Antibody Assay and Anti-Inflammatory Function Evaluation of Therapeutic Potential of Different Intravenous Immunoglobulins for Alzheimer’s Disease
Abstract
:1. Introduction
2. Results
2.1. Aβ42 Monomer and Soluble Oligomers
2.2. Anti-Aβ42 Antibody Concentration in IVIG
2.3. Anti-Tau Antibody Concentration and Anti-P-Tau Ratio in IVIG Preparations
2.4. Effects of IVIG on LPS-Stimulated White Blood Cell, TNF-α, and IL-6 in the Serum
2.5. Effects of IVIG on LPS-Stimulated Histopathological Score in the Liver and Kidney
2.6. Effects of IVIG on LPS-Stimulated Histopathological Score in the Brain and Hippocampus
3. Discussion
4. Materials and Methods
4.1. IVIG Selection
4.2. Anti-Aβ42 Antibody Assay
4.2.1. Preparation for Aβ42 Monomer and Oligomers
4.2.2. Aβ42 Conformation Evaluation by Western Blot
4.2.3. Anti-Aβ42 Monomer and Oligomers Antibodies Concentrations Assay by ELISA
4.3. Anti-Tau Antibody Assay
4.3.1. Anti-Tau Antibodies Concentrations Detection by ELISA
4.3.2. Anti-P-Tau Antibodies Ratio Measurement by ELISA
4.4. Anti-Inflammatory Function Evaluation
4.4.1. Animals and Classification
4.4.2. Sample Collection and Preparation
4.4.3. WBC, IL-6, and TNF-α Detection in Blood
4.4.4. Hematoxylin and Eosin Staining of the Liver and Kidney Tissues
4.4.5. Immunohistochemistry of the Brain Tissues
4.5. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, J.; Huai, J. Role of primary aging hallmarks in Alzheimer’s disease. Theranostics 2023, 13, 197–230. [Google Scholar] [CrossRef]
- Long, J.M.; Holtzman, D.M. Alzheimer Disease: An Update on Pathobiology and Treatment Strategies. Cell 2019, 179, 312–339. [Google Scholar] [CrossRef]
- Liu, W.; Gauthier, S.; Jia, J. Alzheimer’s disease: Current status and perspective. Sci. Bull. 2022, 67, 2494–2497. [Google Scholar] [CrossRef]
- Alzheimer’s Association. 2020 Alzheimer’s disease facts and figures. Alzheimers Dement. 2020, 16, 391–460. [Google Scholar] [CrossRef] [PubMed]
- GBD DALYs; HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1859–1922. [Google Scholar] [CrossRef] [Green Version]
- Hogeweg, M.; Doevelaar, A.; Rieckmann, S.; Seibert, F.; Scholten, D.; Segelmacher, M.; Stervbo, U.; Babel, N.; Westhoff, T.H. Intravenous immunoglobulins in the treatment of post-COVID: A case-control study. J. Intern. Med. 2022; Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Dalakas, M.C. Update on Intravenous Immunoglobulin in Neurology: Modulating Neuro-autoimmunity, Evolving Factors on Efficacy and Dosing and Challenges on Stopping Chronic IVIg Therapy. Neurotherapeutics 2021, 18, 2397–2418. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Zeng, R.; Jiang, P.; Hou, M.; Liu, F.; Wang, Z.; Du, X.; Yuan, J.; Chen, Y.; Cao, H.; et al. Concentrations of antibodies against β-amyloid 40/42 monomer and oligomers in Chinese intravenous immunoglobulins. J. Pharm. Biomed. Anal. 2017, 138, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.M.; Coffey, M.P.; Klaver, A.C.; Loeffler, D.A. Intravenous immunoglobulin products contain specific antibodies to recombinant human tau protein. Int. Immunopharmacol. 2013, 16, 424–428. [Google Scholar] [CrossRef]
- Halpert, G.; Katz, I.; Shovman, O.; Tarasov, S.; Ganina, K.K.; Petrova, N.; Tocut, M.; Volkov, A.; Barshack, I.; Blank, M.; et al. IVIG ameliorate inflammation in collagen-induced arthritis: Projection for IVIG therapy in rheumatoid arthritis. Clin. Exp. Immunol. 2021, 203, 400–408. [Google Scholar] [CrossRef]
- Kile, S.; Au, W.; Parise, C.; Rose, K.; Donnel, T.; Hankins, A.; Chan, M.; Ghassemi, A. IVIG treatment of mild cognitive impairment due to Alzheimer’s disease: A randomised double-blinded exploratory study of the effect on brain atrophy, cognition and conversion to dementia. J. Neurol. Neurosurg. Psychiatry 2017, 88, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Dodel, R.; Rominger, A.; Bartenstein, P.; Barkhof, F.; Blennow, K.; Förster, S.; Winter, Y.; Bach, J.P.; Popp, J.; Alferink, J.; et al. Intravenous immunoglobulin for treatment of mild-to-moderate Alzheimer’s disease: A phase 2, randomised, double-blind, placebo-controlled, dose-finding trial. Lancet Neurol. 2013, 12, 233–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arai, H.; Ichimiya, Y.; Shibata, N.; Nakajima, T.; Sudoh, S.; Tokuda, T.; Sujaku, T.; Yokokawa, S.; Hoshii, N.; Noguchi, H.; et al. Safety and tolerability of immune globulin intravenous (human), 10% solution in Japanese subjects with mild to moderate Alzheimer’s disease. Psychogeriatrics 2014, 14, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Relkin, N.R.; Thomas, R.G.; Rissman, R.A.; Brewer, J.B.; Rafii, M.S.; van Dyck, C.H.; Jack, C.R.; Sano, M.; Knopman, D.S.; Raman, R.; et al. A phase 3 trial of IV immunoglobulin for Alzheimer disease. Neurology 2017, 88, 1768–1775. [Google Scholar] [CrossRef] [Green Version]
- Nct. Phase 3 IGIV, 10% in Alzheimer’s Disease. 2012. Available online: https://clinicaltrials.gov/show/NCT01524887 (accessed on 11 March 2023).
- Hindle, A.; Singh, S.P.; Pradeepkiran, J.A.; Bose, C.; Vijayan, M.; Kshirsagar, S.; Sawant, N.A.; Reddy, P.H. Rlip76: An Unexplored Player in Neurodegeneration and Alzheimer’s Disease? Int. J. Mol. Sci. 2022, 23, 6098. [Google Scholar] [CrossRef]
- Thu Thuy Nguyen, V.; Endres, K. Targeting gut microbiota to alleviate neuroinflammation in Alzheimer’s disease. Adv. Drug Deliv. Rev. 2022, 188, 114418. [Google Scholar] [CrossRef]
- Fei, Z.; Pan, B.; Pei, R.; Ye, S.; Wang, Z.; Ma, L.; Zhang, R.; Li, C.; Du, X.; Cao, H. Neuroprotective effects of IVIG against Alzheimer’ s disease via regulation of antigen processing and presentation by MHC class I molecules in 3xTg-AD mice. J. Alzheimers Dis. 2023. Major revision. [Google Scholar]
- Erickson, M.A.; Shulyatnikova, T.; Banks, W.A.; Hayden, M.R. Ultrastructural Remodeling of the Blood-Brain Barrier and Neurovascular Unit by Lipopolysaccharide-Induced Neuroinflammation. Int. J. Mol. Sci. 2023, 24, 1640. [Google Scholar] [CrossRef]
- Smirnov, D.; Galasko, D. Dynamics of neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2022, 21, 297–298. [Google Scholar] [CrossRef]
- Mahan, T.E.; Wang, C.; Bao, X.; Choudhury, A.; Ulrich, J.D.; Holtzman, D.M. Selective reduction of astrocyte apoE3 and apoE4 strongly reduces Aβ accumulation and plaque-related pathology in a mouse model of amyloidosis. Mol. Neurodegener. 2022, 17, 13. [Google Scholar] [CrossRef]
- Wang, T.; Xie, X.X.; Ji, M.; Wang, S.W.; Zha, J.; Zhou, W.W.; Yu, X.L.; Wei, C.; Ma, S.; Xi, Z.Y.; et al. Naturally occurring autoantibodies against Aβ oligomers exhibited more beneficial effects in the treatment of mouse model of Alzheimer’s disease than intravenous immunoglobulin. Neuropharmacology 2016, 105, 561–576. [Google Scholar] [CrossRef]
- Counts, S.E.; Perez, S.E.; He, B.; Mufson, E.J. Intravenous immunoglobulin reduces tau pathology and preserves neuroplastic gene expression in the 3xTg mouse model of Alzheimer’s disease. Curr. Alzheimer Res. 2014, 11, 655–663. [Google Scholar] [CrossRef]
- Magga, J.; Puli, L.; Pihlaja, R.; Kanninen, K.; Neulamaa, S.; Malm, T.; Härtig, W.; Grosche, J.; Goldsteins, G.; Tanila, H.; et al. Human intravenous immunoglobulin provides protection against Aβ toxicity by multiple mechanisms in a mouse model of Alzheimer’s disease. J. Neuroinflam. 2010, 7, 90. [Google Scholar] [CrossRef] [Green Version]
- Alzforum. Gammagard™ Misses Endpoints in Phase 3 Trial. Available online: http://www.alzforum.org/news/research-news/gammagardtm-misses-endpoints-phase-3-trial (accessed on 2 March 2023).
- Hutchison, M.; Bellomo, G.; Cherepanov, A.V.; Stirnal, E.; Fürtig, B.; Richter, C.; Linhard, V.; Gurewitsch, E.; Lelli, M.; Morgner, N.; et al. Modulation of Aβ42 aggregation kinetics and pathway by low molecular weight inhibitors. Chembiochem, 2023; Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Qu, W.; Zhang, L.; Liang, X.; Yu, Z.; Huang, H.; Zhao, J.; Guo, Y.; Zhou, X.; Xu, S.; Luo, H.; et al. Elevated Plasma Oligomeric Amyloid β-42 Is Associated with Cognitive Impairments in Cerebral Small Vessel Disease. Biosensors 2023, 13, 110. [Google Scholar] [CrossRef] [PubMed]
- Ossenkoppele, R.; van der Kant, R.; Hansson, O. Tau biomarkers in Alzheimer’s disease: Towards implementation in clinical practice and trials. Lancet Neurol. 2022, 21, 726–734. [Google Scholar] [CrossRef]
- Schain, M.; Kreisl, W.C. Neuroinflammation in Neurodegenerative Disorders-a Review. Curr. Neurol. Neurosci. Rep. 2017, 17, 25. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.A.; Tosakulwong, N.; Graff-Radford, J.; Machulda, M.M.; Pham, N.T.T.; Sintini, I.; Weigand, S.D.; Schwarz, C.G.; Senjem, M.L.; Carrasquillo, M.M.; et al. APOE ε4 influences medial temporal atrophy and tau deposition in atypical Alzheimer’s disease. Alzheimers Dement. 2022; Online ahead of print. [Google Scholar] [CrossRef]
- Xiao, K.; Zhang, D.C.; Hu, Y.; Song, L.C.; Xu, J.Q.; He, W.X.; Pan, P.; Wang, Y.W.; Xie, L.X. Potential roles of vitamin D binding protein in attenuating liver injury in sepsis. Mil. Med. Res. 2022, 9, 4. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, X.; Lin, Z.; Guo, J.; Yang, X.; Yao, L.; Wang, H.; Xue, P.; Xia, Q. Chaiqin chengqi decoction alleviates severe acute pancreatitis associated acute kidney injury by inhibiting endoplasmic reticulum stress and subsequent apoptosis. Biomed. Pharmacother. 2020, 125, 110024. [Google Scholar] [CrossRef]
- Monroe, L.L.; Armstrong, M.G.; Zhang, X.; Hall, J.V.; Ozment, T.R.; Li, C.; Williams, D.L.; Hoover, D.B. Zymosan-Induced Peritonitis: Effects on Cardiac Function, Temperature Regulation, Translocation of Bacteria, and Role of Dectin-1. Shock 2016, 46, 723–730. [Google Scholar] [CrossRef] [Green Version]
- Carpino, G.; Del Ben, M.; Pastori, D.; Carnevale, R.; Baratta, F.; Overi, D.; Francis, H.; Cardinale, V.; Onori, P.; Safarikia, S.; et al. Increased Liver Localization of Lipopolysaccharides in Human and Experimental NAFLD. Hepatology 2020, 72, 470–485. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; He, G.; Zou, X.; Wang, M.; Jia, F.; Bai, H.; Li, J.; Yu, J.; Han, Y. Forensic characterization and genetic polymorphisms of 19 X-chromosomal STRs in 1344 Han Chinese individuals and comprehensive population relationship analyses among 20 Chinese groups. PLoS ONE 2018, 13, e0204286. [Google Scholar] [CrossRef] [Green Version]
- He, G.; Wang, Z.; Wang, M.; Zou, X.; Liu, J.; Wang, S.; Hou, Y. Genetic variations and forensic characteristics of Han Chinese population residing in the Pearl River Delta revealed by 23 autosomal STRs. Mol. Biol. Rep. 2018, 45, 1125–1133. [Google Scholar] [CrossRef] [PubMed]
- Fei, Z.; Pan, B.; Pei, R.; Chen, Z.; Du, X.; Cao, H.; Li, C. Efficacy And Safety of Blood Derivatives Therapy in Alzheimer’s Disease: A Systematic Review And Meta-Analysis. Syst. Rev. 2022, 11, 256. [Google Scholar] [CrossRef] [PubMed]
- Man, V.H.; He, X.; Gao, J.; Wang, J. Phosphorylation of Tau R2 Repeat Destabilizes Its Binding to Microtubules: A Molecular Dynamics Simulation Study. ACS Chem. Neurosci. 2023, 14, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Thijssen, E.H.; La Joie, R.; Strom, A.; Fonseca, C.; Iaccarino, L.; Wolf, A.; Spina, S.; Allen, I.E.; Cobigo, Y.; Heuer, H.; et al. Plasma phosphorylated tau 217 and phosphorylated tau 181 as biomarkers in Alzheimer’s disease and frontotemporal lobar degeneration: A retrospective diagnostic performance study. Lancet Neurol. 2021, 20, 739–752. [Google Scholar] [CrossRef]
- Tropea, M.R.; Li Puma, D.D.; Melone, M.; Gulisano, W.; Arancio, O.; Grassi, C.; Conti, F.; Puzzo, D. Genetic deletion of α7 nicotinic acetylcholine receptors induces an age-dependent Alzheimer’s disease-like pathology. Prog. Neurobiol. 2021, 206, 102154. [Google Scholar] [CrossRef]
- Loeffler, D.A.; Klaver, A.C.; Coffey, M.P. ELISA measurement of specific antibodies to phosphorylated tau in intravenous immunoglobulin products. Int. Immunopharmacol. 2015, 28, 1108–1112. [Google Scholar] [CrossRef]
- Ding, Z.; Zhong, R.; Yang, Y.; Xia, T.; Wang, W.; Wang, Y.; Xing, N.; Luo, Y.; Li, S.; Shang, L.; et al. Systems pharmacology reveals the mechanism of activity of Ge-Gen-Qin-Lian decoction against LPS-induced acute lung injury: A novel strategy for exploring active components and effective mechanism of TCM formulae. Pharmacol. Res. 2020, 156, 104759. [Google Scholar] [CrossRef]
- Yuan, L.; Liu, S.; Bai, X.; Gao, Y.; Liu, G.; Wang, X.; Liu, D.; Li, T.; Hao, A.; Wang, Z. Oxytocin inhibits lipopolysaccharide-induced inflammation in microglial cells and attenuates microglial activation in lipopolysaccharide-treated mice. J. Neuroinflam. 2016, 13, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, I.G.; Jin, J.J.; Hwang, L.; Kim, S.H.; Kim, C.J.; Han, J.H.; Lee, S.; Kim, H.I.; Shin, H.P.; Jeon, J.W. Polydeoxyribonucleotide Exerts Protective Effect Against CCl(4)-Induced Acute Liver Injury Through Inactivation of NF-κB/MAPK Signaling Pathway in Mice. Int. J. Mol. Sci. 2020, 21, 7894. [Google Scholar] [CrossRef]
- Paschalis, A.; Sheehan, B.; Riisnaes, R.; Rodrigues, D.N.; Gurel, B.; Bertan, C.; Ferreira, A.; Lambros, M.B.K.; Seed, G.; Yuan, W.; et al. Prostate-specific Membrane Antigen Heterogeneity and DNA Repair Defects in Prostate Cancer. Eur. Urol. 2019, 76, 469–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, R.; Berry, L.D.; Aisner, D.L.; Sheren, J.; Boyle, T.; Bunn, P.A., Jr.; Johnson, B.E.; Kwiatkowski, D.J.; Drilon, A.; Sholl, L.M.; et al. MET IHC Is a Poor Screen for MET Amplification or MET Exon 14 Mutations in Lung Adenocarcinomas: Data from a Tri-Institutional Cohort of the Lung Cancer Mutation Consortium. J. Thorac. Oncol. 2019, 14, 1666–1671. [Google Scholar] [CrossRef] [PubMed]
Grade (Scores) | Condition | Indication |
---|---|---|
0 | Absent | None |
1 | Very mild | Mild piecemeal necrosis, ballooning degeneration and/or scattered foci of hepatocellular necrosis in lobules or nodules, sprinkling of inflammatory cells in portal tracts (<25%). |
2 | Mild | Involves 25~50% of the circumference of most portal tracts, involvement of 25~50% of lobules or nodules, increased inflammatory cells in 25~50% of portal tracts. |
3 | Moderate | Involves more than 50% of the circumference of most portal tracts, involvement of 50% of lobules or nodules, increased inflammatory cells in 50% of portal tracts. |
4 | Severe | Marked piecemeal necrosis plus bridging necrosis, involvement of >75% of lobules or nodules, dense packing of inflammatory cells in >75% of portal tracts. |
Grade (Scores) | 0 | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|
Tubular necrosis | none | 0–25% | 26–50% | 51–75% | 76–100% |
Tubular dilatation | none | 0–25% | 26–50% | 51–75% | 76–100% |
Loss of brush border | none | 0–25% | 26–50% | 51–75% | 76–100% |
Cast formation | none | 0–25% | 26–50% | 51–75% | 76–100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fei, Z.; Pei, R.; Pan, B.; Ye, S.; Zhang, R.; Ma, L.; Wang, Z.; Li, C.; Du, X.; Cao, H. Antibody Assay and Anti-Inflammatory Function Evaluation of Therapeutic Potential of Different Intravenous Immunoglobulins for Alzheimer’s Disease. Int. J. Mol. Sci. 2023, 24, 5549. https://doi.org/10.3390/ijms24065549
Fei Z, Pei R, Pan B, Ye S, Zhang R, Ma L, Wang Z, Li C, Du X, Cao H. Antibody Assay and Anti-Inflammatory Function Evaluation of Therapeutic Potential of Different Intravenous Immunoglobulins for Alzheimer’s Disease. International Journal of Molecular Sciences. 2023; 24(6):5549. https://doi.org/10.3390/ijms24065549
Chicago/Turabian StyleFei, Zhangcheng, Renjun Pei, Bo Pan, Shengliang Ye, Rong Zhang, Li Ma, Zongkui Wang, Changqing Li, Xi Du, and Haijun Cao. 2023. "Antibody Assay and Anti-Inflammatory Function Evaluation of Therapeutic Potential of Different Intravenous Immunoglobulins for Alzheimer’s Disease" International Journal of Molecular Sciences 24, no. 6: 5549. https://doi.org/10.3390/ijms24065549
APA StyleFei, Z., Pei, R., Pan, B., Ye, S., Zhang, R., Ma, L., Wang, Z., Li, C., Du, X., & Cao, H. (2023). Antibody Assay and Anti-Inflammatory Function Evaluation of Therapeutic Potential of Different Intravenous Immunoglobulins for Alzheimer’s Disease. International Journal of Molecular Sciences, 24(6), 5549. https://doi.org/10.3390/ijms24065549