 615–620. [Google Scholar] [CrossRef] [PubMed]
- Gilli, G.; Gilli, P. The Nature of the Hydrogen Bond; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. The Halogen Bond. Chem. Rev. 2016, 116, 2478–2601. [Google Scholar] [CrossRef] [Green Version]
- Wolters, L.P.; Schyman, P.; Pavan, M.J.; Jorgensen, W.L.; Bickelhaupt, F.M.; Kozuch, S. The many faces of halogen bonding: A review of theoretical models and methods. WIREs Comput. Mol. Sci. 2014, 4, 523–540. [Google Scholar] [CrossRef]
- Anderson, L.N.; Aquino, F.W.; Raeber, A.E.; Chen, X.; Wong, B.M. Halogen Bonding Interactions: Revised Benchmarks and a New Assessment of Exchange vs Dispersion. J. Chem. Theory Comput. 2018, 14, 180–190. [Google Scholar] [CrossRef] [Green Version]
- Puttreddy, R.; Rautiainen, J.M.; Maekelae, T.; Rissanen, K. Strong N-X…O-N Halogen Bonds: A Comprehensive Study on N-Halosaccharin Pyridine N-Oxide Complexes. Angew. Chem. Int. Ed. 2019, 58, 18610–18618. [Google Scholar] [CrossRef]
- Erakovic, M.; Cincic, D.; Molcanov, K.; Stilinovic, V. A Crystallographic Charge Density Study of the Partial Covalent Nature of Strong N···Br Halogen Bonds. Angew. Chem. Int. Ed. 2019, 58, 15702–15706. [Google Scholar] [CrossRef]
- Vioglio, P.C.; Chierotti, M.R.; Gobetto, R. Solid-state nuclear magnetic resonance as a tool for investigating the halogen bond. CrystEngComm 2016, 18, 9173–9184. [Google Scholar] [CrossRef]
- Szell, P.M.J.; Gabriel, S.A.; Caron-Poulin, E.; Jeannin, O.; Fourmigué, M.; Bryce, D.L. Cosublimation: A Rapid Route Toward Otherwise Inaccessible Halogen-Bonded Architectures. Cryst. Growth Des. 2018, 18, 6227–6238. [Google Scholar] [CrossRef]
- Clark, T. σ-Holes. WIREs Comput. Mol. Sci. 2013, 3, 13–20. [Google Scholar] [CrossRef]
- Politzer, P.; Murray, J.S.; Clark, T. Halogen Bonding and Other σ-Hole Interactions: A Perspective. Phys. Chem. Chem. Phys. 2013, 15, 11178–11189. [Google Scholar] [CrossRef] [PubMed]
- Politzer, P.; Murray, J.S.; Lane, P. σ-Hole Bonding and Hydrogen Bonding: Competitive Interactions. Int. J. Quantum Chem. 2007, 107, 3046–3052. [Google Scholar] [CrossRef]
- Sirimulla, S.; Bailey, J.B.; Vegesna, R.; Narayan, M. Halogen Interactions in Protein–Ligand Complexes: Implications of Halogen Bonding for Rational Drug Design. J. Chem. Inf. Model. 2013, 53, 2781–2791. [Google Scholar] [CrossRef] [PubMed]
- Shinada, N.K.; de Brevern, A.G.; Schmidtke, P. Halogens in Protein–Ligand Binding Mechanism: A Structural Perspective. J. Med. Chem. 2019, 62, 9341–9356. [Google Scholar] [CrossRef]
- Pähler, A.; Smith, J.L.; Hendrickson, W.A. A Probability Representation for Phase Information from Multiwavelength Anomalous Dispersion. Acta Crystallogr. A 1990, 46, 537–540. [Google Scholar] [CrossRef]
- Balasubramaniyam, T.; Oh, K.-I.; Jin, H.-S.; Ahn, H.-B.; Kim, B.-S.; Lee, J.-H. Non-Canonical Helical Structure of Nucleic Acids Containing Base-Modified Nucleotides. Int. J. Mol. Sci. 2021, 22, 9552. [Google Scholar] [CrossRef]
- Parker, A.J.; Stewart, J.; Donald, K.J.; Parish, C.A. Halogen Bonding in DNA Base Pairs. J. Am. Chem. Soc. 2012, 134, 5165–5172. [Google Scholar] [CrossRef]
- Xu, L.; Sang, P.; Zou, J.-W.; Xu, M.-B.; Li, X.-M.; Yu, Q.-S. Evaluation of nucleotide C–Br···O–P contacts from ONIOM calculations: Theoretical insight into halogen bonding in nucleic acids. Chem. Phys. Lett. 2011, 509, 175–180. [Google Scholar] [CrossRef]
- Hassel, O. Structural Aspects of Interatomic Charge-Transfer Bonding; Nobel Lectures; Elsevier Publishing Company: Amsterdam, The Netherland, 1972; pp. 1963–1970. [Google Scholar]
- Riley, K.E.; Vazquez, M.; Umemura, C.; Miller, C.; Tran, K.-A. Exploring the (Very Flat) Potential Energy Landscape of R−Br⋅⋅⋅π Interactions with Accurate CCSD(T) and SAPT Techniques. Chem. Eur. J. 2016, 22, 17690–17695. [Google Scholar] [CrossRef] [Green Version]
- Clark, T.; Murray, J.S.; Politzer, P. Role of Polarization in Halogen Bonds. Aust. J. Chem. 2013, 67, 451–456. [Google Scholar] [CrossRef] [Green Version]
- Eskandari, K.; Zariny, H. Halogen bonding: A lump-hole interaction. Chem. Phys. Lett. 2010, 492, 9–13. [Google Scholar] [CrossRef]
- Jahromi, H.J.; Eskandari, K. Halogen bonding: A theoretical study based on atomic multipoles derived from quantum theory of atoms in molecules. Struct. Chem. 2012, 24, 1281–1287. [Google Scholar] [CrossRef]
- Jiao, Y.; Weinhold, F. What Is the Nature of Supramolecular Bonding? Comprehensive NBO/NRT Picture of Halogen and Pnicogen Bonding in RPH2···IF/FI Complexes (R = CH3, OH, CF3, CN, NO2). Molecules 2019, 24, 2090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorton, N.J.; van Mourik, T. Halogen-Bonded Guanine Base Pairs, Quartets and Ribbons. Int. J. Mol. Sci. 2020, 21, 6571. [Google Scholar] [CrossRef]
- Yang, B.; Wu, R.R.; Rodgers, M.T. Base-Pairing Energies of Proton-Bound Dimers and Proton Affinities of 1-Methyl-5-Halocytosines: Implications for the Effects of Halogenation on the Stability of the DNA i-Motif. J. Am. Soc. Mass. Spectrom. 2015, 26, 1469–1482. [Google Scholar] [CrossRef] [PubMed]
- Carter, M.; Voth, A.R.; Scholfield, M.R.; Rummel, B.; Sowers, L.C.; Ho, P.S. Enthalpy–Entropy Compensation in Biomolecular Halogen Bonds Measured in DNA Junctions. Biochemistry 2013, 52, 4891–4903. [Google Scholar] [CrossRef]
- Voth, A.R.; Hays, F.A.; Ho, P.S. Directing macromolecular conformation through halogen bonds. Proc. Natl. Acad. Sci. USA 2007, 104, 6188–6193. [Google Scholar] [CrossRef] [Green Version]
- Ennifar, E.; Bernacchi, S.; Wolff, P.; Dumas, P. Influence of C-5 halogenation of uridines on hairpin versus duplex RNA folding. RNA 2007, 13, 1445–1452. [Google Scholar] [CrossRef] [Green Version]
- Kolář, M.H.; Tabarrini, O. Halogen Bonding in Nucleic Acid Complexes. J. Med. Chem. 2017, 60, 8681–8690. [Google Scholar] [CrossRef] [Green Version]
- Auffinger, P.; Hays, F.A.; Westhof, E.; Shing Ho, P. Halogen bonds in biological molecules. Proc. Natl. Acad. Sci. USA 2004, 101, 16789–16794. [Google Scholar] [CrossRef] [Green Version]
- Frontera, A.; Bauzá, A. Halogen Bonds in Protein Nucleic Acid Recognition. J. Chem. Theory Comput. 2020, 16, 4744–4752. [Google Scholar] [CrossRef]
- Piña, M.L.N.; Frontera, A.; Bauzá, A. Quantifying Intramolecular Halogen Bonds in Nucleic Acids: A Combined Protein Data Bank and Theoretical Study. ACS Chem. Biol. 2020, 15, 1942–1948. [Google Scholar] [CrossRef]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Schuerman, G.; Van Hecke, K.; Van Meervelt, L. Exploration of the influence of 5-iodo-2′-deoxyuridine incorporation on the structure of d[CACG(IDU)G]. Acta Cryst. 2003, D59, 1525–1528. [Google Scholar] [CrossRef] [Green Version]
- Sabogal, A.; Lyubimov, A.Y.; Corn, J.E.; Berger, J.M.; Rio, D.C. THAP proteins target specific DNA sites through bipartite recognition of adjacent major and minor grooves. Nat. Struct. Biol. 2010, 17, 117–123. [Google Scholar] [CrossRef] [Green Version]
- Patra, A.; Harp, J.; Pallan, P.S.; Zhao, L.; Abramov, M.; Herdewijn, P.; Egli, M. Structure, stability and function of 5-chlorouracil modified A:U and G:U base pairs. Nucleic Acid Res. 2013, 41, 2689–2697. [Google Scholar] [CrossRef] [PubMed]
- Ahlrichs, R.; Bar, M.; Haser, M.; Horn, H.; Kolmel, C. Electronic Structure Calculations on Workstation Computers-the Program System turbomole. Chem. Phys. Lett. 1989, 162, 165–169. [Google Scholar] [CrossRef]
- Weigend, F.; Häser, M. RI-MP2: First derivatives and global consistency. Theor. Chem. Acc. 1997, 97, 331–340. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Bauzá, A.; Alkorta, I.; Frontera, A.; Elguero, J. On the Reliability of Pure and Hybrid DFT Methods for the Evaluation of Halogen, Chalcogen, and Pnicogen Bonds Involving Anionic and Neutral Electron Donors. J. Chem. Theory Comput. 2013, 9, 5201–5210. [Google Scholar] [CrossRef] [Green Version]
- Weigend, F.; Häser, M.; Patzelt, H.; Alrichs, R. RI-MP2: Optimized auxiliary basis sets and demonstration of efficiency. Chem. Phys. Lett. 1998, 294, 143–152. [Google Scholar] [CrossRef]
- Boys, S.F.; Bernardi, F. The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies. Some Procedures with Reduced Errors. Mol. Phys. 1970, 19, 553–566. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate ab initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [Green Version]
- Murray, J.S.; Politzer, P. Molecular Surfaces, van der Waals Radii and Electrostatic Potentials in Relation to Noncovalent Interactions. Croat. Chem. Acta 2009, 82, 267–275. [Google Scholar]
- Politzer, P.; Murray, J.S. The fundamental nature and role of the electrostatic potential in atoms and molecules. Theor. Chem. Acc. 2002, 108, 134–142. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comp. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Dennington, R.; Keith, T.A.; Millam, J.M. GaussView, Version 6; Semichem Inc.: Shawnee Mission, KS, USA, 2016. [Google Scholar]
- Bader, R.F.W.; Carroll, M.T.; Cheeseman, J.R.; Chang, C. Properties of atoms in molecules: Atomic volumes. J. Am. Chem. Soc. 1987, 109, 7968–7979. [Google Scholar] [CrossRef]
- Bader, R.F.W. A quantum theory of molecular structure and its applications. Chem. Rev. 1991, 91, 893–928. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD-Visual Molecular Dynamics. J. Molec. Graphics 1996, 14, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Contreras-García, J.; Johnson, E.R.; Keinan, S.; Chaudret, R.; Piquemal, J.-P.; Beratan, D.N.; Yang, W. NCIPLOT: A Program for Plotting Noncovalent Interaction Regions. J. Chem. Theory Comput. 2011, 7, 625–632. [Google Scholar] [CrossRef] [PubMed]
U | Vmax = +55.2 (+68.4) | Vmin = −34.5 (−38.3) |
VCH = +22.0 (+30.1) | VNH = +37.7 (+51.2) | |
C | Vmax = +52.1 (+64.6) | Vmin = −54.6 (−60.2) |
VCH = +30.7 (+37.0) | VNH2-1 = +51.5 (+64.0)/VNH2-2= +40.7 (+53.3) | |
HalU | ||
FU | Vmax = +57.7 (+72.2) | Vmin = −33.8 (−35.8) |
VHal = −8.8 (−7.5) | VNH = +42.0 (+57.1) | |
ClU | Vmax = +57.7 (+72.1) | Vmin = −33.8 (−37.7) |
VHal = +11.3 (+16.9) | VNH = +41.4 (+56.5) | |
BrU | Vmax = +56.5 (+71.5) | Vmin = −31.4 (−37.7) |
VHal = +16.9 (+25.1) | VNH = +41.4 (+55.8) | |
IU | Vmax = +56.5 (+71.5) | Vmin = −33.3 (−37.0) |
VHal = +23.2 (+32.0) | VNH = +40.8 (+55.2) | |
HalC | ||
FC | Vmax = +46.4 (+61.5) | Vmin = −50.2 (−55.8) |
VHal = −0.2 (+0.52) | VNH2-1 = +46.4 (+59.6)/VNH2-2 = +39.5 (+53.3) | |
ClC | Vmax = +49.6 (+62.1) | Vmin = −49.7 (−55.2) |
VHal = +16.9 (+23.2) | VNH2-1 = +42.7 (+57.1)/VNH2-2 = +39.5 (+52.7) | |
BrC | Vmax = +46.4 (+60.2) | Vmin = −50.8 (−56.5) |
VHal = +23.2 (+30.1) | VNH2-1 = +42.0 (+57.7)/VNH2-2 = +42.0 (+57.1) | |
IC | Vmax = +46.4 (+61.5) | Vmin = −49.6 (−55.2) |
VHal = +28.2 (+37.0) | VNH2-1 = +37.6 (+54.6)/VNH2-2 = +37.7 (+51.5) |
A | Vmax = +53.0 (+67.1) | Vmin = −31.7 (−37.6) | |
VCH-1 = +28.9 (+36.6) | VCH-2 = +7.5 (+14.2) | VNH2 = +36.4 (+47.9) | |
G | Vmax = +63.0 (+74.0) | Vmin = −54.2 (−58.3) | |
VCH = +23.2 (+31.3) | VNH2 = +59.6 (+73.7) | VNH = +49.6 (+58.3) | |
HalA | |||
FA | Vmax = +56.3 (+71.8) | Vmin = −28.9 (−34.7) | |
VHal = −1.3 (+1.5) | VCH-2 = +10.7 (+16.8) | VNH2 = +37.7 (+45.2) | |
ClA | Vmax = +54.2 (+69.5) | Vmin = −29.2 (−35.1) | |
VHal = +16.9 (+23.2) | VCH-2 = +10.6 (+16.8) | VNH2 = +38.9 (+48.9) | |
BrA | Vmax = +53.4 (+68.8) | Vmin = −29.3 (−35.8) | |
VHal = +22.0 (+30.1) | VCH-2 = +10.0 (+16.8) | VNH2 = +38.3 (+46.4) | |
IA | Vmax = +52.4 (+67.1) | Vmin = −29.4 (−35.5) | |
VHal = +27.6 (+37.0) | VCH-2 = +10.0 (+16.6) | VNH2 = +37.6 (+48.9) | |
HalG | |||
FG | Vmax = +62.5 (+73.2) | Vmin = −49.0 (−53.4) | |
VHal = −6.3 (−5.6) | VNH2 = +58.9 (+72.9) | VNH = +48.3 (+61.5) | |
ClG | Vmax = +62.8 (+73.6) | Vmin = −49.1 (−53.3) | |
VHal = +11.9 (+18.2) | VNH2 = +59.6 (+73.4) | VNH = +49.6 (+62.1) | |
BrG | Vmax = + 63.3 (+73.8) | Vmin = −48.9 (−53.1) | |
VHal = +17.6 (+25.1) | VNH2 = +59.6 (+73.5) | VNH = +50.2 (+61.9) | |
IG | Vmax =+62.6 (+73.1) | Vmin = −49.3 (−53.3) | |
VHal = +23.2 (+32.3) | VNH2 = +59.0 (+ 73.6) | VNH = +50.2 (+62.7) |
Complex | ΔEBSSE | d1 | d2 | ρ·102 |
---|---|---|---|---|
Binding mode a | ||||
1 (U···A) | −13.6 | 1.932 | 1.760 | 4.73 |
2 (FU···A) | −14.0 | 1.933 | 1.751 | 4.85 |
3 (ClU···A) | −14.1 | 1.936 | 1.755 | 4.81 |
4 (BrU···A) | −14.1 | 1.927 | 1.748 | 4.88 |
5 (IU···A) | −14.1 | 1.922 | 1.742 | 4.95 |
6 (U···FA) | −13.6 | 1.913 | 1.786 | 4.44 |
7 (U···ClA) | −13.6 | 1.926 | 1.783 | 4.48 |
8 (U···BrA) | −13.6 | 1.911 | 1.757 | 4.76 |
9 (U···IA) | −13.7 | 1.909 | 1.784 | 4.46 |
10 (FU···FA) | −13.9 | 1.935 | 1.759 | 4.75 |
11 (ClU···ClA) | −14.0 | 1.927 | 1.762 | 4.71 |
12 (Br···BrA) | −14.0 | 1.923 | 1.761 | 4.73 |
13 (IU···IA) | −14.1 | 1.924 | 1.760 | 4.74 |
Binding mode b | ||||
14 (U···A) | −14.4 | 1.970 | 1.740 | 4.81 |
15 (FU···A) | −14.8 | 1.977 | 1.733 | 4.91 |
16 (ClU···A) | −14.8 | 1.972 | 1.735 | 4.88 |
17 (BrU···A) | −14.8 | 1.966 | 1.729 | 4.96 |
18 (IU···A) | −14.8 | 1.973 | 1.735 | 4.88 |
19 (U···FA) | −11.4 | 1.879 | 1.939 | 2.94 |
20 (U···ClA) | −11.6 | 1.854 | 2.030 | 2.40 |
21 (U···BrA) | −11.4 | 1.847 | 2.079 | 2.15 |
22 (U···IA) | −11.2 | 1.854 | 2.118 | 1.98 |
23 (FU···FA) | −11.5 | 1.895 | 1.921 | 3.07 |
24 (ClU···ClA) | −11.7 | 1.860 | 2.019 | 2.47 |
25 (BrU···BrA) | −11.5 | 1.853 | 2.071 | 2.20 |
26 (IU···IA) | −11.3 | 1.851 | 2.115 | 2.00 |
Binding mode c | ||||
27 (U···A) | −8.3 | 1.938 | 2.313 | 2.44 |
28 (FU···A) | −4.2 | 2.118 | 3.537 | 1.58 |
29 (ClU···A) | −5.5 | 2.163 | 3.231 | 1.43 |
30 (BrU···A) | −5.8 | 2.246 | 3.182 | 1.18 |
31 (IU···A) | −5.9 | 2.363 | 3.203 | 1.41 |
32 (U···FA) | −8.3 | 1.929 | 2.327 | 2.49 |
33 (U···ClA) | −8.4 | 1.925 | 2.328 | 2.51 |
34 (U···BrA) | −8.4 | 1.924 | 2.329 | 2.52 |
35 (U···IA) | −8.4 | 1.925 | 2.326 | 2.51 |
36 (FU···FA) | −4.4 | 2.073 | 3.525 | 1.74 |
37 (ClU···ClA) | −5.7 | 2.150 | 3.215 | 1.47 |
38 (BrU···BrA) | −6.0 | 2.231 | 3.197 | 1.22 |
39 (IU···IA) | −6.1 | 2.346 | 3.228 | 1.35 |
Binding mode d | ||||
40 (U···A) | −7.4 | 1.972 | 2.318 | 2.22 |
41 (FU···A) | −3.7 | 2.302 | 3.459 | 1.16 |
42 (ClU···A) | −5.5 | 2.328 | 3.120 | 1.10 |
43 (BrU···A) | −6.1 | 2.403 | 3.037 | 1.42 |
44 (IU···A) | −6.7 | 2.527 | 3.017 | 1.84 |
45 (U···FA) | −7.9 | 1.964 | 2.331 | 2.24 |
46 (U···ClA) | −8.3 | 1.961 | 2.294 | 2.26 |
47 (U···BrA) | −8.4 | 1.962 | 2.282 | 2.26 |
48 (U···IA) | −8.6 | 1.965 | 2.261 | 2.24 |
49 (FU···FA) | −4.1 | 2.241 | 3.410 | 1.31 |
50 (ClU···ClA) | −6.0 | 2.307 | 3.078 | 1.14 |
51 (BrU···BrA) | −4.5 | 2.379 | 3.034 | 1.42 |
52 (IU···IA) | −7.4 | 2.477 | 3.024 | 1.82 |
Complex | ΔEBSSE | d1 | d2 | d3 | ρ·102 |
---|---|---|---|---|---|
Binding mode a | |||||
53 (C···G) | −29.3 | 1.726 | 1.881 | 1.885 | 3.52 |
54 (FC···G) | −28.2 | 1.720 | 1.883 | 1.891 | 4.23 |
55 (ClC···G) | −28.0 | 1.712 | 1.894 | 1.883 | 4.32 |
56 (BrC···G) | −28.8 | 1.713 | 1.892 | 1.887 | 4.32 |
57 (IC···G) | −28.0 | 1.712 | 1.895 | 1.884 | 4.34 |
58 (C···FG) | −28.6 | 1.727 | 1.878 | 1.882 | 4.17 |
59 (C···ClG) | −28.6 | 1.734 | 1.878 | 1.876 | 4.10 |
60 (C···BrG) | −28.6 | 1.732 | 1.878 | 1.881 | 4.12 |
61 (C···IG) | −28.5 | 1.736 | 1.878 | 1.878 | 4.08 |
62 (FC···FG) | −27.4 | 1.727 | 1.882 | 1.888 | 4.16 |
63 (ClC···ClG) | −27.2 | 1.719 | 1.886 | 1.885 | 4.26 |
64 (BrC···BrG) | −28.0 | 1.719 | 1.889 | 1.881 | 4.26 |
65 (IC···IG) | −27.1 | 1.718 | 1.891 | 1.879 | 4.27 |
Binding mode b | |||||
Complex | ΔEBSSE | d1 | d2 | ρ·102 | |
66 (C···G) | −15.4 | 3.746 | 1.922 | 1.46 | |
67 (FC···G) | −12.3 | 2.119 | 2.173 | 1.79 | |
68 (ClC···G) | −12.3 | 2.092 | 2.195 | 1.76 | |
69 (BrC···G) | −13.4 | 2.625 | 1.951 | 2.81 | |
70 (IC···G) | −15.3 | 3.676 | 1.896 | 3.26 | |
71 (C···FG) | −10.9 | 2.005 | 2.924 | 2.12 | |
72 (C···ClG) | −10.2 | 2.837 | 2.005 | 2.59 | |
73 (C···BrG) | −10.4 | 2.646 | 1.981 | 2.60 | |
74 (C···IG) | −11.5 | 3.269 | 1.951 | 2.80 | |
75 (FC···FG) | −9.9 | 2.225 | 2.126 | 1.63 | |
76 (ClC···ClG) | −10.2 | 2.233 | 2.115 | 1.66 | |
77 (BrC···BrG) | −11.1 | 2.633 | 1.970 | 2.66 | |
78 (IC···IG) | −11.4 | 3.241 | 1.935 | 2.92 | |
Binding mode c | |||||
79 (C···G) | −12.9 | 1.986 | 2.634 | 2.21 | |
80 (FC···G) | −10.6 | 1.890 | 2.043 | 2.64 | |
81 (ClC···G) | −8.9 | 1.971 | 2.941 | 2.31 | |
82 (BrC···G) | −9.6 | 1.957 | 2.772 | 2.24 | |
83 (IC···G) | −8.6 | 1.972 | 2.941 | 2.18 | |
84 (C···FG) | −10.9 | 2.769 | 2.881 | 2.12 | |
85 (C···ClG) | −11.0 | 2.769 | 2.963 | 2.11 | |
86 (C···BrG) | −11.0 | 2.771 | 2.991 | 2.11 | |
87 (C···IG) | −11.2 | 2.733 | 3.105 | 2.12 | |
88 (FC···FG) | −9.2 | 1.895 | 2.043 | 2.61 | |
89 (ClC···ClG) | −7.4 | 1.948 | 2.614 | 2.28 | |
90 (BrC···BrG) | −8.1 | 1.962 | 2.771 | 2.22 | |
91 (IC···IG) | −7.1 | 1.975 | 2.939 | 2.16 | |
Binding mode d | |||||
92 (C···G) | −12.7 | 1.978 | 2.472 | 2.06 | |
93 (FC···G) | −8.8 | 2.027 | 3.366 | 1.91 | |
94 (ClC···G) | −9.9 | 2.114 | 3.121 | 1.92 | |
95 (BrC···G) | −11.2 | 2.047 | 3.128 | 1.70 | |
96 (IC···G) | −10.8 | 2.114 | 3.121 | 1.49 | |
97 (C···FG) | −11.0 | 1.987 | 2.488 | 1.99 | |
98 (C···ClG) | −11.1 | 2.003 | 2.438 | 1.95 | |
99 (C···BrG) | −11.2 | 2.011 | 2.421 | 1.93 | |
100 (C···IG) | −11.4 | 2.024 | 2.388 | 1.88 | |
101 (FC···FG) | −7.2 | 1.992 | 3.128 | 2.01 | |
102 (ClC···ClG) | −8.4 | 2.025 | 3.147 | 1.82 | |
103 (BrC···BrG) | −9.7 | 2.048 | 3.127 | 1.69 | |
104 (IC···IG) | −9.5 | 2.114 | 3.121 | 1.48 |
PDBID | BP | ΔEBSSE | d1 | d2 | d3 |
---|---|---|---|---|---|
1IJW | BrC···G | −25.5 | 1.927 | 1.769 | 1.602 |
3BSU | IU···A | −11.7 | 1.936 | 1.638 | - |
3JXR | FC···G | −23.1 | 2.395 | 2.204 | 1.797 |
3KDE | BrU···A | −17.3 | 1.853 | 1.655 | - |
4HUG | ClU···A | −15.8 | 1.947 | 1.505 | - |
4XSN | C···BrG | −29.5 | 1.831 | 1.929 | 1.837 |
5AY3 | BrC···G | −27.0 | 1.816 | 1.828 | 1.798 |
7EDT | BrU···A | −13.9 | 1.880 | 1.663 | - |
1OMK | IU···A | −17.3 | 1.866 | 1.562 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomila, R.M.; Frontera, A.; Bauzá, A. A Comprehensive Ab Initio Study of Halogenated A···U and G···C Base Pair Geometries and Energies. Int. J. Mol. Sci. 2023, 24, 5530. https://doi.org/10.3390/ijms24065530
Gomila RM, Frontera A, Bauzá A. A Comprehensive Ab Initio Study of Halogenated A···U and G···C Base Pair Geometries and Energies. International Journal of Molecular Sciences. 2023; 24(6):5530. https://doi.org/10.3390/ijms24065530
Chicago/Turabian StyleGomila, Rosa M., Antonio Frontera, and Antonio Bauzá. 2023. "A Comprehensive Ab Initio Study of Halogenated A···U and G···C Base Pair Geometries and Energies" International Journal of Molecular Sciences 24, no. 6: 5530. https://doi.org/10.3390/ijms24065530
APA StyleGomila, R. M., Frontera, A., & Bauzá, A. (2023). A Comprehensive Ab Initio Study of Halogenated A···U and G···C Base Pair Geometries and Energies. International Journal of Molecular Sciences, 24(6), 5530. https://doi.org/10.3390/ijms24065530