DNA Methylation of Window of Implantation Genes in Cervical Secretions Predicts Ongoing Pregnancy in Infertility Treatment
Abstract
:1. Introduction
2. Results
2.1. Methylomic Profiles of Mid-Secretory Phase Cervical Secretions
2.2. Endometrial WOI Genes and Their Promoter Probes
2.3. Selection of Differentially Methylated Probes for Predicting Ongoing Pregnancy
2.4. Verification of Three Selected Candidate Genes for Predicting Pregnancy Outcome
3. Discussion
4. Materials and Methods
4.1. Study Participants and Clinical Samples
4.2. DNA Preparation
4.3. Extraction of WOI Genes’ Promoter Probes from Cervical Secretion Methylomics Profiles
4.4. Measurement of Methylation Levels by Quantitative Methylation-Specific Polymerase Chain Reaction
4.5. Statistical and Machine Learning Analyses
4.5.1. Datasets
- Array (discovery) dataset
- qMSP (verification) dataset
4.5.2. Statistical Analyses
4.5.3. Variable Selection
4.5.4. Model Train and Evaluation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Coussa, A.; Hasan, H.A.; Barber, T.M. Impact of contraception and IVF hormones on metabolic, endocrine, and inflammatory status. J. Assist. Reprod. Genet. 2020, 37, 1267–1272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravitsky, V.; Kimmins, S. The forgotten men: Rising rates of male infertility urgently require new approaches for its prevention, diagnosis and treatment. Biol. Reprod. 2019, 101, 872–874. [Google Scholar] [CrossRef] [PubMed]
- De Geyter, C.; Wyns, C.; Calhaz-Jorge, C.; De Mouzon, J.; Ferraretti, A.P.; Kupka, M.; Andersen, A.N.; Nygren, K.G.; Goossens, V. 20 years of the European IVF-monitoring Consortium registry: What have we learned? A comparison with registries from two other regions. Hum. Reprod. 2020, 35, 2832–2849. [Google Scholar] [CrossRef] [PubMed]
- Munné, S.; Kaplan, B.; Frattarelli, J.L.; Child, T.; Nakhuda, G.; Shamma, F.N.; Silverberg, K.; Kalista, T.; Handyside, A.H.; Katz-Jaffe, M.; et al. Preimplantation genetic testing for aneuploidy versus morphology as selection criteria for single fro-zen-thawed embryo transfer in good-prognosis patients: A multicenter randomized clinical trial. Fertil. Steril. 2019, 112, 1071–1079.e7. [Google Scholar] [CrossRef]
- Navot, D.; Bergh, P.A.; Williams, M.; Garrlsi, G.J.; Guzman, I.; Sandler, B.; Fox, J.; Schreiner-Engel, P.; Hofmann, G.E.; Grunfeld, L. An Insight into Early Reproductive Processes through the In Vivo Model of Ovum Donation. J. Clin. Endocrinol. Metab. 1991, 72, 408–414. [Google Scholar] [CrossRef]
- Lessey, B.A.; Young, S.L. What exactly is endometrial receptivity? Fertil. Steril. 2019, 111, 611–617. [Google Scholar] [CrossRef]
- Prapas, Y.; Prapas, N.; Jones, E.E.; Duleba, A.J.; Olive, D.L.; Chatziparasidou, A.; Vlassis, G. The window for embryo transfer in oocyte donation cycles depends on the duration of progesterone therapy. Hum. Reprod. 1998, 13, 720–723. [Google Scholar] [CrossRef] [Green Version]
- Messaoudi, S.; El Kasmi, I.; Bourdiec, A.; Crespo, K.; Bissonnette, L.; Le Saint, C.; Bissonnette, F.; Kadoch, I.J. 15 years of transcriptomic analysis on endometrial receptivity: What have we learnt? Fertil. Res. Pract. 2019, 5, 9. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Vilella, F.; Alama, P.; Moreno, I.; Mignardi, M.; Isakova, A.; Pan, W.; Simon, C.; Quake, S.R. Single-cell transcriptomic atlas of the human endometrium during the menstrual cycle. Nat. Med. 2020, 26, 1644–1653. [Google Scholar] [CrossRef]
- Munro, S.K.; Farquhar, C.; Mitchell, M.; Ponnampalam, A.P. Epigenetic regulation of endometrium during the menstrual cycle. Mol. Hum. Reprod. 2010, 16, 297–310. [Google Scholar] [CrossRef] [Green Version]
- Retis-Resendiz, A.M.; González-García, I.N.; León-Juárez, M.; Camacho-Arroyo, I.; Cerbón, M.; Vázquez-Martínez, E.R. The role of epigenetic mechanisms in the regulation of gene expression in the cyclical endometrium. Clin. Epigenetics 2021, 13, 116. [Google Scholar] [CrossRef]
- Kulp, J.L.; Mamillapalli, R.; Taylor, H.S. Aberrant HOXA10 Methylation in Patients With Common Gynecologic Disorders: Implications for Reproductive Outcomes. Reprod. Sci. 2016, 23, 455–463. [Google Scholar] [CrossRef] [Green Version]
- Rocha-Junior, C.V.; Da Broi, M.G.; Miranda-Furtado, C.L.; Navarro, P.A.; Ferriani, R.A.; Meola, J. Progesterone Receptor B (PGR-B) Is Partially Methylated in Eutopic Endometrium From Infertile Women With Endometriosis. Reprod. Sci. 2019, 26, 1568–1574. [Google Scholar] [CrossRef]
- Pathare, A.; Hinduja, I. Aberrant DNA methylation profiling affecting the endometrial receptivity in recurrent implantation failure patients undergoing IVF. Am. J. Reprod. Immunol. 2019, 83, e13196. [Google Scholar]
- Xiong, Y.; Hu, L.; Zhang, T.; Wang, M.; Xu, H.; Li, T.C.; Sun, Y.; Wang, C.C. Effects of high progesterone in in-vitro fertilization cycle on DNA methylation and gene expression of adhesion molecules on endometrium during implantation window. J. Assist. Reprod. Genet. 2020, 37, 33–43. [Google Scholar] [CrossRef]
- Gao, F.; Ma, X.; Rusie, A.; Hemingway, J.; Ostmann, A.B.; Chung, D.; Das, S.K. Epigenetic Changes Through DNA Methylation Contribute to Uterine Stromal Cell Decidualization. Endocrinology 2012, 153, 6078–6090. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.B.; Long, C.L.; Liu, X.Q.; Chen, X.M.; Guo, L.R.; Xia, Y.Y.; He, J.L.; Wang, Y.X. 5-aza-2′-deoxycytidine leads to reduced embryo implantation and reduced expression of DNA methyl-transferases and essential endometrial genes. PLoS ONE 2012, 7, e45364. [Google Scholar] [CrossRef]
- Geng, Y.; Gao, R.; Chen, X.; Liu, X.; Liao, X.; Li, Y.; Liu, S.; Ding, Y.; Wang, Y.; He, J. Folate deficiency impairs decidualization and alters methylation patterns of the genome in mice. Mol. Hum. Reprod. 2015, 21, 844–856. [Google Scholar] [CrossRef] [Green Version]
- Zglejc-Waszak, K.; Waszkiewicz, E.M.; Franczak, A. Periconceptional undernutrition affects the levels of DNA methylation in the peri-implantation pig endometrium and in embryos. Theriogenology 2019, 123, 185–193. [Google Scholar] [CrossRef]
- Woods, L.; Morgan, N.; Zhao, X.; Dean, W.; Perez-Garcia, V.; Hemberger, M. Epigenetic changes occur at decidualisation genes as a function of reproductive ageing in mice. Development 2020, 147, dev185629. [Google Scholar] [CrossRef]
- Nazarenko, T.A.; Kalinina, E.A.; Knyazeva, E.A.; Kiselev, V.I.; Smolnikova, V.Y.; Sukhikh, G.T. The role of abnormal hypermethylation of the HOXA10 and HOXA11 promoters in implantation failures in IVF programs. Gynecol. Endocrinol. 2019, 35, 31–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senapati, S.; Wang, F.; Ord, T.; Coutifaris, C.; Feng, R.; Mainigi, M. Superovulation alters the expression of endometrial genes critical to tissue remodeling and placentation. J. Assist. Reprod. Genet. 2018, 35, 1799–1808. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.C.; Chen, K.; Chiu, C.Y.; Lu, K.Y.; Lu, H.Y.; Chiang, M.H.; Tsai, C.K.; Lo, C.J.; Cheng, M.L.; Chang, T.C. Metabolomic biomarkers in cervicovaginal fluid for detecting endometrial cancer through nuclear magnetic resonance spectroscopy. Metabolomics 2019, 15, 146. [Google Scholar] [CrossRef] [PubMed]
- Tokarz, J.; Adamski, J.; Rižner, T.L. Metabolomics for Diagnosis and Prognosis of Uterine Diseases? A Systematic Review. J. Pers. Med. 2020, 10, 294. [Google Scholar] [CrossRef]
- Njoku, K.; Chiasserini, D.; Geary, B.; Pierce, A.; Jones, E.; Whetton, A.; Crosbie, E. Comprehensive Library Generation for Identification and Quantification of Endometrial Cancer Protein Biomarkers in Cervico-Vaginal Fluid. Cancers 2021, 13, 3804. [Google Scholar] [CrossRef]
- O’Flynn, H.; Ryan, N.A.J.; Narine, N.; Shelton, D.; Rana, D.; Crosbie, E.J. Diagnostic accuracy of cytology for the detection of endometrial cancer in urine and vaginal samples. Nat. Commun. 2021, 12, 952. [Google Scholar] [CrossRef]
- Zanotta, N.; Monasta, L.; Skerk, K.; Luppi, S.; Martinelli, M.; Ricci, G.; Comar, M. Cervico-vaginal secretion cytokine profile: A non-invasive approach to study the endometrial receptivity in IVF cycles. Am. J. Reprod. Immunol. 2018, 81, e13064. [Google Scholar] [CrossRef]
- Luddi, A.; Zarovni, N.; Maltinti, E.; Governini, L.; De Leo, V.; Cappelli, V.; Quintero, L.; Paccagnini, E.; Loria, F.; Piomboni, P. Clues to Non-Invasive Implantation Window Monitoring: Isolation and Characterisation of Endometrial Exosomes. Cells 2019, 8, 811. [Google Scholar] [CrossRef] [Green Version]
- Farag, A.H.; Farid, A.; El-Din, M.H.N.; Mohamed, M.A.; El-Helaly, A.M. Serum and cervico-vaginal glycodelin concentrations as predictors of successful implantation after embryo transfer. Taiwan J. Obstet. Gynecol. 2022, 61, 464–471. [Google Scholar] [CrossRef]
- Jain, M.; Samokhodskaya, L.; Mladova, E.; Panina, O. Mucosal biomarkers for endometrial receptivity: A promising yet underexplored aspect of reproductive medicine. Syst. Biol. Reprod. Med. 2022, 68, 13–24. [Google Scholar] [CrossRef]
- Huang, R.-L.; Su, P.-H.; Liao, Y.-P.; Wu, T.-I.; Hsu, Y.-T.; Lin, W.-Y.; Wang, H.-C.; Weng, Y.-C.; Ou, Y.-C.; Huang, T.H.-M.; et al. Integrated Epigenomics Analysis Reveals a DNA Methylation Panel for Endometrial Cancer Detection Using Cervical Scrapings. Clin. Cancer Res. 2017, 23, 263–272. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.C.; Wang, H.C.; Liao, Y.P.; Chen, Y.C.; Weng, Y.C.; Yu, M.H.; Lai, H.C. The feasibility of detecting endometrial and ovarian cancer using DNA methylation biomarkers in cervical scrapings. J. Gynecol. Oncol. 2018, 29, e17. [Google Scholar] [CrossRef] [Green Version]
- Liew, P.-L.; Huang, R.-L.; Wu, T.-I.; Liao, C.-C.; Chen, C.-W.; Su, P.-H.; Wang, H.-C.; Weng, Y.-C.; Lai, H.-C. Combined genetic mutations and DNA-methylated genes as biomarkers for endometrial cancer detection from cervical scrapings. Clin. Epigenetics 2019, 11, 170. [Google Scholar] [CrossRef]
- Chen, C.W.; Huang, R.L.; Do, A.Q.; Wang, H.C.; Lee, Y.X.; Wang, C.W.; Hsieh, C.C.; Tzeng, C.R.; Hu, Y.M.; Chen, C.H.; et al. Genome-wide analysis of cervical secretions obtained during embryo transfer reveals the association between deoxyribonucleic acid methylation and pregnancy outcomes. FS Sci. 2022, 3, 74–83. [Google Scholar] [CrossRef]
- Glaab, E.; Rauschenberger, A.; Banzi, R.; Gerardi, C.; Garcia, P.; Demotes, J. Biomarker discovery studies for patient stratification using machine learning analysis of omics data: A scoping review. BMJ Open 2021, 11, e053674. [Google Scholar] [CrossRef]
- Serra, A.; Cattelani, L.; Fratello, M.; Fortino, V.; Kinaret, P.A.S.; Greco, D. Supervised Methods for Biomarker Detection from Microarray Experiments, in Microarray Data Analysis; Agapito, G., Ed.; Springer US: New York, NY, USA, 2022; pp. 101–120. [Google Scholar]
- Isenberg, J.S.; Roberts, D.D. THBS1 (thrombospondin-1). Atlas Genet. Cytogenet. Oncol. Haematol. 2020, 24, 291–299. [Google Scholar] [CrossRef]
- Bhagwat, S.R.; Chandrashekar, D.S.; Kakar, R.; Davuluri, S.; Bajpai, A.K.; Nayak, S.; Bhutada, S.; Acharya, K.; Sachdeva, G. Endometrial Receptivity: A Revisit to Functional Genomics Studies on Human Endometrium and Creation of HGEx-ERdb. PLoS ONE 2013, 8, e58419. [Google Scholar] [CrossRef]
- Pathare, A.D.S.; Hinduja, I. Endometrial Expression of Cell Adhesion Genes in Recurrent Implantation Failure Patients in Ongoing IVF Cycle. Reprod. Sci. 2021, 29, 513–523. [Google Scholar] [CrossRef]
- Cheng, C.-W.; Smith, S.K.; Charnock-Jones, D.S. Transcript profile and localization of Wnt signaling–related molecules in human endometrium. Fertil. Steril. 2008, 90, 201–204. [Google Scholar] [CrossRef]
- Wu, J.L.; Keller, P.; Kanchwala, M.; Xing, C.; Babayev, S.N.; Carr, B.R.; Bukulmez, O.; Word, R.A. Controlled Ovarian Stimulation Protocols Alter Endometrial Histomorphology and Gene Expression Profiles. Reprod. Sci. 2020, 27, 895–904. [Google Scholar] [CrossRef]
- Chen, D.; Zhao, M.; Mundy, G.R. Bone morphogenetic proteins. Growth Factors 2004, 22, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.Y.; Jeong, J.-W.; Wang, J.; Ma, L.; Martin, J.F.; Tsai, S.Y.; Lydon, J.P.; DeMayo, F.J. Bmp2 Is Critical for the Murine Uterine Decidual Response. Mol. Cell. Biol. 2007, 27, 5468–5478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Kannan, A.; Das, A.; DeMayo, F.J.; Hornsby, P.J.; Young, S.L.; Taylor, R.N.; Bagchi, M.K.; Bagchi, I.C. WNT4 acts downstream of BMP2 and functions via β-catenin signaling pathway to regulate human endometrial stromal cell differentiation. Endocrinology 2013, 154, 446–457. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Zhu, H.; Chang, H.; Lin, Y.; Yang, J.; Leung, P.C.K. The regulation of IGFBP3 by BMP2 has a role in human endometrial remodeling. FASEB J. 2020, 34, 15462–15479. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhu, H.; Chang, H.M.; Leung, P.C. ALK3-SMAD1/5 Signaling Mediates the BMP2-Induced Decrease in PGE2 Production in Human Endometrial Stromal Cells and Decidual Stromal Cells. Front. Cell Dev. Biol. 2020, 8, 573028. [Google Scholar] [CrossRef]
- Yu, H.-F.; Zheng, L.-W.; Yang, Z.-Q.; Wang, Y.-S.; Huang, J.-C.; Liu, S.; Yue, Z.-P.; Guo, B. Bmp2 regulates Serpinb6b expression via cAMP/PKA/Wnt4 pathway during uterine decidualization. J. Cell. Mol. Med. 2020, 24, 7023–7033. [Google Scholar] [CrossRef]
- Bhurke, A.S.; Bagchi, I.C.; Bagchi, M.K. Progesterone-Regulated Endometrial Factors Controlling Implantation. Am. J. Reprod. Immunol. 2016, 75, 237–245. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.-G.; Chen, J.R.; Hernandez, L.; Alvord, W.G.; Stewart, C.L. Dual control of LIF expression and LIF receptor function regulate Stat3 activation at the onset of uterine receptivity and embryo implantation. Proc. Natl. Acad. Sci. USA 2001, 98, 8680–8685. [Google Scholar] [CrossRef] [Green Version]
- Dimitriadis, E.; Stoikos, C.; Tan, Y.-L.; Salamonsen, L. Interleukin 11 Signaling Components Signal Transducer and Activator of Transcription 3 (STAT3) and Suppressor of Cytokine Signaling 3 (SOCS3) Regulate Human Endometrial Stromal Cell Differentiation. Endocrinology 2006, 147, 3809–3817. [Google Scholar] [CrossRef]
- Jiang, Y.; Liao, Y.; He, H.; Xin, Q.; Tu, Z.; Kong, S.; Cui, T.; Wang, B.; Quan, S.; Li, B.; et al. FoxM1 Directs STAT3 Expression Essential for Human Endometrial Stromal Decidualization. Sci. Rep. 2015, 5, 13735. [Google Scholar] [CrossRef] [Green Version]
- Shan, L.; Zhou, Y.; Peng, S.; Wang, X.; Shan, Z.; Teng, W. Implantation failure in rats with subclinical hypothyroidism is associated with LIF/STAT3 signaling. Endocr. Connect. 2019, 8, 718–727. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Xu, H.; Zhang, D.; Si, C.; Zhou, X.; Zhao, H.; Liu, Q.; Xu, B.; Zhang, A. Decreased PIBF1/IL6/p-STAT3 during the mid-secretory phase inhibits human endometrial stromal cell proliferation and decidualization. J. Adv. Res. 2021, 30, 15–25. [Google Scholar] [CrossRef]
- Lin, X.H.; Liu, M.E.; Xu, H.Y.; Chen, X.J.; Wang, H.; Tian, S.; Sheng, J.Z.; Huang, H.F. Leptin down-regulates γ-ENaC expression: A novel mechanism involved in low endometrial receptivity. Fertil. Steril. 2015, 103, 228–235.e3. [Google Scholar] [CrossRef]
- Zhu, X.X.; Yin, X.Q.; Hei, G.Z.; Wei, R.; Guo, Q.; Zhao, L.; Zhang, Z.; Chu, C.; Fu, X.X.; Xu, K.; et al. Increased miR-6875-5p inhibits plasmacytoid dendritic cell differentiation via the STAT3/E2-2 pathway in recurrent spontaneous abortion. Mol. Hum. Reprod. 2021, 27, gaab044. [Google Scholar] [CrossRef]
- Liang, Y.-X.; Liu, L.; Jin, Z.-Y.; Liang, X.-H.; Fu, Y.-S.; Gu, X.-W.; Yang, Z.-M. The high concentration of progesterone is harmful for endometrial receptivity and decidualization. Sci. Rep. 2018, 8, 712. [Google Scholar] [CrossRef] [Green Version]
- Milenkovic, J.; Milojkovic, M.; Stoimenov, T.J.; Djindjic, B.; Miljkovic, E. Mechanisms of plasminogen activator inhibitor 1 action in stromal remodeling and related diseases. Biomed. Pap. Med. Fac. Palacky Univ. Olomouc 2017, 161, 339–347. [Google Scholar] [CrossRef] [Green Version]
- Lockwood, C.J.; Krikun, G.; Papp, C.; Toth-Pal, E.; Markiewicz, L.; Wang, E.Y.; Kerenyi, T.; Zhou, X.; Hausknecht, V.; Papp, Z.; et al. The Role of Progestationally Regulated Stromal Cell Tissue Factor and Type-1 Plasminogen Activator Inhibitor (PAI-1) in Endometrial Hemostasis and Menstruation. Ann. N. Y. Acad. Sci. 1994, 734, 57–79. [Google Scholar] [CrossRef]
- Lockwood, C.J.; Krikun, G.; Schatz, F. The Decidua Regulates Hemostasis in Human Endometrium. Semin. Reprod. Endocrinol. 1999, 17, 45–51. [Google Scholar] [CrossRef]
- Lockwood, C.J. Regulation of plasminogen activator inhibitor 1 expression by interaction of epidermal growth factor with progestin during decidualization of human endometrial stromal cells. Am. J. Obstet. Gynecol. 2001, 184, 798–805; discussion 804–805. [Google Scholar] [CrossRef]
- Schatz, F.; Aigner, S.; Papp, C.; Toth-Pal, E.; Hausknecht, V.; Lockwood, C.J. Plasminogen activator activity during decidualization of human endometrial stromal cells is regulated by plasminogen activator inhibitor 1. J. Clin. Endocrinol. Metab. 1995, 80, 2504–2510. [Google Scholar]
- Hofmann, G.E.; Glatstein, I.; Schatz, F.; Heller, D.; Deligdisch, L. Immunohistochemical localization of urokinase-type plasminogen activator and the plasminogen activator inhibitors 1 and 2 in early human implantation sites. Am. J. Obstet. Gynecol. 1994, 170, 671–676. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, P.; Gacheva, S.; Konova, E.; Komsa-Penkova, R. [Implication of PAI-1 4G/5G polymorphism in recurrent implantation failure after IVF]. Akush. Ginekol. 2014, 53, 25–29. [Google Scholar]
- Khosravi, F.; Zarei, S.; Ahmadvand, N.; Akbarzadeh-Pasha, Z.; Savadi, E.; Zarnani, A.H.; Sadeghi, M.R.; Jeddi-Tehrani, M. Association between plasminogen activator inhibitor 1 gene mutation and different subgroups of recurrent miscarriage and implantation failure. J. Assist. Reprod. Genet. 2014, 31, 121–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kydonopoulou, K.; Delkos, D.; Rousso, D.; Ilonidis, G.; Mandala, E. Association of plasminogen activator inhibitor-type 1 (PAI-1) -675 4G/5G polymorphism with unexplained female infertility. Hippokratia 2017, 21, 180–185. [Google Scholar]
- Chern, S.-R.; Li, S.-H.; Lu, C.-H.; Chen, E.I.T. Spatiotemporal expression of the serine protease inhibitor, SERPINE2, in the mouse placenta and uterus during the estrous cycle, pregnancy, and lactation. Reprod. Biol. Endocrinol. 2010, 8, 127. [Google Scholar] [CrossRef] [Green Version]
- Lee, R.K.-K.; Fan, C.-C.; Hwu, Y.-M.; Lu, C.-H.; Lin, M.-H.; Chen, Y.-J.; Li, S.-H. SERPINE2, an inhibitor of plasminogen activators, is highly expressed in the human endometrium during the secretory phase. Reprod. Biol. Endocrinol. 2011, 9, 38. [Google Scholar] [CrossRef] [Green Version]
- Burmenskaya, O.V.; Bozhenko, V.K.; Smolnikova, V.Y.; Kalinina, E.A.; Korneeva, I.E.; Donnikov, A.E.; Beyk, P.; Naumov, V.A.; Aleksandrova, N.V.; Borovikov, P.I.; et al. Transcription profile analysis of the endometrium revealed molecular markers of the personalized ‘window of implantation’ during in vitro fertilization. Gynecol. Endocrinol. 2017, 33, 22–27. [Google Scholar] [CrossRef] [Green Version]
- Hidalgo, G.D.S.; Meola, J.; e Silva, J.C.R.; de Paz, C.C.P.; Ferriani, R.A. TAGLN expression is deregulated in endometriosis and may be involved in cell invasion, migration, and differentiation. Fertil. Steril. 2011, 96, 700–703. [Google Scholar] [CrossRef]
- Li, X.-J.; Zhao, Z.-A.; Gao, L. Regulation and Expression of Tagln2 in Early Rabbit Pregnant Uterus. J. Reprod. Contracept. 2010, 21, 27–34. [Google Scholar] [CrossRef]
- Hernández-Vargas, P.; Muñoz, M.; Domínguez, F. Identifying biomarkers for predicting successful embryo implantation: Applying single to multi-OMICs to improve reproductive outcomes. Hum. Reprod. Updat. 2020, 26, 264–301. [Google Scholar] [CrossRef]
- Braga, D.P.D.A.F.; Borges, E., Jr.; Godoy, A.T.; Montani, D.A.; Setti, A.S.; Zanetti, B.F.; Figueira, R.D.C.S.; Eberlin, M.N.; Lo Turco, E.G. Lipidomic profile as a noninvasive tool to predict endometrial receptivity. Mol. Reprod. Dev. 2019, 86, 145–155. [Google Scholar] [CrossRef]
- Barnett-Itzhaki, Z.; Elbaz, M.; Butterman, R.; Amar, D.; Amitay, M.; Racowsky, C.; Orvieto, R.; Hauser, R.; Baccarelli, A.A.; Machtinger, R. Machine learning vs. classic statistics for the prediction of IVF outcomes. J. Assist. Reprod. Genet. 2020, 37, 2405–2412. [Google Scholar] [CrossRef]
- Wang, C.W.; Kuo, C.Y.; Chen, C.H.; Hsieh, Y.H.; Su, E.C.Y. Predicting clinical pregnancy using clinical features and machine learning algorithms in in vitro fertilization. PLoS ONE 2022, 17, e0267554. [Google Scholar] [CrossRef]
- Qiu, J.; Li, P.; Dong, M.; Xin, X.; Tan, J. Personalized prediction of live birth prior to the first in vitro fertilization treatment: A machine learning method. J. Transl. Med. 2019, 17, 317. [Google Scholar] [CrossRef]
- Saare, M.; Modhukur, V.; Suhorutshenko, M.; Rajashekar, B.; Rekker, K.; Sõritsa, D.; Karro, H.; Soplepmann, P.; Sõritsa, A.; Lindgren, C.M.; et al. The influence of menstrual cycle and endometriosis on endometrial methylome. Clin. Epigenetics 2016, 8, 2. [Google Scholar] [CrossRef] [Green Version]
- Gardner, D.; Schoolcraft, W.; Jansen, R.; Mortimer, D. In-vitro culture of human blastocyst. Towards Reprod. Certain. Infertil. Genet. Beyond 1999, 1999, 378–388. [Google Scholar]
- Morris, T.J.; Butcher, L.M.; Feber, A.; Teschendorff, A.E.; Chakravarthy, A.R.; Wojdacz, T.K.; Beck, S. ChAMP: 450k Chip Analysis Methylation Pipeline. Bioinformatics 2013, 30, 428–430. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.-I.; Huang, R.-L.; Su, P.-H.; Mao, S.-P.; Wu, C.-H.; Lai, H.-C. Ovarian cancer detection by DNA methylation in cervical scrapings. Clin. Epigenetics 2019, 11, 166. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://www.R-project.org/ (accessed on 3 January 2021).
- Kolde, R. Pheatmap: Pretty Heatmaps. R Package Version 1.0.12. 2019. Available online: https://CRAN.R-project.org/package=pheatmap (accessed on 4 March 2022).
- Kursa, M.B.; Rudnicki, W.R. Feature Selection with the Boruta Package. J. Stat. Softw. 2010, 36, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, M. Caret: Classification and Regression Training. R package version 6.0-91. 2022. Available online: https://CRAN.R-project.org/package=caret (accessed on 8 March 2022).
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.-C.; Müller, M. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011, 12, 77. [Google Scholar] [CrossRef]
Clinical Characteristics | Array Set | qMSP Set | ||||
---|---|---|---|---|---|---|
Ongoing Pregnancy | p Value | Ongoing Pregnancy | p Value | |||
No (N = 37) | Yes (N = 31) | No (N = 35) | Yes (N = 30) | |||
Age (years) | 36.8 (3.0) | 36.0 (2.0) | 0.644 a | 40.9 (4.5) | 38.0 (8.5) | 0.515 a |
Endometrial thickness (mm) | 10.0 (2.8) (n = 32) | 9.4 (3.8) (n = 26) | 0.165 a | 9.8 (2.55) (n = 21) | 10.2 (3.25) (n = 18) | 0.530 a |
Transfer of good quality embryo | ||||||
No | 8 (21.6) | 2 (6.5) | 0.097 b | 5 (14.3) | 0 (0.0) | 0.057 b |
Yes | 29 (78.4) | 29 (93.5) | 30 (85.7) | 34 (100) | ||
Embryo stage | ||||||
Cleavage | 19 (51.4) | 9 (29.0) | 0.063 c | - | - | - |
Blastocyst | 18 (48.6) | 22 (71.0) | 35 (100) | 30 (100) | ||
Endometriosis | ||||||
No | 30 (81.1) | 29 (93.5) | 0.166 b | 28 (80.0) | 23 (76.7) | 0.745 c |
Yes | 7 (18.9) | 2 (6.5) | 7 (20.0) | 7 (23.3) | ||
COH | ||||||
No (Frozen-thawed cycle) | 35 (94.6) | 27 (87.1) | 0.4 b | 33 (94.3) | 30(100) | 0.495 b |
Yes (Fresh cycle) | 2 (5.4) | 4 (12.9) | 2 (5.7) | 0 (0) | ||
IVF indicator | ||||||
Ovulatory | 15 (40.5) | 11 (35.5) | 0.608 c | 6 (17.1) | 8 (26.7) | 0.161 c |
Endometriosis | 7 (18.9) | 2 (6.5) | 7 (20.0) | 7 (23.3) | ||
Male | 7 (18.9) | 6 (19.4) | 3 (8.6) | 3 (10.0) | ||
Tubal | 2 (5.4) | 3 (9.7) | 3 (8.6) | 0 (0.0) | ||
Unexplained | 5 (13.5) | 7 (22.6) | 8 (22.8) | 9 (30.0) | ||
Uterine | 1 (2.7) | 1 (3.2) | 0 (0.0) | 2 (6.7) | ||
POF | 0 (0.0) | 1 (3.2) | - | - | ||
Advanced women age | - | - | 7(20.0) | 1 (3.3) | ||
Recurrent pregnancy loss | - | - | 1(2.9) | 0 (0.0) | ||
Endometrial preparation | ||||||
Natural | 14 (37.8) | 19 (61.3) | 0.054 c | 6 (17.1) | 8 (26.7) | 0.352 c |
Artificial | 23 (62.2) | 12 (38.7) | 29 (82.9) | 22 (73.3) |
Model | Accuracy (%) | PPV (%) | NPV (%) | Sensitivity (%) | Specificity (%) |
---|---|---|---|---|---|
RF | 83.53 | 86.64 | 81.48 | 75.52 | 90.24 |
NB | 85.26 | 87.36 | 83.79 | 79.13 | 90.41 |
SVM | 85.78 | 90.57 | 82.76 | 76.81 | 93.30 |
KNN | 76.44 | 91.89 | 70.93 | 53.00 | 96.08 |
Model | Accuracy (%) | PPV (%) | NPV (%) | Sensitivity (%) | Specificity (%) |
---|---|---|---|---|---|
RF | 71.46 | 68.31 | 74.38 | 71.20 | 71.69 |
NB | 80.06 | 71.98 | 92.00 | 93.00 | 68.97 |
SVM | 80.72 | 73.34 | 90.75 | 91.50 | 71.49 |
KNN | 80.68 | 73.19 | 90.95 | 91.73 | 71.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Do, Q.A.; Su, P.-H.; Chen, C.-W.; Wang, H.-C.; Lee, Y.-X.; Weng, Y.-C.; Chen, L.-Y.; Hsu, Y.-H.; Lai, H.-C. DNA Methylation of Window of Implantation Genes in Cervical Secretions Predicts Ongoing Pregnancy in Infertility Treatment. Int. J. Mol. Sci. 2023, 24, 5598. https://doi.org/10.3390/ijms24065598
Do QA, Su P-H, Chen C-W, Wang H-C, Lee Y-X, Weng Y-C, Chen L-Y, Hsu Y-H, Lai H-C. DNA Methylation of Window of Implantation Genes in Cervical Secretions Predicts Ongoing Pregnancy in Infertility Treatment. International Journal of Molecular Sciences. 2023; 24(6):5598. https://doi.org/10.3390/ijms24065598
Chicago/Turabian StyleDo, Quang Anh, Po-Hsuan Su, Chien-Wen Chen, Hui-Chen Wang, Yi-Xuan Lee, Yu-Chun Weng, Lin-Yu Chen, Yueh-Han Hsu, and Hung-Cheng Lai. 2023. "DNA Methylation of Window of Implantation Genes in Cervical Secretions Predicts Ongoing Pregnancy in Infertility Treatment" International Journal of Molecular Sciences 24, no. 6: 5598. https://doi.org/10.3390/ijms24065598
APA StyleDo, Q. A., Su, P. -H., Chen, C. -W., Wang, H. -C., Lee, Y. -X., Weng, Y. -C., Chen, L. -Y., Hsu, Y. -H., & Lai, H. -C. (2023). DNA Methylation of Window of Implantation Genes in Cervical Secretions Predicts Ongoing Pregnancy in Infertility Treatment. International Journal of Molecular Sciences, 24(6), 5598. https://doi.org/10.3390/ijms24065598