The IgSF Cell Adhesion Protein CLMP and Congenital Short Bowel Syndrome (CSBS)
Abstract
:1. Introduction: Characteristics of CSBS
2. Characteristics of the Homophilic Cell Adhesion Protein CLMP—A Member of the Immunoglobulin Superfamily (IgSF)
3. A Survey of Mutations in the Human CLMP Gene Linked to CSBS and Their Putative Functional Consequences
4. Cellular Defects Induced by Mutations in the CLMP Gene—A Mouse Knockout Model That Phenocopies CSBS
5. Mutations in the CLMP Gene Induce Defects in Other Tissues and Organs, including Impaired Peristalsis in the Ureters of Mice
5.1. Smooth Muscle Cells of the Urogenital System
5.2. Cardiac Fibroblasts of the Heart
5.3. Development of Adipocytes and of Obesity
5.4. Brain
6. Functional and Structural Similarities between CLMP and Members of the CAR Family
7. Outlook—A Putative Link between CLMP and the Actin Cytoskeleton
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hamilton, J.R.; Reilly, B.J.; Morecki, R. Short small intestine associated with malrotation: A newly described congenital cause of intestinal malabsorption. Gastroenterology 1969, 56, 124–136. [Google Scholar] [CrossRef] [PubMed]
- Van der Werf, C.S.; Halim, D.; Verheij, J.B.G.M.; Alves, M.M.; Hofstra, R.M.W. Congenital Short Bowel Syndrome: From clinical and genetic diagnosis to the molecular mechanisms involved in intestinal elongation. Biochim. Biophys. Acta Mol. Basis Dis. 2015, 1852, 2352–2361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negri, E.; Coletta, R.; Morabito, A. Congenital short bowel syndrome: Systematic review of a rare condition. J. Pediatr. Surg. 2020, 55, 1809–1814. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Jiang, Q.; Wang, Z. Clues from Ultrasound for an Infant with Failure to Thrive. Gastroenterology 2019, 157, e12–e13. [Google Scholar] [CrossRef]
- Alves, M.M.; Halim, D.; Maroofian, R.; de Graaf, B.M.; Rooman, R.; Van Der Werf, C.S.; Van De Vijver, E.; Mehrjardi, M.Y.; Aflatoonian, M.; Chioza, B.; et al. Genetic screening of Congenital Short Bowel Syndrome patients confirms CLMP as the major gene involved in the recessive form of this disorder. Eur. J. Hum. Genet. 2016, 24, 1627–1629. [Google Scholar] [CrossRef]
- Gharesouran, J.; Esfahani, B.S.; Valilou, S.F.; Moradi, M.; Mousavi, M.H.; Rezazadeh, M. First Report of Congenital Short Bowel Syndrome in an Iranian Patient Caused by a Mutation in the CLMP Gene. J. Pediatr. Genet. 2019, 8, 73–80. [Google Scholar] [CrossRef]
- Howard, L.; Ament, M.; Fleming, C.R.; Shike, M.; Steiger, E. Current use and clinical outcome of home parenteral and enteral nutrition therapies in the United States. Gastroenterology 1995, 109, 355–365. [Google Scholar] [CrossRef]
- Hasosah, M.; Lemberg, D.A.; Skarsgard, E.; Schreiber, R. Congenital short bowel syndrome: A case report and review of the literature. Can. J. Gastroenterol. 2008, 22, 71–74. [Google Scholar] [CrossRef]
- Ordonez, P.; Sondheimer, J.M.; Fidanza, S.; Wilkening, G.; Hoffenberg, E.J. Long-term outcome of a patient with congenital short bowel syndrome. J. Pediatr. Gastroenterol. Nutr. 2006, 42, 576–580. [Google Scholar] [CrossRef]
- Gonnaud, L.; Alves, M.M.; Cremillieux, C.; Billiemaz, K.; Destombe, S.; Varlet, F.; Lopez, M.; Trapes, L.; Touraine, R.; Hofstra, R.M.; et al. Two new mutations of the CLMP gene identified in a newborn presenting congenital short-bowel syndrome. Clin. Res. Hepatol. Gastroenterol. 2016, 40, e65–e67. [Google Scholar] [CrossRef]
- Van Der Werf, C.S.; Wabbersen, T.D.; Hsiao, N.; Paredes, J.; Etchevers, H.C.; Kroisel, P.M.; Tibboel, D.; Babarit, C.; Schreiber, R.A.; Hoffenberg, E.J.; et al. CLMP is required for intestinal development, and loss-of-function mutations cause congenital short-bowel syndrome. Gastroenterology 2012, 142, 453–462.e3. [Google Scholar] [CrossRef]
- Chuang, Y.; Fan, W.; Chu, Y.; Liang, K.; Yeh, Y. Whole-Exome Sequencing Identified Novel CLMP Mutations in a Family with Congenital Short Bowel Syndrome Presenting Differently in Two Probands. Front. Genet. 2020, 11, 574943. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, S.; Yan, W.; Lu, L.; Tao, Y.; Xiao, Y.; Cai, W. Congenital Short-Bowel Syndrome: Clinical and Genetic Presentation in China. J. Parenter. Enter. Nutr. 2020, 45, 1009–1015. [Google Scholar] [CrossRef]
- Ou, F.F.; Li, M.J.; Mei, L.B.; Lin, X.Z.; Wu, Y.-A. Congenital Short-Bowel Syndrome Is Associated with a Novel Deletion Mutation in the CLMP Gene: Mutations in CLMP Caused CSBS. Front. Pediatr. 2022, 9, 1554. [Google Scholar] [CrossRef]
- Langhorst, H.; Jüttner, R.; Groneberg, D.; Mohtashamdolatshahi, A.; Pelz, L.; Purfürst, B.; Schmidt-Ott, K.M.; Friebe, A.; Rathjen, F.G. The IgCAM CLMP regulates expression of Connexin43 and Connexin45 in intestinal and ureteral smooth muscle contraction in mice. Dis. Model. Mech. 2018, 11, dmm032128. [Google Scholar] [CrossRef] [Green Version]
- Raschperger, E.; Engstrom, U.; Pettersson, R.F.; Fuxe, J. CLMP, a novel member of the CTX family and a new component of epithelial tight junctions. J. Biol. Chem. 2004, 279, 796–804. [Google Scholar] [CrossRef] [Green Version]
- Eguchi, J.; Wada, J.; Hida, K.; Zhang, H.; Matsuoka, T.; Baba, M.; Hashimoto, I.; Shikata, K.; Ogawa, N.; Makino, H. Identification of adipocyte adhesion molecule (ACAM), a novel CTX gene family, implicated in adipocyte maturation and development of obesity. Biochem. J. 2005, 387, 343–353. [Google Scholar] [CrossRef] [Green Version]
- Brogna, S.; Wen, J. Nonsense-mediated mRNA decay (NMD) mechanisms. Nat. Struct. Mol. Biol. 2009, 16, 107–113. [Google Scholar] [CrossRef]
- Embree, C.M.; Abu-Alhasan, R.; Singh, G. Features and factors that dictate if terminating ribosomes cause or counteract nonsense-mediated mRNA decay. J. Biol. Chem. 2022, 298, 102592. [Google Scholar] [CrossRef]
- Van der Werf, C.S.; Hsiao, N.H.; Conroy, S.; Paredes, J.; Ribeiro, A.S.; Sribudiani, Y.; Seruca, R.; Hofstra, R.M.W.; Westers, H.; Van Ijzendoorn, S.C.D. CLMP Is Essential for Intestinal Development, but Does Not Play a Key Role in Cellular Processes Involved in Intestinal Epithelial Development. PLoS ONE 2013, 8, e54649. [Google Scholar] [CrossRef] [Green Version]
- Patzke, C.; Max, K.E.A.; Behlke, J.; Schreiber, J.; Schmidt, H.; Dorner, A.A.; Kröger, S.; Henning, M.; Otto, A.; Heinemann, U.; et al. The coxsackievirus-adenovirus receptor reveals complex homophilic and heterophilic interactions on neural cells. J. Neurosci. 2010, 30, 2897–2910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verdino, P.; Witherden, D.A.; Havran, W.L.; Wilson, I.A. The molecular interaction of CAR and JAML recruits the central cell signal transducer PI3K. Science 2010, 329, 1210–1214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bork, P.; Holm, L.; Sander, C. The immunoglobulin fold. Structural classification, sequence patterns and common core. J. Mol. Biol. 1994, 242, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Matthäus, C.; Langhorst, H.; Schütz, L.; Jüttner, R.; Rathjen, F.G. Cell-cell communication mediated by the CAR subgroup of immunoglobulin cell adhesion molecules in health and disease. Mol. Cell. Neurosci. 2017, 81, 32–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carbone, S.E. Neurons, Macrophages, and Glia: The Role of Intercellular Communication in the Enteric Nervous System. Adv. Exp. Med. Biol. 2022, 1383, 251–258. [Google Scholar] [CrossRef]
- Barth, B.B.; Spencer, N.J.; Grill, W.M. Activation of ENS Circuits in Mouse Colon: Coordination in the Mouse Colonic Motor Complex as a Robust, Distributed Control System. Adv. Exp. Med. Biol. 2022, 1383, 113–123. [Google Scholar] [CrossRef]
- Jang, S.; Yang, E.; Kim, D.; Kim, H.; Kim, E. Clmp Regulates AMPA and Kainate Receptor Responses in the Neonatal Hippocampal CA3 and Kainate Seizure Susceptibility in Mice. Front. Synaptic Neurosci. 2020, 12, 567075. [Google Scholar] [CrossRef]
- Han, X.; Zhao, Z.A.; Yan, S.; Lei, W.; Wu, H.; Lu, X.A.; Chen, Y.; Li, J.; Wang, Y.; Yu, M.; et al. CXADR-like membrane protein protects against heart injury by preventing excessive pyroptosis after myocardial infarction. J. Cell. Mol. Med. 2020, 24, 13775–13788. [Google Scholar] [CrossRef]
- Aaron, K.A.; Manojlovic, Z.; Tu, N.; Xu, Y.; Jin, Y.; Chang, S.; Kwok, E.; Webb, M.; Hurth, K.; Friedman, R.A. What Genes Can Tell: A Closer Look at Vestibular Schwannoma. Otol. Neurotol. 2020, 41, 522–529. [Google Scholar] [CrossRef]
- Wang, X.; Duanmu, J.; Fu, X.; Li, T.; Jiang, Q. Analyzing and validating the prognostic value and mechanism of colon cancer immune microenvironment. J. Transl. Med. 2020, 18, 324. [Google Scholar] [CrossRef]
- Meisser, S.S.; Altunbulakli, C.; Bandier, J.; Opstrup, M.S.; Castro-Giner, F.; Akdis, M.; Bonefeld, C.M.; Johansen, J.D.; Akdis, C.A. Skin barrier damage after exposure to paraphenylenediamine. J. Allergy Clin. Immunol. 2020, 145, 619–631.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Miao, X.; Chen, Y.; Curry, T.E. CXADR-like membrane protein (CLMP) in the rat ovary: Stimulation by human chorionic gonadotrophin during the periovulatory period. Reprod. Fertil. Dev. 2016, 28, 742–749. [Google Scholar] [CrossRef] [PubMed]
- Fournier, A.P.; Zandee, S.; Charabati, M.; Peelen, E.; Tastet, O.; Alvarez, J.I.; Kebir, H.; Bourbonnière, L.; Larouche, S.; Lahav, B.; et al. CLMP Promotes Leukocyte Migration across Brain Barriers in Multiple Sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2022, 9, e200022. [Google Scholar] [CrossRef] [PubMed]
- Irudayam, J.I.; Contreras, D.; Spurka, L.; Subramanian, A.; Allen, J.; Ren, S.; Kanagavel, V.; Nguyen, Q.; Ramaiah, A.; Ramamoorthy, K.; et al. Characterization of type I interferon pathway during hepatic differentiation of human pluripotent stem cells and hepatitis C virus infection. Stem Cell Res. 2015, 15, 354–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sze, K.; Lui, W.; Lee, W. Post-transcriptional regulation of CLMP mRNA is controlled by tristetraprolin in response to TNFalpha via c-Jun N-terminal kinase signalling. Biochem. J. 2008, 410, 575–583. [Google Scholar] [CrossRef] [Green Version]
- Sedovy, M.W.; Leng, X.; Leaf, M.R.; Iqbal, F.; Payne, L.B.; Chappell, J.C.; Johnstone, S.R. Connexin 43 across the Vasculature: Gap Junctions and beyond. J. Vasc. Res. 2022, in press. [Google Scholar] [CrossRef]
- Egashira, K.; Nishii, K.; Nakamura, K.I.; Kumai, M.; Morimoto, S.; Shibata, Y. Conduction abnormality in gap junction protein connexin45-deficient embryonic stem cell-derived cardiac myocytes. Anat. Rec. Part A Discov. Mol. Cell. Evol. Biol. 2004, 280, 973–979. [Google Scholar] [CrossRef]
- Van Rijen, H.V.M.; Eckardt, D.; Degen, J.; Theis, M.; Ott, T.; Willecke, K.; Jongsma, H.J.; Opthof, T.; de Bakker, J.M. Slow Conduction and Enhanced Anisotropy Increase the Propensity for Ventricular Tachyarrhythmias in Adult Mice with Induced Deletion of Connexin43. Circulation 2004, 109, 1048–1055. [Google Scholar] [CrossRef] [Green Version]
- Alcoléa, S.; Jarry-Guichard, T.; De Bakker, J.; Gonzàlez, D.; Lamers, W.; Coppen, S.; Barrio, L.; Jongsma, H.; Gros, D.; van Rijen, H. Replacement of Connexin40 by Connexin45 in the Mouse Impact on Cardiac Electrical Conduction. Circ. Res. 2004, 94, 100–109. [Google Scholar] [CrossRef] [Green Version]
- Gutstein, D.E.; Morley, G.E.; Tamaddon, H.; Vaidya, D.; Schneider, M.D.; Chen, J.; Chien, K.R.; Stuhlmann, H.; Fishman, G. Conduction Slowing and Sudden Arrhythmic Death in Mice with Cardiac-Restricted Inactivation of Connexin43. Circ. Res. 2001, 88, 333–339. [Google Scholar] [CrossRef] [Green Version]
- Murakami, K.; Eguchi, J.; Hida, K.; Nakatsuka, A.; Katayama, A.; Sakurai, M.; Choshi, H.; Furutani, M.; Ogawa, D.; Takei, K.; et al. The anti-obesity action of ACAM by modulating the dynamics of cell adhesion and actin polymerization in adipocytes. Diabetes 2016, 65, 1255–1267. [Google Scholar] [CrossRef] [Green Version]
- Schiller, P.C.; D’Ippolito, G.; Brambilla, R.; Roos, B.A.; Howard, G.A. Inhibition of gap-junctional communication induces the trans-differentiation of osteoblasts to an adipocytic phenotype in vitro. J. Biol. Chem. 2001, 276, 14133–14138. [Google Scholar] [CrossRef] [Green Version]
- Yanagiya, T.; Tanabe, A.; Hotta, K. Gap-junctional communication is required for mitotic clonal expansion during adipogenesis. Obesity 2007, 15, 572–582. [Google Scholar] [CrossRef] [Green Version]
- Yeganeh, A.; Stelmack, G.L.; Fandrich, R.R.; Halayko, A.J.; Kardami, E.; Zahradka, P. Connexin 43 phosphorylation and degradation are required for adipogenesis. Biochim. Biophys. Acta 2012, 1823, 1731–1744. [Google Scholar] [CrossRef] [Green Version]
- Pereda, A.E. Electrical synapses and their functional interactions with chemical synapses. Nat. Rev. Neurosci. 2014, 15, 250–263. [Google Scholar] [CrossRef]
- Rathjen, F.G. The CAR group of Ig cell adhesion proteins—Regulators of gap junctions? BioEssays 2020, 42, e2000031. [Google Scholar] [CrossRef]
- Lim, B.K.; Xiong, D.; Dorner, A.; Youn, T.J.; Yung, A.; Liu, T.I.; Gu, Y.; Dalton, N.D.; Wright, A.T.; Evans, S.M.; et al. Coxsackievirus and adenovirus receptor (CAR) mediates atrioventricular-node function and connexin 45 localization in the murine heart. J. Clin. Investig. 2008, 118, 2758–2770. [Google Scholar] [CrossRef] [Green Version]
- Lisewski, U.; Shi, Y.; Wrackmeyer, U.; Fischer, R.; Chen, C.; Schirdewan, A.; Jüttner, R.; Rathjen, F.; Poller, W.; Radke, M.H.; et al. The tight junction protein CAR regulates cardiac conduction and cell-cell communication. J. Exp. Med. 2008, 205, 2369–2379. [Google Scholar] [CrossRef] [Green Version]
- Pazirandeh, A.; Sultana, T.; Mirza, M.; Rozell, B.; Hultenby, K.; Wallis, K.; Vennström, B.; Davis, B.; Arner, A.; Heuchel, R.; et al. Multiple phenotypes in adult mice following inactivation of the Coxsackievirus and Adenovirus Receptor (Car) gene. PLoS ONE 2011, 6, e20203. [Google Scholar] [CrossRef] [Green Version]
- Matthaeus, C.; Jüttner, R.; Gotthardt, M.; Rathjen, F.G. The IgCAM CAR regulates gap junction mediated coupling on embryonic cardiomyocytes and affects their beating frequency. Life 2022, 13, 14. [Google Scholar] [CrossRef]
- Pelz, L.; Dossou, L.; Kompier, N.; Jüttner, R.S.G.; Meyer, N.; Lowenstein, E.D.; Lahmann, I.; Kettenmann, H.; Birchmeier, C.; Rathjen, F.G. The IgCAM BT-IgSF (IgSF11) is essential for connexin43-mediated astrocyte-astrocyte and ependymal cell-cell coupling. bioRxiv 2020. [Google Scholar] [CrossRef]
- Falk, M.M.; Bell, C.L.; Andrews, R.M.K.; Murray, S.A. Molecular mechanisms regulating formation, trafficking and processing of annular gap junctions. BMC Cell Biol. 2016, 17 (Suppl. S1), 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willecke, K.; Eiberger, J.; Degen, J.; Eckardt, D.; Romualdi, A.; Guldenagel, M.; Deutsch, U.; Söhl, G. Structural and functional diversity of connexin genes in the mouse and human genome. Biol. Chem. 2002, 383, 725–737. [Google Scholar] [CrossRef] [PubMed]
- Kausalya, P.J.; Reichert, M.; Hunziker, W. Connexin45 directly binds to ZO-1 and localizes to the tight junction region in epithelial MDCK cells. FEBS Lett. 2001, 505, 92–96. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Olson, Ã.C.; Lu, Ã.S.; Kamasawa, N.; Yasumura, T.; Rash, J.E.; Nagy, J.I. Neuronal connexin36 association with zonula occludens-1 protein (ZO-1) in mouse brain and interaction with the first PDZ domain of ZO-1. Eur. J. Neurosci. 2004, 19, 2132–2146. [Google Scholar] [CrossRef]
- Nielsen, P.A.; Baruch, A.; Shestopalov, V.I.; Giepmans, B.N.G.; Dunia, I.; Benedetti, E.L.; Kumar, N.M. Lens connexins alpha3Cx46 and alpha8Cx50 interact with zonula occludens protein-1 (ZO-1). Mol. Biol. Cell 2003, 14, 2470–2481. [Google Scholar] [CrossRef] [Green Version]
- Chai, Z.; Goodenough, D.A.; Paul, D.L.; Margolis, B. Cx50 requires an intact PDZ-binding motif and ZO-1 for the formation of functional intercellular channels. Mol. Biol. Cell 2011, 22, 4503–4512. [Google Scholar] [CrossRef]
- Chevalier, N. Physical organogenesis of the gut. Development 2022, 149, dev200765. [Google Scholar] [CrossRef]
- Van der Werf, C.S.; Sribudiani, Y.; Verheij, J.B.; Carroll, M.; O’Loughlin, E.; Chen, C.-H.; Brooks, A.S.; Liszewski, M.K.; Atkinson, J.P.; Hofstra, R.M. Congenital short bowel syndrome as the presenting symptom in male patients with FLNA mutations. Genet. Med. 2013, 15, 310–313. [Google Scholar] [CrossRef]
- Kern, I.B.; Leece, A.; Bohane, T. Congenital short gut, malrotation, and dysmotility of the small bowel. J. Pediatr. Gastroenterol. Nutr. 1990, 11, 411–415. [Google Scholar] [CrossRef]
- Siva, C.; Brasington, R.; Totty, W.; Sotelo, A.; Atkinson, J. Synovial lipomatosis (lipoma arborescens) affecting multiple joints in a patient with congenital short bowel syndrome. J. Rheumatol. 2002, 29, 1088–1092. [Google Scholar]
- Zada, A.; Zhao, Y.; Halim, D.; Windster, J.; van der Linde, H.C.; Glodener, J.; Overkleeft, S.; de Graaf, B.M.; Verdijk, R.M.; Brooks, A.S.; et al. The long Filamin-a isoform is required for intestinal development and motility: Implications for chronic intestinal pseudo-obstruction. Hum. Mol. Genet. 2022, 32, 151–160. [Google Scholar] [CrossRef]
- Nakamura, F.; Stossel, T.P.; Hartwig, J.H. The filamins: Organizers of cell structure and function. Cell Adhes. Migr. 2011, 5, 160–169. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rathjen, F.G.; Jüttner, R. The IgSF Cell Adhesion Protein CLMP and Congenital Short Bowel Syndrome (CSBS). Int. J. Mol. Sci. 2023, 24, 5719. https://doi.org/10.3390/ijms24065719
Rathjen FG, Jüttner R. The IgSF Cell Adhesion Protein CLMP and Congenital Short Bowel Syndrome (CSBS). International Journal of Molecular Sciences. 2023; 24(6):5719. https://doi.org/10.3390/ijms24065719
Chicago/Turabian StyleRathjen, Fritz G., and René Jüttner. 2023. "The IgSF Cell Adhesion Protein CLMP and Congenital Short Bowel Syndrome (CSBS)" International Journal of Molecular Sciences 24, no. 6: 5719. https://doi.org/10.3390/ijms24065719
APA StyleRathjen, F. G., & Jüttner, R. (2023). The IgSF Cell Adhesion Protein CLMP and Congenital Short Bowel Syndrome (CSBS). International Journal of Molecular Sciences, 24(6), 5719. https://doi.org/10.3390/ijms24065719