Secretory Phospholipase A2 and Interleukin-6 Levels as Predictive Markers of the Severity and Outcome of Patients with COVID-19 Infections
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Clinical Methods and Treatment of Patients with COVID-19
- Mild course: body temperature < 38 °C, cough, weakness, and a sore throat. Absence of criteria for moderate and severe courses.
- Moderate course: body temperature > 38 °C, respiratory rate > 22/min, shortness of breath during physical exertion, changes in CT (radiography) typical of a viral lesion, SpO2 < 95%, and serum CRP > 10 mg/L.
- Severe course: respiratory rate > 30/min; SpO2 ≤ 93%; PaO2/FiO2 ≤ 300 mmHg; decreased level of consciousness; agitation; unstable hemodynamics (systolic blood pressure less than 90 mmHg or diastolic blood pressure less than 60 mmHg, diuresis less than 20 mL/h); changes in the lungs in CT (radiography) typical of a viral lesion; arterial blood lactate > 2 mmol/L; and qSOFA > 2 points.
- Extremely severe course: persistent febrile fever; ARDS; acute respiratory failure (ARF) with the need for respiratory support (invasive ventilation); septic shock; multiple organ failure; changes in the lungs on CT (X-ray) typical of a critical viral lesion or ARDS.
4.3. Biochemical Methods
4.3.1. Biochemical Blood Analysis
4.3.2. Evaluation of Interleukin-6 by Electrochemiluminescent Immunoassay
4.3.3. Evaluation of Procalcitonin Using an Immunochromatographic Test
4.3.4. Determination of Creatinine, C-Reactive Protein, Aspartate Aminotransferase, Lactate Dehydrogenase, and Ferritin
4.3.5. The Determination of D-Dimer Using Immunoturdodimetric Analysis
4.3.6. Assessment of the Level of Secretory Phospholipase A2 by Enzyme Immunoassay
4.4. Genetic Methods
4.4.1. RNA Isolation
4.4.2. Polymerase Chain Reaction
4.5. Statistical Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Freund, N.T.; Roitburd-Berman, A.; Sui, J.; Marasco, W.A.; Gershoni, J.M. Reconstitution of the receptor-binding motif of the SARS coronavirus. Protein Eng. Des. Sel. 2015, 28, 567–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Xiao, X.; Wei, X.; Li, J.; Yang, J.; Tan, H.; Zhu, J.; Zhang, Q.; Wu, J.; Liu, L. Composition and divergence of coronavirus spike proteins and host ACE2 receptors predict potential intermediate hosts of SARS-CoV-2. J. Med. Virol. 2020, 92, 595–601. [Google Scholar] [CrossRef] [Green Version]
- COVID-19 Coronavirus Pandemic. Available online: https://www.worldometers.info/coronavirus/#countries (accessed on 10 January 2023).
- Interim Guidelines: Prevention, Diagnosis and Treatment of Novel Coronavirus Infection (COVID-19), version 15; Ministry of Health of the Russian Federation: Moscow, Russia, 22 February 2022; 245p.
- Carrazco-Montalvo, A.; Bruno, A.; de Mora, D.; Olmedo, M.; Garces, J.; Paez, M.; Regato-Arrata, M.; Gonzalez, M.; Romero, J.; Mestanza, O.; et al. First Report of SARS-CoV-2 Lineage B.1.1.7 (Alpha Variant) in Ecuador, January 2021. Infect. Drug Resist. 2021, 14, 5183–5188. [Google Scholar] [CrossRef]
- World Health Organization. SARS-CoV-2 Variants. Available online: https://www.who.int/westernpacific/emergencies/covid-19/information/covid-19-variants (accessed on 25 February 2023).
- Sabino, E.C.; Buss, L.F.; Carvalho, M.P.S.; Prete, C.A., Jr.; Crispim, M.A.E.; Fraiji, N.A.; Pereira, R.H.M.; Parag, K.V.; da Silva Peixoto, P.; Kraemer, M.U.G.; et al. Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence. Lancet 2021, 397, 452–455. [Google Scholar] [CrossRef] [PubMed]
- Shiehzadegan, S.; Alaghemand, N.; Fox, M.; Venketaraman, V. Analysis of the Delta Variant B.1.617.2 COVID-19. Clin. Pract. 2021, 11, 778–784. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Rai, H.; Gautam, D.N.S.; Prajapati, P.K.; Sharma, R. Emerging evidence on Omicron (B.1.1.529) SARS-CoV-2 variant. J. Med. Virol. 2022, 94, 1876–1885. [Google Scholar] [CrossRef]
- Yang, X.; Yu, Y.; Xu, J.; Shu, H.; Xia, J.; Liu, H.; Wu, Y.; Zhang, L.; Yu, Z.; Fang, M.; et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir. Med. 2020, 8, 475–481. [Google Scholar] [CrossRef] [Green Version]
- Fang, L.; Karakiulakis, G.; Roth, M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir. Med. 2020, 8, e21. [Google Scholar] [CrossRef]
- Shitao, R.A.O.; Lau, A.; So, H.-C. Exploring diseases/traits and blood proteins causally related to expression of ACE2, the putative receptor of 2019-nCov: A mendelian randomization analysis. Diabetes Care 2020, 43, 1416–1426. [Google Scholar] [CrossRef]
- Wiersinga, W.J.; Rhodes, A.; Cheng, A.C.; Peacock, S.J.; Prescott, H.C. Pathophysiology, transmission, diagnosis, and treatment of Coronavirus Disease 2019 (COVID-19): A review. JAMA 2020, 324, 782–793. [Google Scholar] [CrossRef]
- Alzaabi, A.H.; Ahmed, L.A.; Rabooy, A.E.; Zaabi, A.A.; Alkaabi, M.; AlMahmoud, F.; Hamed, M.F.; Bashaeb, K.O.; Bakhsh, A.R.; Adil, S.; et al. Longitudinal changes in IgG levels among COVID-19 recovered patients: A prospective cohort study. PLoS ONE 2021, 16, e0251159. [Google Scholar] [CrossRef] [PubMed]
- Gallais, F.; Velay, A.; Nazon, C.; Wendling, M.-J.; Partisani, M.; Sibilia, J.; Candon, S.; Fafi-Kremer, S. Intrafamilial exposure to SARS-CoV-2 induces cellular immune response without seroconversion. Emerg. Infect. Dis. 2021, 27, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Wu, D.; Guo, W.; Cao, Y.; Huang, D.; Wang, H.; Wang, T.; Zhang, X.; Chen, H.; Yu, H.; et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Investig. 2020, 130, 2620–2629. [Google Scholar] [CrossRef] [Green Version]
- McGranaghan, P.; Kirwan, J.A.; Garcia-Rivera, M.A.; Pieske, B.; Edelmann, F.; Blaschke, F.; Appunni, S.; Saxena, A.; Rubens, M.; Veledar, E.; et al. Lipid metabolite biomarkers in cardiovascular disease: Discovery and biomechanism translation from human studies. Metabolites 2021, 11, 621. [Google Scholar] [CrossRef] [PubMed]
- Hamaya, R.; Mora, S.; Lawler, P.R.; Cook, N.R.; Ridker, P.M.; Buring, J.E.; Lee, I.-M.; Manson, J.E.; Tobias, D.K. Association of plasma branched-chain amino acid with biomarkers of inflammation and lipid metabolism in women. Circ. Genom. Precis. Med. 2021, 14, e003330. [Google Scholar] [CrossRef] [PubMed]
- Sato, H.; Taketomi, Y.; Murakami, M. Metabolic regulation by secreted phospholipase A2. Inflamm. Regen. 2016, 36, 7. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Chen, Y.; Fu, W.; Wang, S.; Cui, Y.; Zhao, X.; Lei, Z.-N.; Hettinghouse, A.; Liu, J.; Wang, C.; et al. Fexofenadine inhibits TNF signaling through targeting to cytosolic phospholipase A2 and is therapeutic against inflammatory arthritis. Ann. Rheum. Dis. 2019, 78, 1524–1535. [Google Scholar] [CrossRef]
- Nolin, J.D.; Murphy, R.C.; Gelb, M.H.; Altemeier, W.A.; Henderson, W.R., Jr.; Hallstrand, T.S. Function of secreted phospholipase A(2) group-X in asthma and allergic disease. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2019, 1864, 827–837. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Zhang, C.; Zhang, C.; Yang, H.; Gao, R.; Tong, Z. Lung fluid biomarkers for acute respiratory distress syndrome: A systematic review and meta-analysis. Crit. Care 2019, 23, 43. [Google Scholar] [CrossRef] [Green Version]
- Fras, Z.; Tršan, J.; Banach, M. On the present and future role of Lp-PLA2 in atherosclerosis-related cardiovascular risk prediction and management. Arch. Med. Sci. 2020, 17, 954–964. [Google Scholar] [CrossRef]
- Vecchi, L.; Araújo, T.G.; de Vasconcelos Azevedo, F.; Van, P.; Soares Mota, S.T.; Rodrigues Ávila, V.d.M.; Ribeiro, M.A.; Goulart, L.R. Phospholipase A 2 drives tumorigenesis and cancer aggressiveness through its interaction with annexin A1. Cells 2021, 10, 1472. [Google Scholar] [CrossRef] [PubMed]
- Cervera, I.P.; Gabriel, B.M.; Aldiss, P.; Morton, N.M. The phospholipase A2 family’s role in metabolic diseases: Focus on skeletal muscle. Physiol. Rep. 2021, 9, e14662. [Google Scholar] [CrossRef]
- Berg, E.; Paukovits, J.; Axelband, J.; Trager, J.; Ryan, D.; Cichonski, K.; Kopnitsky, M.; Zweitzig, D. Measurement of a novel biomarker, secretory phospholipase A2 group IIA as a marker of sepsis: A pilot study. J. Emerg. Trauma Shock. 2018, 11, 135–139. [Google Scholar] [CrossRef]
- van Hensbergen, V.P.; Wu, Y.; van Sorge, N.M.; Touqui, L. Type IIA secreted phospholipase A2 in host defense against bacterial infections. Trends Immunol. 2020, 41, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Aoki-Utsubo, C.; Kameoka, M.; Deng, L.; Terada, Y.; Kamitani, W.; Sato, K.; Koyanagi, Y.; Hijikata, M.; Shindo, K.; et al. Broad-spectrum antiviral agents: Secreted phospholipase A2 targets viral envelope lipid bilayers derived from the endoplasmic reticulum membrane. Sci. Rep. 2017, 7, 15931. [Google Scholar] [CrossRef] [Green Version]
- Snider, J.M.; You, J.K.; Wang, X.; Snider, A.J.; Hallmark, B.; Zec, M.M.; Seeds, M.C.; Sergeant, S.; Johnstone, L.; Wang, Q.; et al. Group IIA secreted phospholipase A2 is associated with the pathobiology leading to COVID-19 mortality. J. Clin. Investig. 2021, 131, e149236. [Google Scholar] [CrossRef]
- Lorenzoni, G.; Sella, N.; Boscolo, A.; Azzolina, D.; Bartolotta, P.; Pasin, L.; Pettenuzzo, T.; De Cassai, A.; Baratto, F.; Toffoletto, F.; et al. COVID-19 ICU mortality prediction: A machine learning approach using SuperLearner algorithm. J. Anesth. Analg. Crit. Care 2021, 1, 3. [Google Scholar] [CrossRef]
- Dore, E.; Boilard, E. Roles of secreted phospholipase A(2) group IIA in inflammation and host defense. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2019, 1864, 789–802. [Google Scholar] [CrossRef]
- Dennis, E.A.; Norris, P.C. Eicosanoid storm in infection and inflammation. Nat. Rev. Immunol. 2015, 15, 511–523. [Google Scholar] [CrossRef] [Green Version]
- Letsiou, E.; Htwe, Y.M.; Dudek, S.M. Secretory phospholipase A2 enzymes in acute lung injury. Cell Biochem. Biophys. 2021, 79, 609–617. [Google Scholar] [CrossRef]
- Greenhalgh, T.; Treadwell, J.; Burrow, R.; Roberts, N. NEWS (or NEWS2) Score When Assessing Possible COVID-19 Patients in Primary Care? The Centre for Evidence-Based Medicine: Oxford, UK, 2020; Available online: https://www.cebm.net/covid-19/should-we-use-the-news-or-news2-score-when-assessing-patients-with-possible-covid-19-in-primary-care/ (accessed on 6 March 2023).
- Lim, E.; Miyamura, J.; Chen, J.J. Racial/ethnic-specific reference intervals for common laboratory tests: A comparison among Asians, Blacks, Hispanics, and White. Hawaii J. Med. Public Health 2015, 74, 302–310. [Google Scholar] [PubMed]
- Bello-Chavolla, O.Y.; Bahena-López, J.P.; Antonio-Villa, N.E.; Vargas-Vázquez, A.; González-Díaz, A.; Márquez-Salinas, A.; Fermín-Martínez, C.A.; Naveja, J.J.; Aguilar-Salinas, C.A. Predicting mortality due to SARS-CoV-2: A mechanistic score relating obesity and diabetes to COVID-19 outcomes in Mexico. J. Clin. Endocrinol. Metab. 2020, 105, dgaa346. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Acharya, S.; Raisinghani, N.; Madaan, S.; Hulkoti, V.; Akhilesh, A.; Khanna, S.; Shah, D.; Nimkar, S. Interleukin 6 and Its Correlation with COVID-19 in Terms of Outcomes in an Intensive Care Unit of a Rural Hospital: A Cross-sectional Study. Indian J. Crit. Care Med. 2022, 26, 39–42. [Google Scholar] [CrossRef]
- Liu, Z.; Li, J.; Chen, D.; Gao, R.; Zeng, W.; Chen, S.; Huang, Y.; Huang, J.; Long, W.; Li, M.; et al. Dynamic interleukin-6 level changes as a prognostic indicator in patients with COVID-19. Front. Pharmacol. 2020, 11, 1093. [Google Scholar] [CrossRef]
- Grifoni, E.; Li, L.; Xu, M.; Wu, J.; Luo, D.; Zhu, Y.; Li, B.; Song, X.; Zhou, X. Interleukin-6 as prognosticator in patients with COVID-19. J. Clin. Virol. 2020, 127, 104370. [Google Scholar] [CrossRef]
- Shcherbak, S.G.; Anisenkova, A.Y.; Mosenko, S.V.; Glotov, O.S.; Chernov, A.N.; Apalko, S.V.; Urazov, S.P.; Garbuzov, E.Y.; Khobotnikov, D.N.; Klitsenko, O.A.; et al. Basic predictive risk factors for cytokine storms in COVID-19 patients. Front. Immunol. 2021, 12, 745515. [Google Scholar] [CrossRef]
- Kivela, P. Paradigm shift for COVID-19 response: Identifying high-risk individuals and treating inflammation. West J. Emerg. Med. 2020, 21, 473–476. [Google Scholar] [CrossRef] [Green Version]
- Zachariah, P.; Johnson, C.L.; Halabi, K.C.; Ahn, D.; Sen, A.I.; Fischer, A.; Banker, S.L.; Giordano, M.; Manice, C.S.; Diamond, R.; et al. Epidemiology, clinical features, and disease severity in patients with coronavirus disease 2019 (COVID-19) in a children’s hospital in New York City, New York. JAMA Pediatr. 2020, 174, e202430. [Google Scholar] [CrossRef]
- National Early Warning Score (NEWS) 2: NEWS2 and Deterioration in COVID-19; Royal College of Physicians: London, UK, 2017; Available online: https://www.rcplondon.ac.uk/news/news2-and-deterioration-covid-19 (accessed on 6 March 2023).
- Inui, S.; Fujikawa, A.; Jitsu, M.; Kunishima, N.; Watanabe, S.; Suzuki, Y.; Umeda, S.; Uwabe, Y. Chest CT Findings in Cases from the Cruise Ship Diamond Princess with Coronavirus Disease (COVID-19). Radiol. Cardiothorac. Imaging 2020, 2, e200110. [Google Scholar] [CrossRef] [Green Version]
- Automated Hematology Analyzer XN Series (For system XN-1000); Sysmex Corporation: Hyogo, Japan, 2013; 430p.
- Reagent STA®—Cephascreen®; Diagnostica Stago S.A.S.: Asnières-sur-Seine, France, 2017; 1p.
- COBAS Elecsys IL-6; Roche Diagnostics GmbH: Pleasanton, CA, USA, 2020; 12p.
- Herold, T.; Jurinovic, V.; Arnreich, C.; Lipworth, B.J.; Hellmuth, J.C.; von Bergwelt-Baildon, M.; Klein, M.; Weinberger, T. Elevated levels of interleukin-6 and CRP predict the need for mechanical ventilation in COVID-19. J. Allergy Clin. Immunol. 2020, 146, 128–136.e4. [Google Scholar] [CrossRef]
- Thermo Scientific™ B·R·A·H·M·S™ PCT-Q is an Immunochromatographic Point-of-Care Test for the Determination of PCT (Procalcitonin) in Serum and Plasma. Available online: https://www.thermofisher.com/infectious-diseases/wo/en/procalcitonin/brahms-pct-q.html (accessed on 6 March 2023).
- Creatinine on Systems Architect cSystems™ and Aeroset; Abbott Laboratories: Chicago, IL, USA, 2006; 9p.
- Lactate Dehydrogenase for Systems of Architect cSystems™ and Aeroset; Abbott Laboratories: Chicago, IL, USA, 2009; 6p.
- Aspartate Aminotransferase for Systems of Architect cSystems™ and Aeroset; Abbott Laboratories: Chicago, IL, USA, 2009; 6p.
- C-reactive Protein for Systems of Architect cSystems™ and Aeroset; Abbott Laboratories: Chicago, IL, USA, 2008; 9p.
- The Architect Ferritin Assay Is a Chemiluminescent Microparticle Immunoassay (CMIA) for the Quantitative Determination of Ferritin in Human Serum and Plasma for Systems of Architect T cSystems™ и AEROSET; Abbott Laboratories: Chicago, IL, USA, 2010; 6p.
- STA®—Liatest ® D-Di kit (REF 00515) Immuno-Turbidimetric Assay of D-Dimer; Diagnostica Stago S.A.S.: Asnières-sur-Seine, France, 2017; 2p.
- sPLA2 (Human Type IIA) ELISA Kit; Cayman Chemical: Ann Arbor, MI, USA, 2016; 23p.
- Thermo Scientific GeneJET RNA Purification Kit #K0731, #K0732. 19p. Available online: http://tools.thermofisher.com/content/sfs/manuals/MAN0012664_GeneJET_RNA_Purification_UG.pdf (accessed on 6 March 2023).
- QuantiFluor® RNA System. In Instructions for Use of Product; Promega Corporation: Madison, WI, USA, 2019; 19p.
- Agilent 4200 TapeStation System. In System Manual; Agilent Technologies: Waldbronn, Germany, 2020; 208p.
- Mint-2 cDNA synthesis Kit Cat # SK005. In User Manual; Evrogen: Moscow, Russia, 2020; 36p.
- Thermo Scientific Maxima H Minus Double-Stranded cDNA Synthesis Kit #K2561; Thermo Fisher Scientific Inc.: Waltham, MA, USA, 2013; 13p.
- GeneFinder™ COVID-19 PLUS RealAmp Kit. In Instructions for Use; OSANG Healthcare Co., Ltd.: Anyang, Republic of Korea, 2021; 10p.
- van Belle, G. Biostatistics: A Methodology for the Health Sciences; Fisher, L.D., van Belle, G., Eds.; Jonh Wiley and Sons Inc.: Toronto, ON, Canada, 2004; 889p. [Google Scholar]
Group | Patients | Men | Women | Age, Years | Men Age, Years | Women Age, Years |
---|---|---|---|---|---|---|
Mild | 61 | 37 | 24 | 50.1 ± 12.6 | 52.0 ± 10.3 | 47.0 ± 15.3 |
Moderate | 37 | 24 | 13 | 52.1 ± 11.0 | 51.2 ± 10.1 | 53.7 ± 12.7 |
Severe | 60 | 37 | 23 | 51.3 ± 11.3 | 51.0 ± 10.4 | 51.9 ± 12.7 |
Outcome | ||||||
Survival | 127 | 80 | 47 | 50.1 ± 11.8 | 50.7 ± 10.1 | 49.1 ± 14.3 |
Death | 31 | 18 | 13 | 54.6 ± 10.6 | 54.5 ± 10.3 | 54.8 ± 11.4 |
Significative | Severity | Significance, p | ||||
---|---|---|---|---|---|---|
Mild | Moderate | Severe | Mild vs. Moderate | Mild vs. Severe | Moderate vs. Severe | |
ICU-COVID-19, shares units | 0.31 ± 0.06 | 0.81 ± 0.06 | 1.0 ± 0.0 | 0.0001 | 0.0001 | 0.0102 |
Days from illness to biobanking, days | 6.8 ± 0.56 | 9.9 ± 0.71 | 12.1 ± 0.78 | 0.0097 | 0.0001 | 0.0434 |
CT max | 0.76 ± 0.05 | 2.0 ± 0.00 | 3.4 ± 0.06 | 0.0001 | 0.0001 | 0.0001 |
Chronic heart failure | 0.31 ± 0.06 | 0.24 ± 0.07 | 0.30 ± 0.06 | 0.8290 | 0.8425 | 0.8290 |
Coronary artery disease | 0.25 ± 0.05 | 0.22 ± 0.07 | 0.25 ± 0.05 | 0.9754 | 0.9999 | 0.9754 |
Cardiac arrhythmias | 0.12 ± 0.04 | 0.027 ± 0.027 | 0.03 ± 0.023 | 0.1752 | 0.1752 | 0.9013 |
Valvular disease | 0.017± 0.016 | 0.027 ± 0.027 | 0.017± 0.016 | 0.9781 | 0.9781 | 0.9999 |
Pulmonary circulation disorders | 0.067 ± 0.032 | 0.24 ± 0.07 | 0.47 ± 0.06 | 0.0395 | 0.0001 | 0.0188 |
Pressure in the pulmonary artery | 0.08 ± 0.04 | 0.30± 0.09 | 0.73 ± 0.11 | 0.1145 | 0.0001 | 0.0030 |
Peripheral vascular disorders | 0.0 ± 0.00 | 0.297 ± 0.09 | 0.033 ± 0.02 | 0.0001 | 0.5408 | 0.0001 |
Arterial hypertension, uncomplicated | 0.0 ± 0.00 | 0.27 ± 0.07 | 0.37 ± 0.06 | 0.0013 | 0.2161 | 0.0001 |
Arterial hypertension, complicated | 0.47 ± 0.06 | 0.43 ± 0.08 | 0.62 ± 0.06 | 0.7427 | 0.2181 | 0.2181 |
Coagulopathy | 0.10 ± 0.039 | 0.19 ± 0.06 | 0.33 ± 0.06 | 0.2855 | 0.0048 | 0.1632 |
Iron deficiency anemia | 0.36 ± 0.06 | 0.51 ± 0.08 | 0.68 ± 0.06 | 0.1822 | 0.0014 | 0.1822 |
Varicose disease | 0.07 ± 0.03 | 0.11 ± 0.05 | 0.15 ± 0.04 | 0.7706 | 0.3749 | 0.7706 |
Analyte | Significance, p | ||
---|---|---|---|
from IL-6 | from sPLA2 | ||
APTT, s | 50.50 ± 37.47 | <0.0001 | 0.1634 |
ACT, E/L | 154.4 ± 43.79 | 0.1865 | 0.0253 |
GFR, mL/min/m2 | 75.05 ± 28.39 | <0.0001 | <0.0001 |
LDH, E/L | 609.5 ± 65.44 | <0.0001 | <0.0001 |
Lymphocytes, 109/L | 0.9351 ± 0.5341 | <0.0001 | <0.0001 |
CRB, mg/L | 153.6 ± 108.7 | 0.0534 | <0.0001 |
Procalcitonin, ng/mL | 1.037 ± 3.234 | <0.0001 | <0.0001 |
Hematocrit, % | 33.13 ± 12.37 | <0.0001 | <0.0001 |
D-dimer, ng/mL | 1.805 ± 3.823 | <0.0001 | <0.0001 |
Ferritin, mkg/L | 725.8 ± 104.2 | <0.0001 | <0.0001 |
Neutrophils, 109/L | 5.020 ± 3.405 | <0.0001 | <0.0001 |
Leukocytes, 109/L | 7.464 ± 5.122 | <0.0001 | <0.0001 |
Eosinophils, 109/L | 0.04120 ± 0.06989 | <0.0001 | <0.0001 |
Significative | Correlation Coefficient, r | Significance, p | ||
---|---|---|---|---|
IL-6 | sPLA2 | IL-6 | sPLA2 | |
ICU-COVID-19 | 0.502622 | 0.259144 | 1.7 × 10−11 | 0.001009 |
Gender (one male and two female) | −0.10282 | 0.071739 | 0.198587 | 0.370395 |
Age group (one under 45, two 45–60, and three over 60) | 0.049938 | 0.103635 | 0.53321 | 0.195037 |
Height, cm | 0.135512 | −0.04525 | 0.08957 | 0.572402 |
Weight, kg | 0.160815 | 0.095017 | 0.043537 | 0.235011 |
CT maximum | 0.618787 | 0.378456 | 0.0 | 9.44 × 10−7 |
Chronic heart failure | 0.019873 | −0.00695 | 0.804261 | 0.930937 |
Coronary artery disease | 0.068477 | 0.068667 | 0.392602 | 0.391287 |
Cardiac arrhythmias | −0.03952 | −0.08416 | 0.621986 | 0.293092 |
Valvular disease | 0.087955 | 0.063152 | 0.271797 | 0.430526 |
Pulmonary circulation disorders | 0.398092 | 0.11856 | 2.22 × 10−7 | 0.137894 |
Pressure in the pulmonary artery | 0.399486 | 0.087964 | 2 × 10−7 | 0.27175 |
Peripheral vascular disorders | 0.165059 | −0.00699 | 0.038217 | 0.93052 |
Arterial hypertension, uncomplicated | 0.11885 | 0.074727 | 0.136927 | 0.350742 |
Arterial hypertension, complicated | 0.099637 | 0.104632 | 0.212923 | 0.190754 |
Paralysis | −0.06702 | −0.094 | 0.402799 | 0.240082 |
Other neurological disorders | 0.078687 | 0.12773 | 0.32573 | 0.109742 |
Chronic lung disease | −0.01431 | −0.00949 | 0.858333 | 0.905834 |
Diabetes mellitus, uncomplicated | 0.245662 | 0.205014 | 0.001863 | 0.009765 |
Diabetes mellitus, complicated | 0.035367 | 0.089572 | 0.659092 | 0.263047 |
Hypothyroidism | −0.07941 | 0.044169 | 0.321266 | 0.581595 |
Kidney failure | 0.187362 | 0.100827 | 0.018407 | 0.207481 |
Liver disease | 0.040845 | −0.09583 | 0.610363 | 0.231022 |
Peptic ulcer without bleeding | 0.002595 | 0.084268 | 0.974183 | 0.292481 |
Solid tumor without metastases | −0.13941 | 0.009944 | 0.080631 | 0.901312 |
Rheumatoid arthritis/collagen/vascular diseases | 0.199602 | 0.049235 | 0.011924 | 0.538997 |
Coagulopathy | 0.32484 | 0.036364 | 3.12 × 10−5 | 0.650113 |
Obesity | 0.135221 | 0.181496 | 0.090267 | 0.022475 |
Weight loss | −0.08131 | −0.06064 | 0.309786 | 0.449095 |
Fluid and electrolyte disorders | −0.0425 | −0.05379 | 0.595994 | 0.502099 |
Iron deficiency anemia | 0.322062 | 0.320441 | 3.68 × 10−5 | 4.05 × 10−5 |
Alcohol abuse | −0.11536 | 0.005502 | 0.148906 | 0.945304 |
Varicose disease | 0.126784 | 0.089505 | 0.112421 | 0.263408 |
Analyte | Correlation Coefficient, r | Significance, p | ||
---|---|---|---|---|
PLA2 | IL-6 | PLA2 | IL-6 | |
IL-6 levels on the date of BB (median 30.24) | 0.382558 | 0.391871 | 7.03 × 10−7 | 3.55 × 10−7 |
IL-6 levels after the date of BB (1: under 40 and 2: over 40 pg/mL) | 0.408909 | 0.457899 | 9.6 × 10−8 | 1.46 × 10−9 |
IL-6 maximum per hospitalization | 0.15323 | 0.437241 | 0.054588 | 9.24 × 10−9 |
IL-6 max group * | 0.42782 | - | 2.06 × 10−8 | 0 |
IL-6 max-group (1: up to 40 and 2: more than 40 pg/mL) | 0.350996 | 0.543498 | 6.14 × 10−6 | 1.6 × 10−13 |
IL-6 ** | 0.447366 | 0.581317 | 3.79 × 10−9 | 1.11 × 10−15 |
PLA2, ng/mL | - | 0.427819 | 2.0606 × 10−8 | |
APTT, s | 0.15005 | 0.336515 | 0.059865 | 1.54 × 10−5 |
ACT, E/L | 0.034423 | 0.220623 | 0.667648 | 0.005343 |
GFR, mL/min/m2 | −0.22393 | −0.30408 | 0.004678 | 0.000103 |
LDH, E/L | 0.148297 | 0.394712 | 0.062948 | 2.87 × 10−7 |
Lymphocytes, 109/L | −0.30304 | −0.54144 | 0.000108718 | 2.05 × 10−13 |
CRB (quantitative), mg/L | 0.562617 | 0.597305 | 1.42109 × 10−14 | 0 |
Laboratory score at admission | 0.528211 | 0.773774677 | 9.85 × 10−13 | 0 |
Significative | Severity | Significance, p | ||||
---|---|---|---|---|---|---|
Mild | Moderate | Severe | Mild vs. Moderate | Mild vs. Severe | Moderate vs. Severe | |
Death (0: recovery, 1: death), fractions of units | 0.016 ± 0.016 | 0.054 ± 0.03 | 0.46 ± 0.06 | 0.5997 | 0.0001 | 0.0001 |
Analyte | Survival | Death | Kruskal–Wallis | Significance, p |
---|---|---|---|---|
IL-6, pg/mL | 25 (10–66) | 127 (29–183) | 0.0 | 0.00042 |
PLA2, pg/mL | 55 (30–76) | 81 (58–86) | 0.0001 | 0.00079 |
APTT, s | 37 (32–44) | 48 (38–89) | 0.0001 | 0.0 |
ACT, E/L | 59 (38–96) | 109 (59–142) | 0.0012 | 0.001 |
LDH, E/L | 389 (282–537) | 726 (622–1199) | 0.0000 | 0.0 |
GFR, mL/min/m2 | 84 (65–96) | 51 (18–85) | 0.0001 | 0.0 |
Lymphocytes, 109/L | 1 (1–1) | 0 (0–1) | 0.0000 | 0.0 |
CRB, mg/L | 110 (57–202) | 259 (186–331) | 0.0000 | 0.0 |
PCT, ng/mL | 0 (0–1) | 1 (0–1) | 0.0853 | 0.086 |
Hematocrit, % | 38 (33–42) | 33 (19–37) | 0.0004 | 0.0 |
D-dimer, ng/mL | 1 (0–2) | 1 (1–2) | 0.0029 | 0.003 |
Ferritin, mkg/L | 268 (115–850) | 1156 (160–1782) | 0.0088 | 0.009 |
Neutrophils, 109/L | 4 (3–6) | 6 (4–9) | 0.0033 | 0.003 |
Eosinophils, 109/L | 0 (0–0) | 0 (0–0) | 0.1950 | 0.196 |
Leukocytes, 109/L | 6 (5–8) | 7 (5–12) | 0.0818 | 0.082 |
Analyte | Clinical Parameters and History of Comorbidities |
---|---|
IL-6, pg/mL | Outcome |
PLA2, pg/mL | Degree of severity |
APTT, s | Degree on CT data |
ACT, E/L | ICU-COVID-19, shares units |
LDH, E/L | Days from illness to biobanking |
GFR, mL/min/m2 | Gender |
Lymphocytes, 109/L | Age |
CRB, mg/L | CT max |
PCT, ng/mL | Chronic heart failure |
Hematocrit, % | Coronary artery disease |
D-dimer, ng/mL | Cardiac arrhythmias |
Ferritin, mkg/L | Valvular disease |
Neutrophils, 109/L | Pulmonary circulation disorders |
Eosinophils, 109/L | Pressure in the pulmonary artery |
Leukocytes, 109/L | Peripheral vascular disorders |
Laboratory score | Arterial hypertension, uncomplicated |
Arterial hypertension, complicated | |
Coagulopathy | |
Iron deficiency anemia | |
Varicose disease |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urazov, S.; Chernov, A.; Popov, O.; Klenkova, N.; Sushentseva, N.; Polkovnikova, I.; Apalko, S.; Kislyuk, K.; Pavlovich, D.; Ivanov, A.; et al. Secretory Phospholipase A2 and Interleukin-6 Levels as Predictive Markers of the Severity and Outcome of Patients with COVID-19 Infections. Int. J. Mol. Sci. 2023, 24, 5540. https://doi.org/10.3390/ijms24065540
Urazov S, Chernov A, Popov O, Klenkova N, Sushentseva N, Polkovnikova I, Apalko S, Kislyuk K, Pavlovich D, Ivanov A, et al. Secretory Phospholipase A2 and Interleukin-6 Levels as Predictive Markers of the Severity and Outcome of Patients with COVID-19 Infections. International Journal of Molecular Sciences. 2023; 24(6):5540. https://doi.org/10.3390/ijms24065540
Chicago/Turabian StyleUrazov, Stanislav, Alexandr Chernov, Oleg Popov, Natalya Klenkova, Natalya Sushentseva, Irina Polkovnikova, Svetlana Apalko, Kseniya Kislyuk, Dragana Pavlovich, Andrey Ivanov, and et al. 2023. "Secretory Phospholipase A2 and Interleukin-6 Levels as Predictive Markers of the Severity and Outcome of Patients with COVID-19 Infections" International Journal of Molecular Sciences 24, no. 6: 5540. https://doi.org/10.3390/ijms24065540
APA StyleUrazov, S., Chernov, A., Popov, O., Klenkova, N., Sushentseva, N., Polkovnikova, I., Apalko, S., Kislyuk, K., Pavlovich, D., Ivanov, A., & Shcherbak, S. (2023). Secretory Phospholipase A2 and Interleukin-6 Levels as Predictive Markers of the Severity and Outcome of Patients with COVID-19 Infections. International Journal of Molecular Sciences, 24(6), 5540. https://doi.org/10.3390/ijms24065540