Induced Coma, Death, and Organ Transplantation: A Physiologic, Genetic, and Theological Perspective
Abstract
:1. Introduction
The concept of brain death has been challenged by the Church. However, in 2015 the German Bishops Conference stated that brain death is the best and safest criterion to declare a person dead.
2. Ex Vivo Organ Viability and Gene Expression
2.1. The Heart
2.2. The Lung
2.3. The Liver
2.4. The Kidney
2.5. The Brain
2.6. Death Genes in Animal Models
2.7. Gene Expression in Deep Coma
3. Cell Viability and Metabolic Responses in Induced Coma and Postmortem Tissue
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pozhitkov, A.E.; Neme, R.; Domazet-Lošo, T.; Leroux, B.G.; Soni, S.; Tautz, D.; Noble, P.A. Tracing the Dynamics of Gene Transcripts after Organismal Death. Open Biol. 2017, 7, 160267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pozhitkov, A.E.; Noble, P.A. Gene Expression in the Twilight of Death: The Increase of Thousands of Transcripts Has Implications to Transplantation, Cancer, and Forensic Research. Bioessays 2017, 39, 1700066. [Google Scholar] [CrossRef] [PubMed]
- Noble, P.A.; Pozhitkov, A.E. Cryptic Sequence Features in the Active Postmortem Transcriptome. BMC Genom. 2018, 19, 675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dachet, F.; Brown, J.B.; Valyi-Nagy, T.; Narayan, K.D.; Serafini, A.; Boley, N.; Gingeras, T.R.; Celniker, S.E.; Mohapatra, G.; Loeb, J.A. Selective Time-Dependent Changes in Activity and Cell-Specific Gene Expression in Human Postmortem Brain. Sci. Rep. 2021, 11, 6078. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.; Lutter, G.; Ihling, C.; Siepe, M.; Wagner, S.; Hilberath, J.; Kemper, M.; Sarai, K.; Beyersdorf, F. Myocardial Viability Twenty-Four Hours after Orthotopic Heart Transplantation from Non-Heart-Beating Donors. J. Thorac. Cardiovasc. Surg. 2003, 125, 1217–1228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, C.W.; Ambrose, E.; Müller, A.; Li, Y.; Le, H.; Hiebert, B.; Arora, R.; Lee, T.W.; Dixon, I.; Tian, G.; et al. Assessment of Donor Heart Viability during Ex Vivo Heart Perfusion. Can. J. Physiol. Pharmacol. 2015, 93, 893–901. [Google Scholar] [CrossRef]
- Pagani, F.D. Use of Heart Donors following Circulatory Death: A Viable Addition to the Heart Donor Pool. J. Am. Coll. Cardiol. 2019, 73, 1460–1462. [Google Scholar] [CrossRef]
- Pagani, F.D. Heart Transplantation Using Organs from Donors following Circulatory Death: The Journey Continues. J. Am. Coll. Cardiol. 2022, 79, 163–165. [Google Scholar] [CrossRef]
- Lei, I.; Wang, Z.; Chen, Y.E.; Ma, P.X.; Huang, W.; Kim, E.; Lam, H.Y.K.; Goldstein, D.R.; Aaronson, K.D.; Pagani, F.D.; et al. The Secret Life of Human Donor Hearts: An Examination of Transcriptomic Events during Cold Storage. Circ. Heart Fail. 2020, 13, e006409. [Google Scholar] [CrossRef]
- Inci, I. Donors after Cardiocirculatory Death and Lung Transplantation. J. Thorac. Dis. 2017, 9, 2660–2669. [Google Scholar] [CrossRef] [Green Version]
- Van Raemdonck, D.E.; Rega, F.R.; Neyrinck, A.P.; Jannis, N.; Verleden, G.M.; Lerut, T.E. Non-Heart-Beating Donors. Semin. Thorac. Cardiovasc. Surg. 2004, 16, 309–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egan, T.M. Non-Heart-Beating Donors in Thoracic Transplantation. J. Heart Lung Transplant. 2004, 23, 3–10. [Google Scholar] [CrossRef]
- Yeung, J.C.; Zamel, R.; Klement, W.; Bai, X.H.; Machuca, T.N.; Waddell, T.K.; Liu, M.; Cypel, M.; Keshavjee, S. Towards Donor Lung Recovery-Gene Expression Changes during ex Vivo Lung Perfusion of Human Lungs. Am. J. Transplant. 2018, 18, 1518–1526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melandro, F.; De Carlis, R.; Torri, F.; Lauterio, A.; De Simone, P.; De Carlis, L.; Ghinolfi, D. Viability Criteria during Liver ex-Situ Normothermic and Hypothermic Perfusion. Medicina 2022, 58, 1434. [Google Scholar] [CrossRef] [PubMed]
- Raza, A.; Dikdan, G.; Desai, K.K.; Shareef, A.; Fernandes, H.; Aris, V.; de la Torre, A.N.; Wilson, D.; Fisher, A.; Soteropoulos, P.; et al. Global Gene Expression Profiles of Ischemic Preconditioning in Deceased Donor Liver Transplantation. Liver Transpl. 2010, 16, 588–599. [Google Scholar] [CrossRef] [PubMed]
- Mas, V.R.; Archer, K.J.; Yanek, K.; Dumur, C.I.; Capparuccini, M.I.; Mangino, M.J.; King, A.; Gibney, E.M.; Fisher, R.; Posner, M.; et al. Gene Expression Patterns in Deceased Donor Kidneys Developing Delayed Graft Function after Kidney Transplantation. Transplantation 2008, 85, 626–635. [Google Scholar] [CrossRef]
- Vonbrunn, E.; Angeloni, M.; Büttner-Herold, M.; Müller-Deile, J.; Heller, K.; Bleich, E.; Söllner, S.; Amann, K.; Ferrazzi, F.; Daniel, C. Can Gene Expression Analysis in Zero-Time Biopsies Predict Kidney Transplant Rejection? Front. Med. 2022, 9, 793744. [Google Scholar] [CrossRef]
- Inoue, H.; Kimura, A.; Tuji, T. Degradation Profile of mRNA in a Dead Rat Body: Basic Semi-Quantification Study. Forensic. Sci. Int. 2002, 130, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Lezi, E.; Lu, J.; Burns, J.M.; Swerdlow, R.H. Effect of exercise on mouse liver and brain bioenergetic infrastructures. Exp. Physiol. 2013, 98, 207–219. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Herrera, L.; Valenzuela, A.; Marchal, J.A.; Lorente, J.A.; Villanueva, E. Studies on RNA Integrity and Gene Expression in Human Myocardial Tissue, Pericardial Fluid and Blood, and Its Postmortem Stability. Forensic. Sci. Int. 2013, 232, 218–228. [Google Scholar] [CrossRef]
- Niehrs, C.; Calkhoven, C.F. Emerging Role of C/EBPβ and Epigenetic DNA Methylation in Ageing. Trends Genet. 2020, 36, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Hokinson, D.; Park, S.; Elvira, R.; Kusuma, F.; Lee, J.M.; Yun, M.; Lee, S.G.; Han, J. ER Stress Induces Cell Cycle Arrest at the G2/M Phase through eIF2α Phosphorylation and GADD45α. Int. J. Mol. Sci. 2019, 20, 6309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brito, D.V.C.; Kupke, J.; Karaca, K.G.; Oliviera, A.M.M. Regulation of Neuronal Plasticity by the DNA Repair Associated Gadd45 Proteins. Curr. Res. Neurobiol. 2022, 3, 100031. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, L.T.; Niehrs, C. Gadd45a and Gadd45g Regulate Neural Development and Exit from Pluripotency in Xenopus. Mech. Dev. 2011, 128, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Sarkisian, M.R.; Siebzehnrubl, D. Abnormal Levels of Gadd45alpha in Developing Neocortex Impair Neurite Outgrowth. PLoS ONE 2015, 7, e44207. [Google Scholar] [CrossRef] [Green Version]
- Grassi, D.; Franz, H.; Vezzali, R.; Bovio, P.; Heidrich, S.; Dehghanian, F.; Lagunas, N.; Belzung, C.; Krieglstein, K.; Vogel, T. Neuronal Activity, TGFβ-Signaling and Unpredictable Chronic Stress Modulate Transcription of Gadd45 Family Members and DNA Methylation in the Hippocampus. Cereb. Cortex 2017, 27, 4166–4181. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, F.; Perez Silos, V.; Karube, K.; Yasin Goksu, S.; Nandakumar, S.; Saygin, C.; Onajin, O.; Prabu, S.S.; Gurbuxani, S.; Arber, D.A.; et al. B-Cell Lymphoma-2 Downregulation is a Useful Feature Supporting a Neoplastic Phenotype in Mature T-Cell Lymphomas. Hum. Pathol. 2022, 125, 48–58. [Google Scholar] [CrossRef]
- da Silva Lawisch, G.K.; Biolchi, V.; Kaufmann, G.; Nicolai, G.; Capitaneo, E.; Rosembach, T.R.; Zang., J.; Brum, I.S.; Chies, J.A.B. The Role of FASL, BCL-2 and BAX Polymorphisms in Brazilian Patients with Prostate Cancer and Benign Prostatic Hyperplasia. Mol. Biol. Rep. 2022, 49, 9445–9451. [Google Scholar] [CrossRef]
- Girgin, R.B.; Ozkanli, S.; Engin-Zerk, P.; Soylemez, T.; Olgun, Z.C.; Yildirim, A.; Kir, G. Relation of Beclin-1 and Bcl-2 Expressions with Pathological Parameters and Prognosis in Clear Cell Renal Cell Carcinomas. Arch. Esp. Urol. 2022, 75, 368–374. [Google Scholar] [CrossRef]
- Anilkumar, U.; Prehn, J.H. Anti-Apoptotic BCL-2 Family Proteins in Acute Neural Injury. Front. Cell Neurosci. 2014, 8, 281. [Google Scholar] [CrossRef] [Green Version]
- Ye, J.; Zhang, Y.; Cai, Z.; Jiang, M.; Li, B.; Chen, G.; Zeng, Y.; Liang, Y.; Wu, S.; Wang, Z.; et al. Increased expression of immediate early response gene 3 protein promotes aggressive progression and predicts poor prognosis in human bladder cancer. BMC Urol. 2018, 18, 82. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Gu, W.; Hu, L.; Wang, K.; Huang, H.; Shen, Y. Regulation of IncRNA ZNF667-AS1 in Proliferation and Invasion of Esophageal Squamous Cell Carcinoma Cells via Mediating ceRNA Network. Crit. Rev. Eukaryot. Gene Expr. 2022, 32, 57–68. [Google Scholar] [CrossRef]
- Scott, D.A.; Greinwald, J.H., Jr.; Marietta, J.R.; Drury, S.; Swiderski, R.E.; Viñas, A.; DeAngelis, M.M.; Carmi, R.; Ramesh, A.; Kraft, M.L.; et al. Identification and Mutation Analysis of a Cochlear-Expressed, Zinc Finger Protein Gene at the DFNB7/11 and Dn Hearing-Loss Loci on Human Chromosome 9q and Mouse Chromosome. Gene 1998, 215, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Hishiya, A.; Iemura, S.; Natsuma, T.; Takayama, S.; Ikeda, K.; Watanabe, K. A Novel Ubiquitin-Binding Protein ZNF216 Functioning in Muscle Atrophy. EMBO J. 2006, 25, 554–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, S.; Nathan, J.A.; Goldberg, A.L. Muscle Wasting in Disease: Molecular Mechanisms and Promising Therapies. Nat. Rev. Drug Discov. 2015, 14, 58–74. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Takayama, S.; Goldberg, A.L. ZFAND5/ZNF216 Is an Activator of the 26S Proteasome that Stimulates Overall Protein Degradation. Proc. Natl. Acad. Sci. USA 2018, 115, E9550–E9559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pizzato Scomazzon, S.; Riccio, A.; Santopolo, S.; Lanzilli, G.; Coccia, M.; Rossi, A.; Santoro, M.G. The Zinc-Finger AN1-Type Domain 2a Gene Acts as a Regulator of Cell Survival in Human Melanoma: Role of E3-Ligase cIAP2. Mol. Cancer Res. 2019, 17, 2444–2456. [Google Scholar] [CrossRef] [Green Version]
- Irmscher, S.; Döring, N.; Halder, L.D.; Jo, E.A.H.; Kopka, I.; Dunker, C.; Jacobsen, I.D.; Luo, S.; Slevogt, H.; Lorkowski, S.; et al. Kallikrein Cleaves C3 and Activates Complement. J. Innate Immun. 2018, 10, 94–105. [Google Scholar] [CrossRef]
- Göbel, K.; Asaridou, C.M.; Merker, M.; Eichler, S.; Herrmann, A.M.; Geuß, E.; Ruck, T.; Schüngel, L.; Groeneweg, L.; Narayanan, V.; et al. Plasma Kallikrein Modulates Immune Cell Trafficking during Neuroinflammation via PAR2 and Bradykinin Release. Proc. Natl. Acad. Sci. USA 2019, 116, 271–276. [Google Scholar] [CrossRef] [Green Version]
- Han, M.Z.; Wang, S.; Zhao, W.B.; Ni, S.L.; Yang, N.; Kong, Y.; Huang, B.; Chen, A.J.; Li, X.G.; Wang, J.; et al. Immune Checkpoint Molecule Herpes Virus Entry Mediator is Overexpressed and Associated with Poor Prognosis in Human Glioblastoma. EBioMedicine 2019, 43, 159–170. [Google Scholar] [CrossRef] [Green Version]
- So, T.; Ishii, N. The TNF-TNFR Family of Co-signal Molecules. Adv. Exp. Med. Biol. 2019, 1189, 53–84. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Lv, W.; Xu, S.; Shi, F.; Shan, A.; Wang, J. Molecular and Clinical Characterization of LIGHT/TNFSF14 Expression at Transcriptional Level via 998 Samples with Brain Glioma. Front. Mol. Biosci. 2021, 8, 567327. [Google Scholar] [CrossRef] [PubMed]
- Marshall, C.A.; McBride, J.D.; Changolkar, L.; Riddle, D.M.; Trojanowski, J.Q.; Lee, V.M. Inhibition of CK2 Mitigates Alzheimer’s Tau Pathology by Preventing NR2B Synaptic Mislocalization. Acta Neuropathol. Commun. 2022, 10, 30. [Google Scholar] [CrossRef] [PubMed]
- Nitta, R.T.; Gholamin, S.; Feroze, A.H.; Agarwal, M.; Cheshier, S.H.; Mitra, S.S.; Li, G. Casein Kinase 2α Regulates Glioblastoma Brain Tumor-Initiating Cell Growth through the β-Catenin Pathway. Oncogene 2015, 34, 3688–3699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borgo, C.; D’Amore, C.; Sarno, S.; Salvi, M.; Ruzzene, M. Protein Kinase CK2: A Potential Therapeutic Target for Diverse Human Diseases. Signal Transduct. Target. Ther. 2021, 6, 183. [Google Scholar] [CrossRef]
- Nasif, D.; Real, S.; Roqué, M.; Branham, M.T. CDC42 as an Epigenetic Regulator of ID4 in Triple-Negative Breast tumors. Breast Cancer 2022, 29, 562–573. [Google Scholar] [CrossRef]
- Endo, M.; Cerione, R.A. The Brain-Specific Splice Variant of the CDC42 GTPase Works Together with the Kinase ACK to Downregulate the EGF Receptor in Promoting Neurogenesis. J. Biol. Chem. 2022, 298, 102564. [Google Scholar] [CrossRef]
- Bellazzo, A.; Collavin, L. Cutting the Brakes on Ras—Cytoplasmic GAPs as Targets of Inactivation in Cancer. Cancers 2020, 12, 3066. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Wang, Q.; Su, B.; Xu, H.; Sun, Y.; Sun, P.; Li, R.; Peng, X.; Cai, J. Role of RASA1 in cancer: A review and update (Review). Oncol. Rep. 2020, 44, 2386–2396. [Google Scholar] [CrossRef]
- Liu, J.; Su, G.; Gao, J.; Tian, Y.; Liu, X.; Zhang, Z. Effects of Peroxiredoxin 2 in Neurological Disorders: A Review of its Molecular Mechanisms. Neurochem. Res. 2020, 45, 720–730. [Google Scholar] [CrossRef]
- Mohsin, A.; Haneef, K.; Ilyas, A.; Zarina, S.; Hashim, Z. Oxidative Stress Induced Cell Cycle Arrest: Potential Role of PRX-2 and GSTP-1 as Therapeutic Targets in Hepatocellular Carcinoma. Protein Pept. Lett. 2021, 28, 1323–1329. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Xiong, Y.; Wang, R.; Xiang, L.; Zhou, H.; Fu, Z. The Critical Role of Peroxiredoxin-2 in Colon Cancer Stem Cells. Aging 2021, 13, 11170–11187. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Chen, C.; Li, D.; Su, Q.; Hang, Y.; Zhang, P.; Hu, W. PRDX2 in Myocyte Hypertrophy and Survival is Mediated by TLR4 in Acute Infarcted Myocardium. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Boumendil, C.; Hari, P.; Olsen, K.C.F.; Acosta, J.C.; Bickmore, W.A. Nuclear Pore Density Controls Heterochromatin Reorganization during Senescence. Genes Dev. 2019, 33, 144–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.; Long, Q.; Borrie, M.S.; Sun, H.; Zhang, C.; Yang, H.; Shi, D.; Gartenberg, M.R.; Deng, W. Nucleoporin TPR Promotes tRNA Nuclear Export and Protein Synthesis in Lung Cancer Cells. PLoS Genet. 2021, 17, e1009899. [Google Scholar] [CrossRef]
- Pandharipande, P.P.; Girard, T.D.; Jackson, J.C.; Morandi, A.; Thompson, J.L.; Pun, B.T.; Brummel, N.E.; Hughes, C.G.; Vasilevskis, E.E.; Shintani, A.K.; et al. Long-term cognitive impairment after critical illness. N. Engl. J. Med. 2013, 369, 1306–1316. [Google Scholar] [CrossRef] [Green Version]
- Kohler, J.; Borchers, F.; Endres, M.; Weiss, B.; Spies, C.; Emmrich, J.V. Cognitive Deficits Following Intensive Care. Dtsch. Arztebl. Int. 2019, 116, 627–634. [Google Scholar] [CrossRef]
- Wenzel, M.; Leunig, A.; Han, S.; Peterka, D.S.; Yuste, R. Prolonged anesthesia alters brain synaptic architecture. Proc. Natl. Acad. Sci. USA 2021, 118, e2023676118. [Google Scholar] [CrossRef]
- Jin, H.; Lee, K.; Kim, Y.H.; Oh, H.K.; Maeng, Y.I.; Kim, T.H.; Suh, D.S.; Bae, J. Scaffold Protein FHL2 Facilitates MDM2-Mediated Degradation of IER3 to Regulate Proliferation of Cervical Cancer Cells. Oncogene 2016, 35, 5106–5118. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Su, B.; Zheng, L.; Perry, G.; Smith, M.A.; Zhu, X. The role of abnormal mitochondrial dynamics in the pathogenesis of Alzheimer’s disease. J. Neurochem. 2009, 109 (Suppl. 1), 153–159. [Google Scholar] [CrossRef] [Green Version]
- Popa-Wagner, A.; Buga, A.M.; Popescu, B.; Muresanu, D. Vascular cognitive impairment, dementia, aging and energy demand. A vicious cycle. J. Neural Transm. 2015, 122 (Suppl. 1), S47–S54. [Google Scholar] [CrossRef]
- Vila, M.; Ramonet, D.; Perier, C. Mitochondrial alterations in Parkinson’s disease: New clues. J. Neurochem. 2008, 107, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Verkhratsky, A.; Fernyhough, P. Mitochondrial malfunction and Ca2+ dyshomeostasis drive neuronal pathology in diabetes. Cell Calcium. 2008, 44, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Rollins, B.; Martin, M.V.; Sequeira, P.A.; Moon, E.A.; Morgan, L.Z.; Watson, S.J.; Schatzberg, A.; Akil, H.; Myers, R.M.; Jones, E.G.; et al. Mitochondrial variants in schizophrenia, bipolar disorder, and major depressive disorder. PLoS ONE 2009, 4, e4913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerards, M.; Sluiter, W.; van den Bosch, B.J.; de Wit, L.E.; Calis, C.M.; Frentzen, M.; Akbari, H.; Schoonderwoerd, K.; Scholte, H.R.; Jongbloed, R.J.; et al. Defective complex I assembly due to C20orf7 mutations as a new cause of Leigh syndrome. J. Med. Genet. 2010, 47, 507–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barksdale, K.A.; Perez-Costas, E.; Gandy, J.C.; Melendez-Ferro, M.; Roberts, R.C.; Bijur, G.N. Mitochondrial viability in mouse and human postmortem brain. FASEB J. 2010, 24, 3590–3599. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Riano, C.; Tapia-González, S.; García, A.; Muñoz, A.; DeFelipe, J.; Barbas, C. Metabolomics and neuroanatomical evaluation of post-mortem changes in the hippocampus. Brain Struct. Funct. 2017, 222, 2831–2853. [Google Scholar] [CrossRef] [Green Version]
- Mauriello, S.; Treglia, M.; Pallocci, M.; Bonfiglio, R.; Giacobbi, E.; Passalacqua, P.; Cammarano, A.; D’Ovidio, C.; Marsella, L.T.; Scimeca, M. Antigenicity Preservation Is Related to Tissue Characteristics and the Post-Mortem Interval: Immunohistochemical Study and Literature Review. Healthcare 2022, 10, 1495. [Google Scholar] [CrossRef]
- Grigg, M.M.; Kelly, M.A.; Celesia, G.G.; Ghobrial, M.W.; Ross, E.R. Electroencephalographic activity after brain death. Arch. Neurol. 1987, 44, 948–954. [Google Scholar] [CrossRef]
- Spears, W.; Mian, A.; Greer, D. Brain death: A clinical overview. J. Intensive Care 2022, 16, 16. [Google Scholar] [CrossRef]
- Matias, I.; Morgado, J.; Gomes, F.C.A. Astrocyte Heterogeneity: Impact to Brain Aging and Disease. Front. Aging Neurosci. 2019, 11, 59. [Google Scholar] [CrossRef] [Green Version]
- Leng, F.; Edison, P. Neuroinflammation and Microglial Activation in Alzheimer Disease: Where Do We Go from Here? Nat. Rev. Neurol. 2021, 17, 157–172. [Google Scholar] [CrossRef] [PubMed]
- Popa-Wagner, A.; Badan, I.; Walker, L.; Groppa, S.; Patrana, N.; Kessler, C. Accelerated Infarct Development, Cytogenesis and Apoptosis Following Transient Cerebral Ischemia in Aged Rats. Acta Neuropathol. 2007, 113, 277–293. [Google Scholar] [CrossRef] [PubMed]
- Badan, I.; Buchhold, B.; Popa-Wagner, A. Accelerated Glial Reactivity to Stroke in Aged Rats Correlates with Reduced Functional Recovery. J. Cereb. Blood Flow Metab. 2003, 37, 845–854. [Google Scholar] [CrossRef] [Green Version]
- Todd, B.P.; Chimenti, M.S.; Luo, Z.; Ferguson, P.J.; Bassuk, A.G.; Newell, E.A. Traumatic Brain Injury Results in Unique Microglial and Astrocyte Transcriptomes Enriched for Type I Interferon Response. J. Neuroinflammation 2021, 18, 1–15. [Google Scholar] [CrossRef]
- Rock, K.L.; Lai, J.J.; Kono, H. 2011. Innate and Adaptive Immune Responses to Cell Death. Immunol. Rev. 2011, 243, 191–205. [Google Scholar] [CrossRef] [Green Version]
- Van Lommel, P.; Van Wees, R.; Meyers, V.; Elfferich, I. Near-Death Experience in Survivors of Cardiac Arrest: A Prospective Study in the Netherlands. Lancet 2001, 358, 2039–2045. [Google Scholar] [CrossRef] [PubMed]
- Schwaninger, J.; Eisenberg, P.R.; Schechtman, K.B.; Weiss, A.N. A Prospective Analysis of Near-Death Experiences in Cardiac Arrest Patients. J. Near Death Stud. 2002, 20, 215–232. [Google Scholar] [CrossRef]
- Greyson, B. Incidence and Correlates of Near-Death Experiences in a Cardiac Care Unit. Gen. Hosp. Psychiatry 2003, 25, 269–276. [Google Scholar] [CrossRef]
- Hou, Y.; Huang, Q.; Prakash, R.; Chaudhury, S. Infrequent Near-Death Experiences in Severe Brain Injury Survivors: A Quantitative and Qualitative Study. Ann. Indian Acad. Neurol. 2013, 16, 75–81. [Google Scholar] [CrossRef]
- Peinkhofer, C.; Martial, C.; Cassol, H.; Laureys, S.; Kondziella, D. The Evolutionary Origin of Near-Death Experiences: A Systematic Investigation. Brain Commun. 2021, 3, fcab132. [Google Scholar] [CrossRef] [PubMed]
- Gabrielsen, G.W.; Smith, E.N. Physiological Responses Associated with Feigned Death in the American Opossum. Acta Physiol. Scand. 1985, 123, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Kozlowska, K.; Walker, P.; McLean, L.; Carrive, P. Fear and the Defense Cascade: Clinical Implications and Management. Harv. Rev. Psychiatry 2015, 23, 263–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bastos, A.F.; Vieira, A.S.; Oliveira, J.M.; Oliveira, L.; Pereira, M.G.; Figueira, I.; Erthal, F.S.; Volchan, E. Stop or Move: Defensive Strategies in Humans. Behav. Brain Res. 2016, 302, 252–262. [Google Scholar] [CrossRef]
- Rogers, S.M.; Simpson, S.J. Thanatosis. Curr. Biol. 2014, 24, R1031–R1033. [Google Scholar] [CrossRef] [Green Version]
- Kondziella, D. The Neurology of Death and the Dying Brain: A Pictorial Essay. Front. Neurol. 2020, 11, 736. [Google Scholar] [CrossRef]
- Skelhorn, J. Avoiding Death by Feigning Death. Curr. Biol. 2018, 28, R1135–R1136. [Google Scholar] [CrossRef] [Green Version]
- Marx, B.P.; Forsyth, J.P.; Gallup, G.G.; Fuse, T.; Lexington, J.M. Tonic Immobility as an Evolved Predator Defense: Implications for Sexual Assault Survivors. Clin. Psychol. Sci. Pract. 2008, 15, 74–90. [Google Scholar] [CrossRef]
- Kalaf, J.; Vilete, L.M.P.; Volchan, E.; Fiszman, A.; Coutinho, E.S.F.; Andreoli, S.B.; Quintana, M.I.; de Jesus Mari, J.; Figueira, I. Peritraumatic Tonic Immobility in a Large Representative Sample of the General Population: Association with Posttraumatic Stress Disorder and Female Gender. Compr. Psychiatry 2015, 60, 68–72. [Google Scholar] [CrossRef]
- TeBockhorst, S.F.; O’Halloran, M.S.; Nyline, B.N. Tonic Immobility among Survivors of Sexual Assault. Psychol. Trauma 2015, 7, 171–178. [Google Scholar] [CrossRef]
- Kondziella, D.; Olsen, M.H.; Lemale, C.L.; Dreier, J.P. Migraine Aura, a Predictor of Near-Death Experiences in a Crowdsourced Study. PeerJ 2019, 7, e8202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dreier, J.P. The Role of Spreading Depression, Spreading Depolarization and Spreading Ischemia in Neurological Disease. Nat. Med. 2011, 17, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Dreier, J.P.; Major, S.; Foreman, B.; Winkler, M.K.L.; Kang, E.-J.; Milakara, D.; Lemale, C.L.; DiNapoli, V.; Hinzman, J.M.; Woitzik, J.; et al. Terminal Spreading Depolarization and Electrical Silence in Death of Human Cerebral Cortex. Ann. Neurol. 2018, 83, 295–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlson, A.P.; Shuttleworth, C.W.; Major, S.; Lemale, C.L.; Dreier, J.P.; Hartings, J.A. Terminal Spreading Depolarizations Causing Electro-Cortical Silencing Prior to Clinical Brain Death: Case report. J. Neurosurg. 2018, 131, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Dreier, J.P.; Kleeberg, J.; Petzold, G.; Priller, J.; Windmüller, O.; Orzechowski, H.-D.; Lindauer, U.; Heinemann, U.; Einhäupl, K.M.; Dirnagl, U.; et al. Endothelin-1 Potently Induces Leão’s Cortical Spreading Depression in Vivo in the Rat: A Model for an Endothelial Trigger of Migrainous Aura? Brain 2002, 125 Pt 1, 102–112. [Google Scholar] [CrossRef] [Green Version]
- Spong, K.E.; Dreier, J.P.; Robertson, R.M. A New Direction for Spreading Depolarization: Investigation in the Fly Brain. Channels 2017, 11, 97–98. [Google Scholar] [CrossRef] [Green Version]
- Timmermann, C.; Roseman, L.; Williams, L.; Erritzoe, D.; Martial, C.; Cassol, H.; Laureys, S. DMT Models the Near-Death Experience. Front. Psychol. 2018, 9, 1424. [Google Scholar] [CrossRef] [Green Version]
- Martial, C.; Cassol, H.; Charland-Verville, V.; Pallavicini, C.; Sanz, C.; Zamberlan, F.; Vivot, R.M.; Erowid, F.; Erowid, E.; Laureys, S.; et al. Neurochemical Models of Near-Death Experiences: A Large-Scale Study Based on the Semantic Similarity of Written Reports. Conscious. Cogn. 2019, 69, 52–69. [Google Scholar] [CrossRef] [Green Version]
- Nelson, K.R.; Mattingly, M.; Lee, S.A.; Schmitt, F.A. Does the Arousal System Contribute to Near-Death Experience? Neurology 2006, 66, 1003–1009. [Google Scholar] [CrossRef]
- Kondziella, D.; Dreier, J.P.; Olsen, M.H. Prevalence of Near-Death Experiences in People with and Without REM Sleep Intrusion. PeerJ 2019, 7, e7585. [Google Scholar] [CrossRef] [Green Version]
- Vesuna, S.; Kauvar, I.V.; Richman, E.; Gore, F.; Oskotsky, T.; Sava-Segal, C.; Luo, L.; Malenka, R.C.; Henderson, J.M.; Nuyujukian, P.; et al. Deep Posteromedial Cortical Rhythm in Dissociation. Nature 2020, 586, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Auråen, H.; Mollnes, T.E.; Bjørtuft, Ø.; Bakkan, P.A.; Geiran, O.; Kongerud, J.; Fiane, A.; Holm, A.M. Multiorgan Procurement Increases Systemic Inflammation in Brain Dead Donors. Clin. Transplant. 2013, 27, 613–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westphal, G.A.; Garcia, V.D.; Souza, R.L.; Franke, C.A.; Vieira, K.D.; Birckholz, V.R.Z.; Machado, M.C.; de Almeida, E.R.B.; Machado, F.O.; da Costa Sardinha, L.A.; et al. Guidelines for the Assessment and Acceptance of Potential Brain-Dead Organ Donors. Rev. Bras. Ter. Intensiva. 2016, 28, 220–255. [Google Scholar] [CrossRef] [PubMed]
- Barklin, A. Systemic Inflammation in the Brain-Dead Organ Donor. Acta Anaesthesiol. Scand. 2009, 53, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Anwar, A.S.M.T.; Lee, J.M. Medical Management of Brain-Dead Organ Donors. Acute Crit. Care 2019, 34, 14–29. [Google Scholar] [CrossRef] [Green Version]
- Henry, S.D.; Nachber, E.; Tulipan, J.; Stone, J.; Bae, C.; Reznik, L.; Kato, T.; Samstein, B.; Emond, J.C.; Guarrera, J.V. Hypothermic Machine Preservation Reduces Molecular Markers of Ischemia/Reperfusion Injury in Human Liver Transplantation. Am. J. Transplant. 2012, 12, 2477–2486. [Google Scholar] [CrossRef]
- Hall, E.C.; Pfeiffer, R.M.; Segev, D.L.; Engels, E.A. Cumulative Incidence of Cancer after Solid Organ Transplantation. Cancer 2013, 119, 2300–2308. [Google Scholar] [CrossRef]
- Robbins, H.A.; Clarke, C.A.; Arron, S.T.; Tatalovich, Z.; Kahn, A.R.; Hernandez, B.Y.; Paddock, L.; Yanik, E.L.; Lynch, C.F.; Kasiske, B.L.; et al. Melanoma Risk and Survival among Organ Transplant Recipients. J. Investig. Dermatol. 2015, 135, 2657–2665. [Google Scholar] [CrossRef] [Green Version]
- Martinez, O.M.; de Gruijl, F.R. Molecular and immunologic mechanisms of cancer pathogenesis in solid organ transplant recipients. Am. J. Transplant. 2008, 8, 2205–2211. [Google Scholar] [CrossRef]
- Geissler, E.K. Post-Transplantation Malignancies: Here Today, Gone Tomorrow? Nat. Rev. Clin. Oncol. 2015, 12, 705–717. [Google Scholar] [CrossRef]
- Bernhardt, V.; Garcia-Reyero, N.; Vovk, A.; Denslow, N.; Davenport, P.W. Tracheal Occlusion Modulates the Gene Expression Profile of the Medial Thalamus in Anesthetized Rats. J. Appl. Physiol. 2011, 111, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhou, Z.; Wang, Y. Prediction and Analysis of Weighted Genes in Isoflurane Induced General Anesthesia Based on Network Analysis. Int. J. Neurosci. 2020, 130, 610–620. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Jin, Y.; Dai, J. Biological Processes and Pathway Changes in Isoflurane-Induced Anesthesia Revealed by Bioinformatics Analysis of Gene Expression Profiles. J. Clin. Anesth. 2015, 29, 912–919. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.G.; Paule, M.; Ali, S.; Wang, C. Ketamine-Induced Neurotoxicity and Changes in Gene Expression in the Developing Rat Brain. Curr. Neuropharmacol. 2011, 9, 256–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alleva, R.; Tognù, A.; Tomasetti, M.; Benassi, M.S.; Pazzaglia, L.; van Oven, H.; Borghi, B. Effect of Different Anaesthetic Techniques on Gene Expression Profiles in Patients Who Underwent Hip Arthroplasty. PLoS ONE 2019, 14, e0219113. [Google Scholar] [CrossRef] [Green Version]
- Mokini, Z.; Cama, A.; Forget, P. Anesthetics and Long Term Cancer Outcomes: May Epigenetics Be the Key for Pancreatic Cancer? Medicina 2022, 58, 1102. [Google Scholar] [CrossRef]
- Upton, D.H.; Popovic, K.; Fulton, R.; Kassiou, M. Anaesthetic-Dependent Changes in Gene Expression following Acute and Chronic Exposure in the Rodent Brain. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- Zhang, X.; Fan, X.; Li, F.; Qiu, J.; Zhang, Y. Effects of PYRIN-Containing Apaf1-Like Protein 1 on Isoflurane-Induced Postoperative Cognitive Dysfunction in Aged Rats. Mol. Med. Rep. 2020, 22, 1391–1399. [Google Scholar] [CrossRef]
- Yamashita, K.; Matsumoto, H.; Saito, F.; Takeyoshi, M. Differences in Gene Expression Profiles in Liver Caused by Different Types of Anesthesia: Cases of CO2-O2 and Isoflurane. J. Toxicol. Sci. 2015, 40, 829–836. [Google Scholar] [CrossRef] [Green Version]
- Martial, C.; Fontaine, G.; Gosseries, O.; Carhart-Harris, R.; Timmermann, C.; Laureys, S.; Cassol, H. Losing the Self in Near-Death Experiences: The Experience of Ego-Dissolution. Brain Sci. 2021, 11, 929. [Google Scholar] [CrossRef]
- Greyson, B. Western Scientific Approaches to Near-Death Experiences. Humanities 2015, 4, 775–796. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, C.; Ma, Y.; Zhang, N. Global Reduction of Information exchange during Anesthetic-Induced Unconsciousness. Brain Struct. Funct. 2017, 222, 3205–3216. [Google Scholar] [CrossRef] [PubMed]
- Kelly, W.E. Near-Death Experiences with Reports of Meeting Deceased People. Death Stud. 2001, 25, 229–249. [Google Scholar] [CrossRef] [PubMed]
- Brumblay, R.J. Hyperdimensional Perspectives in Out-of-Body and Near- Death Experiences. J. Near-Death Stud. 2003, 21, 201–221. [Google Scholar] [CrossRef]
- Lake, J. The Near-Death Experience (NDE) as an Inherited Predisposition: Possible Genetic, Epigenetic, Neural and Symbolic Mechanisms. Med. Hypotheses 2019, 126, 135–148. [Google Scholar] [CrossRef] [PubMed]
- Vicente, R.; Rizzuto, M.; Sarica, C.; Yamamoto, K.; Sadr, M.; Khajuria, T.; Fatehi, M.; Moien-Afshari, F.; Haw, C.S.; Llinas, R.R.; et al. Enhanced Interplay of Neuronal Coherence and Coupling in the Dying Human Brain. Front. Aging Neurosci. 2022, 14, 813531. [Google Scholar] [CrossRef]
- Bruzzone, P. Religious Aspects of Organ Transplantation. Transplant. Proc. 2008, 40, 1064–1067. [Google Scholar] [CrossRef]
- Doerry, K.; Oh, J.; Vincent, D.; Fischer, L.; Schulz-Jürgensen, S. Religious and Cultural Aspects of Organ Donation: Narrowing the Gap through Understanding Different Religious Beliefs. Pediatr. Transplant. 2022, 26, e14339. [Google Scholar] [CrossRef]
- Tarabeih, M.; Abu-Rakia, R.; Bokek-Cohen, Y.; Azuri, P. Christianity, Islam, Judaism, and Unwillingness to Donate Organs Post-Mortem. Death Stud. 2022, 46, 391–398. [Google Scholar] [CrossRef]
Gene. | Signaling Pathway, Function | Role in Body Physiology and Disease | Reference |
---|---|---|---|
Gadd45a | Key regulator of energy metabolism and longevity by regulating epigenetic DNA methylation | Key regulator of energy metabolism and longevity. Transcript levels are increased following stressful conditions | [21,22,23,24,25,26] |
Bcl2 | Blocks the apoptotic death of some cells such as lymphocytes | Stress (brain death) activates Bcl2 for cell survival and cell death signaling pathways that converges on mitochondria. T-cell lymphomas; prostate cancer; renal cell carcinomas | [27,28,29,30] |
Ier3 | Immediate early response 3 protein involved in the protection of cells from Fas- or tumor necrosis factor type alpha-induced apoptosis | Functions either as an oncogene or a tumor suppressor in various human cancers. Downregulated in patients with cervical cancer | [31,32] |
Zfand2a | Proteasome-mediated ubiquitin-dependent protein catabolic processes and protein targeting to ER | Involved in proteasome-mediated ubiquitin-dependent accelerated protein catabolic processes in the skeletal muscles and protein targeting to ER | [33,34,35,36,37] |
Klkb1 | Surface-dependent activation of blood coagulation, fibrinolysis, kinin generation and inflammation | Trigger complement activation. Pathophysiological hallmarks of neuroinflammatory disorders like multiple sclerosis | [38,39] |
Tnfrsf14 | Signal transduction pathways that activate inflammatory and inhibitory T-cell immune response | Inflammatory and autoimmune diseases. Tumor immunotherapy | [40,41,42] |
Csnk2a1 | Cellular processes, including cell cycle control, apoptosis, and circadian rhythm | AD pathology by regulating NR2B-mediated neurotransmission, involved in a plethora of human diseases numerous cancers, including glioblastoma | [43,44,45] |
Cdc42 | Controls cell morphology, migration, endocytosis, cell cycle progression, and epigenetic regulation | Controls diverse cellular functions including cell morphology, migration, endocytosis, cell cycle progression and epigenetic regulation. Overexpressed in tumors such as colorectal adenocarcinomas | [46,47] |
Rasa1 | Part of the GAP1 family of GTPase-activating proteins. Regulate multiple cellular signalling pathways including those that control cell growth, differentiation and survival. | Regulates multiple cellular signalling pathways including those that control cell growth, differentiation and survival Associated with basal cell carcinomas | [48,49] |
Prdx2 | Reduces hydrogen peroxide and alkyl hydroperoxides and plays an antioxidant protective role in cells. | Accelerates brain damage after stroke by activating an inflammatory response. Cancer cell proliferation | [50,51,52,53] |
Tpr | Formation and maintenance of senescence-associated heterochromatin foci | Increased in lung cancer. Required for internal senescence-associated heterochromatin foci | [54,55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coliță, C.-I.; Olaru, D.-G.; Coliță, D.; Hermann, D.M.; Coliță, E.; Glavan, D.; Popa-Wagner, A. Induced Coma, Death, and Organ Transplantation: A Physiologic, Genetic, and Theological Perspective. Int. J. Mol. Sci. 2023, 24, 5744. https://doi.org/10.3390/ijms24065744
Coliță C-I, Olaru D-G, Coliță D, Hermann DM, Coliță E, Glavan D, Popa-Wagner A. Induced Coma, Death, and Organ Transplantation: A Physiologic, Genetic, and Theological Perspective. International Journal of Molecular Sciences. 2023; 24(6):5744. https://doi.org/10.3390/ijms24065744
Chicago/Turabian StyleColiță, Cezar-Ivan, Denissa-Greta Olaru, Daniela Coliță, Dirk M. Hermann, Eugen Coliță, Daniela Glavan, and Aurel Popa-Wagner. 2023. "Induced Coma, Death, and Organ Transplantation: A Physiologic, Genetic, and Theological Perspective" International Journal of Molecular Sciences 24, no. 6: 5744. https://doi.org/10.3390/ijms24065744
APA StyleColiță, C. -I., Olaru, D. -G., Coliță, D., Hermann, D. M., Coliță, E., Glavan, D., & Popa-Wagner, A. (2023). Induced Coma, Death, and Organ Transplantation: A Physiologic, Genetic, and Theological Perspective. International Journal of Molecular Sciences, 24(6), 5744. https://doi.org/10.3390/ijms24065744