Pyrrolidine-Derived Phenanthroline Diamides: An Influence of Fluorine Atoms on the Coordination of Lu(III) and Some Other f-Elements and Their Solvent Extraction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure of Ligands and Complexes
2.2. UV-Vis Titration
2.3. NMR Titration
2.4. Extraction of Am(III) and Eu(III)
3. Materials and Methods
3.1. Synthesis and Analytical Data
3.2. UV-Vis Titration Experiment
3.3. NMR Titration Experiment
3.4. X-ray Crystallography
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Greenwood, N.N.; Earnshaw, A. Chemistry of the Elements, 2nd ed.; Elsevier Butterworth-Heinemann: Oxford, UK, 1997. [Google Scholar]
- Cotton, S. Lanthanide and Actinide Chemistry; John Wiley & Sons, Ltd.: Colchester, UK, 2006. [Google Scholar]
- Mignerey, A.C. Dating Techniques; Department of Chemistry and Biochemistry, University of Maryland: College Park, MA, USA, 2003. [Google Scholar] [CrossRef]
- Kurenkov, N.V.; Shubin, Y.N. Radionuclides for nuclear medicine. Med. Radiol. Radiat. Saf. 1996, 41, 54–63. [Google Scholar]
- Cotton, S.A.; Raithby, P.R. Systematics and surprises in lanthanide coordination chemistry; Coordination. Chem. Rev. 2017, 340, 220–231. [Google Scholar] [CrossRef]
- Quadrelli, E.A. Lanthanide Contraction over the 4f Series Follows a Quadratic Decay. Inorg. Chem. 2002, 41, 167–169. [Google Scholar] [CrossRef] [PubMed]
- Raymond, K.N.; Wellman, D.L.; Sgarlata, C.; Hill, A.P. Curvature of the lanthanide contraction: An explanation. Comptes Rendus Chim. 2010, 13, 849–852. [Google Scholar] [CrossRef] [Green Version]
- Lundberg, D.; Persson, I. The size of actinoid(III) ions—Structural analysis vs. common misinterpretations. Coord. Chem. Rev. 2016, 318, 131–134. [Google Scholar] [CrossRef] [Green Version]
- Seitz, M.; Oliver, A.G.; Raymond, K.N. The Lanthanide Contraction Revisited. J. Am. Chem. Soc. 2007, 129, 11153–11160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yue, Z.; Lu, H.; Li, Z.; Guo, S.; Song, J.; Ren, Y.M.; Huang, Y.; Lin, J.; Wang, J. Structural Evolution and Tuneable Photoluminescence of f- Element Bearing Coordination Polymers of the 2,4,6-tri-α-pyridyl-1,3,5-triazine Ligand. CrystEngComm 2019, 21, 5059–5066. [Google Scholar] [CrossRef]
- Drew, M.G.B.; Hudson, M.J.; Iveson, P.B.; Madic, C.; Russell, M.L. A study of lanthanide complexes formed with the terdentate nitrogen ligand 4-amino-bis(2,6-(2-pyridyl))-1,3,5-triazine. Relevance to the separation of actinides and lanthanides by solvent extraction. J. Chem. Soc. Dalton Trans. 2000, 16, 2711–2720. [Google Scholar] [CrossRef]
- Cotton, S.A.; Franckevicius, V.; Mahon, M.F.; Ooi, L.L.; Raithby, P.R.; Teat, S.J. Structures of 2,4,6-tri-a-pyridyl-1,3,5-triazine complexes of the lanthanoid nitrates: A study in the lanthanoid contraction. Polyhedron 2006, 25, 1057–1068. [Google Scholar] [CrossRef]
- Lemport, P.S.; Evsiunina, M.V.; Nelyubina, Y.V.; Isakovskaya, K.L.; Khrustalev, V.N.; Petrov, V.S.; Pozdeev, A.S.; Matveev, P.I.; Ustynyuk, Y.A.; Nenajdenko, V.G. Significant impact of lanthanide contraction on the structure of the phenanthroline complexes. Mendeleev Commun. 2021, 31, 853–855. [Google Scholar] [CrossRef]
- Ustynyuk, Y.A.; Zhokhova, N.I.; Gloriozov, I.P.; Matveev, P.I.; Evsiunina, M.V.; Lemport, P.S.; Pozdeev, A.S.; Petrov, V.G.; Yatsenko, A.V.; Tafeenko, V.A.; et al. Competing Routes in the Extraction of Lanthanide Nitrates by 1,10-Phenanthroline-2,9-diamides: An Impact of Structure of Complexes on the Extraction. Int. J. Mol. Sci. 2022, 23, 15538. [Google Scholar] [CrossRef] [PubMed]
- Krapcho, A.P.; Ali, A. Synthesis of 2,9-diacyl-1, 10-phenanthrolines. J. Heterocycl. Chem. 2004, 41, 795–798. [Google Scholar] [CrossRef]
- Lemport, P.S.; Evsunina, M.V.; Matveev, P.I.; Petrov, V.S.; Pozdeev, A.S.; Khult, E.K.; Nelyubina, Y.V.; Isakovskaya, K.L.; Roznyatovsky, V.A.; Gloriozov, I.P.; et al. 2-Methylpyrrolidine Derived 1,10-Phenanthroline-2,9-diamides: Promising Extractants for Am(III)/Ln(III) Separation. Inorg. Chem. Front. 2022, 9, 4402–4412. [Google Scholar] [CrossRef]
- Lemport, P.S.; Matveev, P.I.; Yatsenko, A.V.; Evsiunina, M.V.; Petrov, V.S.; Tarasevich, B.N.; Roznyatovsky, V.A.; Dorovatovskii, P.V.; Khrustalev, V.N.; Zhokhov, S.S.; et al. The impact of alicyclic substituents on the extraction ability of new family of 1,10-phenanthroline-2,9-diamides. RSC Adv. 2020, 10, 26022–26033. [Google Scholar] [CrossRef] [PubMed]
- Borisova, N.E.; Reshetova, M.D. Quantum chemical modeling of 2,2´-bipyridine-6,6´-dicarboxylic acid diamide structures: A relationship between the extraction ability and conformational behavior of the ligands. Russ. Chem. Bull. 2015, 64, 1882–1890. [Google Scholar] [CrossRef]
- Lewis, F.W.; Harwood, L.M.; Hudson, M.J.; Drew, M.G.B.; Hubscher-Bruder, V.; Videva, V.; Arnaud-Neu, F.; Stamberg, K.; Vyas, S. BTBPs versus BTPhens: Some Reasons for Their Differences in Properties Concerning the Partitioning of Minor Actinides and the Advantages of BTPhens. Inorg. Chem. 2013, 52, 4993–5005. [Google Scholar] [CrossRef]
- Xu, L.; Pu, N.; Li, Y.; Wei, P.; Sun, T.; Xiao, C.; Chen, J.; Xu, C. Selective Separation and Complexation of Trivalent Actinide and Lanthanide by a Tetradentate Soft–Hard Donor Ligand: Solvent Extraction, Spectroscopy, and DFT Calculations. Inorg. Chem. 2019, 58, 4420–4430. [Google Scholar] [CrossRef]
- Jansone-Popova, S.; Ivanov, A.S.; Bryantsev, V.S.; Sloop, F.V.; Custelcean, R.; Popovs, I.; Dekarske, M.M.; Moyer, B.A. Bis-lactam-1,10-phenanthroline (BLPhen), a New Type of Preorganized Mixed N,O-Donor Ligand That Separates Am(III) over Eu(III) with Exceptionally High Efficiency. Inorg. Chem. 2017, 56, 5911–5917. [Google Scholar] [CrossRef] [PubMed]
- Lumetta, G.J.; Rapko, B.M.; Garza, P.A.; Hay, B.P.; Gilbertson, R.D.; Weakley, T.J.R.; Hutchison, J.E. Deliberate Design of Ligand Architecture Yields Dramatic Enhancement of Metal Ion Affinity. J. Am. Chem. Soc. 2002, 124, 5644–5645. [Google Scholar] [CrossRef] [PubMed]
- Avagyan, N.A.; Lemport, P.S.; Lyssenko, K.A.; Gudovannyy, A.O.; Roznyatovsky, V.A.; Petrov, V.S.; Vokuev, M.F.; Ustynyuk, Y.A.; Nenajdenko, V.G. First Example of Fluorinated Phenanthroline Diamides: Synthesis, Structural Study, and Complexation with Lanthanoids. Molecules 2022, 27, 4705. [Google Scholar] [CrossRef] [PubMed]
- Besler, B.H.; Merz, K.M., Jr.; Kollman, P.A. Atomic charges derived from semiempirical methods. J. Comp. Chem. 1990, 11, 431–439. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Erdélyi, M.; Esterhuysen, C.; Zhu, W. Halogen Bonding: From Fundamentals to Applications. ChemPlusChem 2021, 86, 1229–1230. [Google Scholar] [CrossRef] [PubMed]
- Savić, A.; Kaczmarek, A.M.; Deun, R.V.; Heck, K.V. DNA intercalating near-infrared luminescent lanthanide complexes containing dipyrido[3,2-a:2′,3′-c]phenazine (dppz) ligands : Synthesis, crystal structures, stability, luminescence properties and CT-DNA interaction. Molecules 2020, 25, 5309. [Google Scholar] [CrossRef] [PubMed]
- Kapert, D.L.; Semenova, L.I.; Sobolev, A.N.; White, A.H. Structural Systematics of Rare Earth Complexes. Tris(nitrato- O,O′)(bidentate- N, N′)lutetium(III), N, N′-Bidentate = 2,2′-Bipyridine or 1,10-Phenanthroline. Aust. J. Chem. 1996, 49, 1005–1008. [Google Scholar] [CrossRef]
- Drew, M.G.B.; Foreman, M.R.S.; Hudson, M.J.; Kennedy, K.F. Structural studies of lanthanide complexes with tetradentate nitrogen ligands. Inorg. Chim. Acta 2004, 357, 4102–4112. [Google Scholar] [CrossRef]
- Gans, P.; Sabatini, A.; Vacca, A. Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta 1996, 43, 1739–1753. [Google Scholar] [CrossRef] [PubMed]
- Meng, R.; Xu, L.; Yang, X.; Sun, M.; Xu, C.; Borisova, N.E.; Zhang, X.; Lei, L.; Xiao, C. Influence of a N-Heterocyclic Core on the Binding Capability of N,O-Hybrid Diamide Ligands toward Trivalent Lanthanides and Actinides. Inorg. Chem. 2021, 60, 8754–8764. [Google Scholar] [CrossRef] [PubMed]
- Alyapyshev, M.; Ashina, J.; Dar’in, D.; Kenf, E.; Kirsanov, D.; Tkachenko, L.; Legin, A.; Starova, G.; Babain, V. 1,10-Phenanthroline-2,9-dicarboxamides as ligands for separation and sensing of hazardous metals. RSC Adv. 2016, 6, 68642. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. SHELXT-Integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8. [Google Scholar] [CrossRef] [Green Version]
Ligand | ESP Charges | |
---|---|---|
NPhen | Oamide | |
L1 | −0.339/−0.367 | −0.500/−0.502 |
L2 | −0.263/−0.307 | −0.488/−0.489 |
L3 | −0.366/−0.405 | −0.501/−0.502 |
Ligand/Bond Length, Å | C = O(1) | C = O(2) | C-N(Amide) | C-N(Amide) | OCCN(°) | OCCN(°) |
---|---|---|---|---|---|---|
L1 | 1.241(2) [1.246(2)] | 1.241(2) [1.245(2)] | 1.347(2) [1.337(2)] | 1.348(2) [1.344(2)] | 139.48(16) [150.64(18)] | 160.72(16) [173.73(18)] |
L2 | 1.220(3) | 1.223(3) | 1.328(3) | 1.332(3) | 128.6(3) | 141.1(3) |
L3 | 1.232(4) | 1.235(4) | 1.330(4) | 1.324(4) | 124.6(3) | 152.6(3) |
IR (CO), cm−1 | IR (CO), cm−1 | Δ (CO), cm−1 | ||
---|---|---|---|---|
L1 | 1613 | L1•Lu(NO3)3 | 1602 | 11 |
L2 | 1622 | L2•Lu(NO3)3 | 1609 | 13 |
L3 | 1628 | L3•Lu(NO3)3 | 1608 | 20 |
L1•Lu(NO3)3 | L2•Lu(NO3)3 | L3•Lu(NO3)3 | |
---|---|---|---|
Bond Length, Å | |||
RM-O(1) | 2.304(3) | 2.311(2) | 2.324(5) |
RM-O(2) | 2.267(3) | 2.321(3) | 2.313(5) |
RM-N(1) | 2.416(3) | 2.472(3) | 2.500(6) |
RM-N(2) | 2.404(3) | 2.483(3) | 2.531(6) |
RM-ONO2(2) | 2.363(3)–2.471(4) | 2.405(3), 2.478(3) | 2.406(7)–2.490(6) |
RM-OH2 | 2.281(3) | 2.260(2)–2.392(3) | - |
Out-of-plane | 0.090(4) | 0.438(2) | 0.027(7) |
Torsions (°) | |||
Nphen-C-C=O | 1.8(6), 11.5(6) | 4.6(4), 6.0(4) | 24.4(11), 17.4(12) |
Camide1-Namide-C=O a) | 173.2(5), 177.3(5) | 173.6(3), 167.3(5) [173.4(12)] | 172.0(8), 174.0(10) |
Camide2-Namide-C=O a) | 0.6(7), 2.7(5) | 1.8(5), 6.2(6) [16.8(8)] | 8.5(13), 1.4(14) |
Ligand | Metal Ion | log β1 | log β2 |
---|---|---|---|
L1 | La3+ | 5.90 ± 0.02 | 11.64 ± 0.04 |
Nd3+ | 5.96 ± 0.02 | 11.78 ± 0.04 | |
Eu3+ | 5.92 ± 0.02 | 11.62 ± 0.04 | |
Lu3+ | 5.98 ± 0.03 | 11.78 ± 0.04 | |
L2 | La3+ | 5.82 ± 0.02 | 11.63 ± 0.05 |
Nd3+ | 5.85 ± 0.02 | 11.64 ± 0.05 | |
Eu3+ | 5.90 ± 0.02 | 11.66 ± 0.05 | |
Lu3+ | 6.06 ± 0.02 | 11.63 ± 0.04 | |
L3 | La3+ | 6.53 ± 0.02 | 11.81 ± 0.06 |
Nd3+ | 6.50 ± 0.01 | 11.70 ± 0.03 | |
Eu3+ | 6.39 ± 0.02 | 11.62 ± 0.04 | |
Lu3+ | 6.02 ± 0.02 | 12.04 ± 0.04 |
Lu(1) | Lu(2) | |
---|---|---|
Bond length, Å | ||
RM-O(1), RM-O(2) | 2.311(4), 2.320(4) | 2.34(2) [2.24(2)] |
RM-N(1), RM-N(2) | 2.463(4), 2.420(4) | 2.431(7) [2.400(11)] |
RM-ONO2(2) | 2.390(18)–2.474(4) | 2.375(3) |
RM-O | 2.129(2) | 2.116(2) |
Out-of-plane shift | 0.207(4) | 0.053(15) |
Bond angles (°) | ||
Lu-O-Lu | 170.99(14) | |
O-Lu-O | - | 154.79(14) |
Torsions (o) | ||
Nphen-C-C=O | 12.1(6), 13.3(6) | 9.6(18) [10(2)] |
Camide-Namide-C=O | 2.7(7)–3(4) | 1(2) [2(2)] |
C(HNO3), M | L2 | L3 |
---|---|---|
1 | 1.4 | 3.3 |
2 | 5.9 | 8.7 |
3 | 12.1 | 14.8 |
4 | 12.7 | 12.3 |
5 | 16.7 | 14.1 |
6 | 18.0 | 13.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avagyan, N.A.; Lemport, P.S.; Evsiunina, M.V.; Matveev, P.I.; Aksenova, S.A.; Nelyubina, Y.V.; Yatsenko, A.V.; Tafeenko, V.A.; Petrov, V.G.; Ustynyuk, Y.A.; et al. Pyrrolidine-Derived Phenanthroline Diamides: An Influence of Fluorine Atoms on the Coordination of Lu(III) and Some Other f-Elements and Their Solvent Extraction. Int. J. Mol. Sci. 2023, 24, 5569. https://doi.org/10.3390/ijms24065569
Avagyan NA, Lemport PS, Evsiunina MV, Matveev PI, Aksenova SA, Nelyubina YV, Yatsenko AV, Tafeenko VA, Petrov VG, Ustynyuk YA, et al. Pyrrolidine-Derived Phenanthroline Diamides: An Influence of Fluorine Atoms on the Coordination of Lu(III) and Some Other f-Elements and Their Solvent Extraction. International Journal of Molecular Sciences. 2023; 24(6):5569. https://doi.org/10.3390/ijms24065569
Chicago/Turabian StyleAvagyan, Nane A., Pavel S. Lemport, Mariia V. Evsiunina, Petr I. Matveev, Svetlana A. Aksenova, Yulia V. Nelyubina, Alexandr V. Yatsenko, Viktor A. Tafeenko, Vladimir G. Petrov, Yuri A. Ustynyuk, and et al. 2023. "Pyrrolidine-Derived Phenanthroline Diamides: An Influence of Fluorine Atoms on the Coordination of Lu(III) and Some Other f-Elements and Their Solvent Extraction" International Journal of Molecular Sciences 24, no. 6: 5569. https://doi.org/10.3390/ijms24065569
APA StyleAvagyan, N. A., Lemport, P. S., Evsiunina, M. V., Matveev, P. I., Aksenova, S. A., Nelyubina, Y. V., Yatsenko, A. V., Tafeenko, V. A., Petrov, V. G., Ustynyuk, Y. A., Bi, X., & Nenajdenko, V. G. (2023). Pyrrolidine-Derived Phenanthroline Diamides: An Influence of Fluorine Atoms on the Coordination of Lu(III) and Some Other f-Elements and Their Solvent Extraction. International Journal of Molecular Sciences, 24(6), 5569. https://doi.org/10.3390/ijms24065569