Non-Coding RNAs as Biomarkers for Embryo Quality and Pregnancy Outcomes: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources and Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Study Selection and Quality Assessment
2.4. Data Extraction
2.5. Statistical Analysis
3. Results
3.1. Identification and Selection of Studies
3.2. Characteristics of the Reviewed Studies
3.3. Identification of Differentially Expressed sncRNAs in Follicular Fluid
3.4. Identification of Differentially Expressed sncRNAs in Embryo Spent Culture Medium
3.5. Predictive Ability of Differentially Expressed sncRNAs
3.6. Predictive Efficacy of Extracellular sncRNAs for Embryo Development Potential and Pregnancy Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wyns, C.; De Geyter, C.; Calhaz-Jorge, C.; Kupka, M.S.; Motrenko, T.; Smeenk, J.; Bergh, C.; Tandler-Schneider, A.; Rugescu, I.A.; Vidakovic, S.; et al. ART in Europe, 2017: Results generated from European registries by ESHRE. Hum. Reprod. Open 2021, 2021, hoab026. [Google Scholar] [CrossRef] [PubMed]
- Wyns, C.; De Geyter, C.; Calhaz-Jorge, C.; Kupka, M.S.; Motrenko, T.; Smeenk, J.; Bergh, C.; Tandler-Schneider, A.; Rugescu, I.A.; Goossens, V. ART in Europe, 2018: Results generated from European registries by ESHRE. Hum. Reprod. Open 2022, 2022, hoac022. [Google Scholar] [CrossRef] [PubMed]
- Bashiri, A.; Halper, K.I.; Orvieto, R. Recurrent Implantation Failure-update overview on etiology, diagnosis, treatment and future directions. Reprod. Biol. Endocrinol. 2018, 16, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quenby, S.; Gallos, I.D.; Dhillon-Smith, R.K.; Podesek, M.; Stephenson, M.D.; Fisher, J.; Brosens, J.J.; Brewin, J.; Ramhorst, R.; Lucas, E.S.; et al. Miscarriage matters: The epidemiological, physical, psychological, and economic costs of early pregnancy loss. Lancet 2021, 397, 1658–1667. [Google Scholar] [CrossRef] [PubMed]
- Chambers, G.M.; Dyer, S.; Zegers-Hochschild, F.; de Mouzon, J.; Ishihara, O.; Banker, M.; Mansour, R.; Kupka, M.S.; Adamson, G.D. International Committee for Monitoring Assisted Reproductive Technologies world report: Assisted reproductive technology, 2014†. Hum. Reprod. 2021, 36, 2921–2934. [Google Scholar] [CrossRef]
- Prados, F.J.; Debrock, S.; Lemmen, J.G.; Agerholm, I. The cleavage stage embryo. Hum. Reprod. 2012, 27 (Suppl. 1), i50–i71. [Google Scholar] [CrossRef] [Green Version]
- Gardner, D.K.; Lane, M.; Stevens, J.; Schlenker, T.; Schoolcraft, W.B. Blastocyst score affects implantation and pregnancy outcome: Towards a single blastocyst transfer. Fertil. Steril. 2000, 73, 1155–1158. [Google Scholar] [CrossRef]
- Paternot, G.; Wetzels, A.M.; Thonon, F.; Vansteenbrugge, A.; Willemen, D.; Devroe, J.; Debrock, S.; D’Hooghe, T.M.; Spiessens, C. Intra- and interobserver analysis in the morphological assessment of early stage embryos during an IVF procedure: A multicentre study. Reprod. Biol. Endocrinol. 2011, 9, 127. [Google Scholar] [CrossRef]
- Storr, A.; Venetis, C.A.; Cooke, S.; Kilani, S.; Ledger, W. Inter-observer and intra-observer agreement between embryologists during selection of a single Day 5 embryo for transfer: A multicenter study. Hum. Reprod. 2017, 32, 307–314. [Google Scholar] [CrossRef]
- Fordham, D.E.; Rosentraub, D.; Polsky, A.L.; Aviram, T.; Wolf, Y.; Perl, O.; Devir, A.; Rosentraub, S.; Silver, D.H.; Gold Zamir, Y.; et al. Embryologist agreement when assessing blastocyst implantation probability: Is data-driven prediction the solution to embryo assessment subjectivity? Hum. Reprod. 2022, 37, 2275–2290. [Google Scholar] [CrossRef]
- Majumdar, G.; Majumdar, A.; Verma, I.C.; Upadhyaya, K.C. Relationship Between Morphology, Euploidy and Implantation Potential of Cleavage and Blastocyst Stage Embryos. J. Hum. Reprod. Sci. 2017, 10, 49–57. [Google Scholar] [CrossRef]
- Aparicio-Ruiz, B.; Basile, N.; Pérez Albalá, S.; Bronet, F.; Remohí, J.; Meseguer, M. Automatic time-lapse instrument is superior to single-point morphology observation for selecting viable embryos: Retrospective study in oocyte donation. Fertil. Steril. 2016, 106, 1379–1385.e1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conaghan, J.; Chen, A.A.; Willman, S.P.; Ivani, K.; Chenette, P.E.; Boostanfar, R.; Baker, V.L.; Adamson, G.D.; Abusief, M.E.; Gvakharia, M.; et al. Improving embryo selection using a computer-automated time-lapse image analysis test plus day 3 morphology: Results from a prospective multicenter trial. Fertil. Steril. 2013, 100, 412–419.e415. [Google Scholar] [CrossRef] [PubMed]
- Benchaib, M.; Labrune, E.; Giscard d’Estaing, S.; Salle, B.; Lornage, J. Shallow artificial networks with morphokinetic time-lapse parameters coupled to ART data allow to predict live birth. Reprod. Med. Biol. 2022, 21, e12486. [Google Scholar] [CrossRef]
- Armstrong, S.; Bhide, P.; Jordan, V.; Pacey, A.; Marjoribanks, J.; Farquhar, C. Time-lapse systems for embryo incubation and assessment in assisted reproduction. Cochrane. Database. Syst. Rev. 2019, 5, Cd011320. [Google Scholar] [CrossRef] [PubMed]
- The use of preimplantation genetic testing for aneuploidy (PGT-A): A committee opinion. Fertil. Steril. 2018, 109, 429–436. [CrossRef] [PubMed] [Green Version]
- Simopoulou, M.; Sfakianoudis, K.; Maziotis, E.; Tsioulou, P.; Grigoriadis, S.; Rapani, A.; Giannelou, P.; Asimakopoulou, M.; Kokkali, G.; Pantou, A.; et al. PGT-A: Who and when? A systematic review and network meta-analysis of RCTs. J. Assist. Reprod. Genet. 2021, 38, 1939–1957. [Google Scholar] [CrossRef]
- Cimadomo, D.; Capalbo, A.; Ubaldi, F.M.; Scarica, C.; Palagiano, A.; Canipari, R.; Rienzi, L. The Impact of Biopsy on Human Embryo Developmental Potential during Preimplantation Genetic Diagnosis. Biomed. Res. Int. 2016, 2016, 7193075. [Google Scholar] [CrossRef] [Green Version]
- Leaver, M.; Wells, D. Non-invasive preimplantation genetic testing (niPGT): The next revolution in reproductive genetics? Hum. Reprod. Update 2020, 26, 16–42. [Google Scholar] [CrossRef]
- Tomic, M.; Vrtacnik Bokal, E.; Stimpfel, M. Non-Invasive Preimplantation Genetic Testing for Aneuploidy and the Mystery of Genetic Material: A Review Article. Int. J. Mol. Sci. 2022, 23, 3568. [Google Scholar] [CrossRef]
- Dominguez, F.; Meseguer, M.; Aparicio-Ruiz, B.; Piqueras, P.; Quiñonero, A.; Simón, C. New strategy for diagnosing embryo implantation potential by combining proteomics and time-lapse technologies. Fertil. Steril. 2015, 104, 908–914. [Google Scholar] [CrossRef] [PubMed]
- Tejera, A.; Castelló, D.; de Los Santos, J.M.; Pellicer, A.; Remohí, J.; Meseguer, M. Combination of metabolism measurement and a time-lapse system provides an embryo selection method based on oxygen uptake and chronology of cytokinesis timing. Fertil. Steril. 2016, 106, 119–126.e112. [Google Scholar] [CrossRef] [Green Version]
- Liang, B.; Gao, Y.; Xu, J.; Song, Y.; Xuan, L.; Shi, T.; Wang, N.; Hou, Z.; Zhao, Y.L.; Huang, W.E.; et al. Raman profiling of embryo culture medium to identify aneuploid and euploid embryos. Fertil. Steril. 2019, 111, 753–762.e751. [Google Scholar] [CrossRef] [PubMed]
- Gross, N.; Kropp, J.; Khatib, H. MicroRNA Signaling in Embryo Development. Biology 2017, 6, 34. [Google Scholar] [CrossRef]
- Salilew-Wondim, D.; Gebremedhn, S.; Hoelker, M.; Tholen, E.; Hailay, T.; Tesfaye, D. The Role of MicroRNAs in Mammalian Fertility: From Gametogenesis to Embryo Implantation. Int. J. Mol. Sci. 2020, 21, 585. [Google Scholar] [CrossRef] [Green Version]
- Nazarian, H.; Novin, M.G.; Khaleghi, S.; Habibi, B. Small Non-coding RNAs in Embryonic Pre-implantation. Curr. Mol. Med. 2022, 22, 287–299. [Google Scholar] [CrossRef] [PubMed]
- Hombach, S.; Kretz, M. Non-coding RNAs: Classification, Biology and Functioning. Adv. Exp. Med. Biol. 2016, 937, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Rio, P.D.; Madan, P. Does miRNA Expression in the Spent Media Change During Early Embryo Development? Front. Vet. Sci. 2021, 8, 658968. [Google Scholar] [CrossRef]
- Yuan, C.; Li, Z.; Zhao, Y.; Wang, X.; Chen, L.; Zhao, Z.; Cao, M.; Chen, T.; Iqbal, T.; Zhang, B.; et al. Follicular fluid exosomes: Important modulator in proliferation and steroid synthesis of porcine granulosa cells. FASEB J. 2021, 35, e21610. [Google Scholar] [CrossRef]
- Von Grothusen, C.; Frisendahl, C.; Modhukur, V.; Lalitkumar, P.G.; Peters, M.; Faridani, O.R.; Salumets, A.; Boggavarapu, N.R.; Gemzell-Danielsson, K. Uterine fluid microRNAs are dysregulated in women with recurrent implantation failure. Hum. Reprod. 2022, 37, 734–746. [Google Scholar] [CrossRef]
- Traver, S.; Assou, S.; Scalici, E.; Haouzi, D.; Al-Edani, T.; Belloc, S.; Hamamah, S. Cell-free nucleic acids as non-invasive biomarkers of gynecological cancers, ovarian, endometrial and obstetric disorders and fetal aneuploidy. Hum. Reprod. Update 2014, 20, 905–923. [Google Scholar] [CrossRef] [Green Version]
- Robles, V.; Valcarce, D.G.; Riesco, M.F. Non-coding RNA regulation in reproduction: Their potential use as biomarkers. Noncoding RNA Res. 2019, 4, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Xu, M.; Tian, X.; Cai, S.; Zeng, S. Research advances in the detection of miRNA. J. Pharm. Anal. 2019, 9, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Moher, D. Updating guidance for reporting systematic reviews: Development of the PRISMA 2020 statement. J. Clin. Epidemiol. 2021, 134, 103–112. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 88, 105906. [Google Scholar] [CrossRef]
- Methley, A.M.; Campbell, S.; Chew-Graham, C.; McNally, R.; Cheraghi-Sohi, S. PICO, PICOS and SPIDER: A comparison study of specificity and sensitivity in three search tools for qualitative systematic reviews. BMC Health Serv. Res. 2014, 14, 579. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Chen, L.; Zhu, Y.; Jiang, W. Characterization of microRNAs in spent culture medium associated with human embryo quality and development. Ann. Transl. Med. 2021, 9, 1648. [Google Scholar] [CrossRef]
- Rosenbluth, E.M.; Shelton, D.N.; Wells, L.M.; Sparks, A.E.; Van Voorhis, B.J. Human embryos secrete microRNAs into culture media--a potential biomarker for implantation. Fertil. Steril. 2014, 101, 1493–1500. [Google Scholar] [CrossRef]
- Cuman, C.; Van Sinderen, M.; Gantier, M.P.; Rainczuk, K.; Sorby, K.; Rombauts, L.; Osianlis, T.; Dimitriadis, E. Human Blastocyst Secreted microRNA Regulate Endometrial Epithelial Cell Adhesion. EBioMedicine 2015, 2, 1528–1535. [Google Scholar] [CrossRef] [Green Version]
- Feng, R.; Sang, Q.; Zhu, Y.; Fu, W.; Liu, M.; Xu, Y.; Shi, H.; Xu, Y.; Qu, R.; Chai, R.; et al. MiRNA-320 in the human follicular fluid is associated with embryo quality in vivo and affects mouse embryonic development in vitro. Sci. Rep. 2015, 5, 8689. [Google Scholar] [CrossRef]
- Veeck, L.L. An atlas of human gametes and conceptuses: An illustrated reference for assisted reproductive technology. J. Urol. 2000, 3, 910–911. [Google Scholar]
- Capalbo, A.; Ubaldi, F.M.; Cimadomo, D.; Noli, L.; Khalaf, Y.; Farcomeni, A.; Ilic, D.; Rienzi, L. MicroRNAs in spent blastocyst culture medium are derived from trophectoderm cells and can be explored for human embryo reproductive competence assessment. Fertil. Steril. 2016, 105, 225–235.e1–3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardner, D.K.; Schoolcraft, W.B. In-vitro culture of human blastocyst. In Towards Reproductive Certainty: Fertility and Genetics Beyond 1999, 1st ed.; Jansen, R., Mortimer., D., Eds.; Parthenon Pub. Group: London, UK, 1999; pp. 378–388. [Google Scholar]
- Borges, E., Jr.; Setti, A.S.; Braga, D.P.; Geraldo, M.V.; Figueira, R.C.; Iaconelli, A., Jr. miR-142-3p as a biomarker of blastocyst implantation failure—A pilot study. JBRA Assist. Reprod. 2016, 20, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Scalici, E.; Traver, S.; Mullet, T.; Molinari, N.; Ferrières, A.; Brunet, C.; Belloc, S.; Hamamah, S. Circulating microRNAs in follicular fluid, powerful tools to explore in vitro fertilization process. Sci. Rep. 2016, 6, 24976. [Google Scholar] [CrossRef] [Green Version]
- Machtinger, R.; Rodosthenous, R.S.; Adir, M.; Mansour, A.; Racowsky, C.; Baccarelli, A.A.; Hauser, R. Extracellular microRNAs in follicular fluid and their potential association with oocyte fertilization and embryo quality: An exploratory study. J. Assist. Reprod. Genet. 2017, 34, 525–533. [Google Scholar] [CrossRef] [Green Version]
- The Istanbul consensus workshop on embryo assessment: Proceedings of an expert meeting. Hum. Reprod. 2011, 26, 1270–1283. [CrossRef] [Green Version]
- Martinez, R.M.; Liang, L.; Racowsky, C.; Dioni, L.; Mansur, A.; Adir, M.; Bollati, V.; Baccarelli, A.A.; Hauser, R.; Machtinger, R. Extracellular microRNAs profile in human follicular fluid and IVF outcomes. Sci. Rep. 2018, 8, 17036. [Google Scholar] [CrossRef]
- Fu, J.; Qu, R.G.; Zhang, Y.J.; Gu, R.H.; Li, X.; Sun, Y.J.; Wang, L.; Sang, Q.; Sun, X.X. Screening of miRNAs in human follicular fluid reveals an inverse relationship between microRNA-663b expression and blastocyst formation. Reprod. Biomed. Online 2018, 37, 25–32. [Google Scholar] [CrossRef]
- Timofeeva, A.V.; Chagovets, V.V.; Drapkina, Y.S.; Makarova, N.P.; Kalinina, E.A.; Sukhikh, G.T. Cell-Free, Embryo-Specific sncRNA as a Molecular Biological Bridge between Patient Fertility and IVF Efficiency. Int. J. Mol. Sci. 2019, 20, 2912. [Google Scholar] [CrossRef] [Green Version]
- Abu-Halima, M.; Khaizaran, Z.A.; Ayesh, B.M.; Fischer, U.; Khaizaran, S.A.; Al-Battah, F.; Hammadeh, M.; Keller, A.; Meese, E. MicroRNAs in combined spent culture media and sperm are associated with embryo quality and pregnancy outcome. Fertil. Steril. 2020, 113, 970–980.e972. [Google Scholar] [CrossRef]
- Timofeeva, A.; Drapkina, Y.; Fedorov, I.; Chagovets, V.; Makarova, N.; Shamina, M.; Kalinina, E.; Sukhikh, G. Small Noncoding RNA Signatures for Determining the Developmental Potential of an Embryo at the Morula Stage. Int. J. Mol. Sci. 2020, 21, 9399. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Tamis, R.; Fink, K.; Williams, B.; Nelson-White, T.; Craig, R. The neglected morula/compact stage embryo transfer. Hum. Reprod. 2002, 17, 1513–1518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, F.; Li, Z.; Yu, J.; Long, Y.; Zhao, Q.; Ding, X.; Wu, L.; Shao, S.; Zhang, L.; Xiang, W. MicroRNAs secreted by human embryos could be potential biomarkers for clinical outcomes of assisted reproductive technology. J. Adv. Res. 2021, 31, 25–34. [Google Scholar] [CrossRef]
- Timofeeva, A.V.; Fedorov, I.S.; Shamina, M.A.; Chagovets, V.V.; Makarova, N.P.; Kalinina, E.A.; Nazarenko, T.A.; Sukhikh, G.T. Clinical Relevance of Secreted Small Noncoding RNAs in an Embryo Implantation Potential Prediction at Morula and Blastocyst Development Stages. Life 2021, 11, 1328. [Google Scholar] [CrossRef] [PubMed]
- Acuña-González, R.J.; Olvera-Valencia, M.; López-Canales, J.S.; Lozano-Cuenca, J.; Osorio-Caballero, M.; Flores-Herrera, H. MiR-191-5p is upregulated in culture media of implanted human embryo on day fifth of development. Reprod. Biol. Endocrinol. 2021, 19, 109. [Google Scholar] [CrossRef]
- Coticchio, G.; Pennetta, F.; Rizzo, R.; Tarozzi, N.; Nadalini, M.; Orlando, G.; Centonze, C.; Gioacchini, G.; Borini, A. Embryo morphokinetic score is associated with biomarkers of developmental competence and implantation. J. Assist. Reprod. Genet. 2021, 38, 1737–1743. [Google Scholar] [CrossRef]
- Diamond, M.P.; Suraj, V.; Behnke, E.J.; Yang, X.; Angle, M.J.; Lambe-Steinmiller, J.C.; Watterson, R.; Athayde Wirka, K.; Chen, A.A.; Shen, S. Using the Eeva Test™ adjunctively to traditional day 3 morphology is informative for consistent embryo assessment within a panel of embryologists with diverse experience. J. Assist. Reprod. Genet. 2015, 32, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Khan, H.L.; Bhatti, S.; Abbas, S.; Kaloglu, C.; Isa, A.M.; Younas, H.; Ziders, R.; Khan, Y.L.; Hassan, Z.; Turhan, B.O.; et al. Extracellular microRNAs: Key players to explore the outcomes of in vitro fertilization. Reprod. Biol. Endocrinol. 2021, 19, 72. [Google Scholar] [CrossRef] [PubMed]
- Janssens, A.; Martens, F.K. Reflection on modern methods: Revisiting the area under the ROC Curve. Int. J. Epidemiol. 2020, 49, 1397–1403. [Google Scholar] [CrossRef]
- Mandrekar, J.N. Receiver operating characteristic curve in diagnostic test assessment. J. Thorac. Oncol. 2010, 5, 1315–1316. [Google Scholar] [CrossRef] [Green Version]
- Keefe, D.; Kumar, M.; Kalmbach, K. Oocyte competency is the key to embryo potential. Fertil. Steril. 2015, 103, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Da Broi, M.G.; Giorgi, V.S.I.; Wang, F.; Keefe, D.L.; Albertini, D.; Navarro, P.A. Influence of follicular fluid and cumulus cells on oocyte quality: Clinical implications. J. Assist. Reprod. Genet. 2018, 35, 735–751. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Lv, J.; Tang, R.; Feng, Y.; Zhao, Y.; Fei, X.; Chian, R.; Xie, Q. Association of exosomal microRNAs in human ovarian follicular fluid with oocyte quality. Biochem. Biophys. Res. Commun. 2021, 534, 468–473. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Tang, J.; Wang, L.; Tan, F.; Song, H.; Zhou, J.; Li, F. Oxidative stress in oocyte aging and female reproduction. J. Cell. Physiol. 2021, 236, 7966–7983. [Google Scholar] [CrossRef] [PubMed]
- Tsai-Turton, M.; Luong, B.T.; Tan, Y.; Luderer, U. Cyclophosphamide-induced apoptosis in COV434 human granulosa cells involves oxidative stress and glutathione depletion. Toxicol. Sci. 2007, 98, 216–230. [Google Scholar] [CrossRef] [Green Version]
- Ding, C.; Qian, C.; Hou, S.; Lu, J.; Zou, Q.; Li, H.; Huang, B. Exosomal miRNA-320a Is Released from hAMSCs and Regulates SIRT4 to Prevent Reactive Oxygen Species Generation in POI. Mol. Ther. Nucleic Acids 2020, 21, 37–50. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.L.; Wang, H.; Yan, C.Y.; Gao, X.F.; Ling, X.J. Deregulation of RUNX2 by miR-320a deficiency impairs steroidogenesis in cumulus granulosa cells from polycystic ovary syndrome (PCOS) patients. Biochem. Biophys. Res. Commun. 2017, 482, 1469–1476. [Google Scholar] [CrossRef]
- Yin, X.; Zheng, X.; Liu, M.; Wang, D.; Sun, H.; Qiu, Y.; Chen, J.; Shi, B. Exosomal miR-663b targets Ets2-repressor factor to promote proliferation and the epithelial-mesenchymal transition of bladder cancer cells. Cell. Biol. Int. 2020, 44, 958–965. [Google Scholar] [CrossRef]
- Xiao, F.; Chen, W.; Yu, C.; Zhao, G. MicroRNA-663b enhances migration and invasion by targeting adenomatous polyposis coli 2 in colorectal carcinoma cells. Oncol. Lett. 2020, 19, 3701–3710. [Google Scholar] [CrossRef] [Green Version]
- Ren, L.; Chen, H.; Song, J.; Chen, X.; Lin, C.; Zhang, X.; Hou, N.; Pan, J.; Zhou, Z.; Wang, L.; et al. MiR-454-3p-Mediated Wnt/β-catenin Signaling Antagonists Suppression Promotes Breast Cancer Metastasis. Theranostics 2019, 9, 449–465. [Google Scholar] [CrossRef]
- Liao, H.; Liang, Y.; Kang, L.; Xiao, Y.; Yu, T.; Wan, R. miR-454-3p inhibits non-small cell lung cancer cell proliferation and metastasis by targeting TGFB2. Oncol. Rep. 2021, 45, 67. [Google Scholar] [CrossRef]
- Bartolucci, A.F.; Uliasz, T.; Peluso, J.J. MicroRNA-21 as a regulator of human cumulus cell viability and its potential influence on the developmental potential of the oocyte. Biol. Reprod. 2020, 103, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Mondou, E.; Dufort, I.; Gohin, M.; Fournier, E.; Sirard, M.A. Analysis of microRNAs and their precursors in bovine early embryonic development. Mol. Hum. Reprod. 2012, 18, 425–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, X.; Hua, S.; Zhang, J.; Xu, S. The MicroRNA Family Both in Normal Development and in Different Diseases: The miR-17-92 Cluster. Biomed. Res. Int. 2019, 2019, 9450240. [Google Scholar] [CrossRef] [Green Version]
- Foshay, K.M.; Gallicano, G.I. miR-17 family miRNAs are expressed during early mammalian development and regulate stem cell differentiation. Dev. Biol. 2009, 326, 431–443. [Google Scholar] [CrossRef] [Green Version]
- Cartwright, P.; McLean, C.; Sheppard, A.; Rivett, D.; Jones, K.; Dalton, S. LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development 2005, 132, 885–896. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Aksoy, I.; Gonnot, F.; Osteil, P.; Aubry, M.; Hamela, C.; Rognard, C.; Hochard, A.; Voisin, S.; Fontaine, E.; et al. Reinforcement of STAT3 activity reprogrammes human embryonic stem cells to naive-like pluripotency. Nat. Commun. 2015, 6, 7095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larabee, S.M.; Coia, H.; Jones, S.; Cheung, E.; Gallicano, G.I. miRNA-17 members that target Bmpr2 influence signaling mechanisms important for embryonic stem cell differentiation in vitro and gastrulation in embryos. Stem. Cells. Dev. 2015, 24, 354–371. [Google Scholar] [CrossRef] [PubMed]
- Ying, Q.L.; Nichols, J.; Chambers, I.; Smith, A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 2003, 115, 281–292. [Google Scholar] [CrossRef] [Green Version]
- Ngezahayo, A.; Ruhe, F.A. Connexins in the development and physiology of stem cells. Tissue. Barriers. 2021, 9, 1949242. [Google Scholar] [CrossRef]
- Wang, Y.; Baskerville, S.; Shenoy, A.; Babiarz, J.E.; Baehner, L.; Blelloch, R. Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nat. Genet. 2008, 40, 1478–1483. [Google Scholar] [CrossRef]
- Lee, H.; Han, S.; Kwon, C.S.; Lee, D. Biogenesis and regulation of the let-7 miRNAs and their functional implications. Protein Cell 2016, 7, 100–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shyh-Chang, N.; Daley, G.Q. Lin28: Primal regulator of growth and metabolism in stem cells. Cell Stem Cell 2013, 12, 395–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melton, C.; Judson, R.L.; Blelloch, R. Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 2010, 463, 621–626. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Bouma, G.J.; Anthony, R.V.; Winger, Q.A. The Role of LIN28-let-7-ARID3B Pathway in Placental Development. Int. J. Mol. Sci. 2020, 21, 3637. [Google Scholar] [CrossRef] [PubMed]
- Greaney, J.; Wei, Z.; Homer, H. Regulation of chromosome segregation in oocytes and the cellular basis for female meiotic errors. Hum. Reprod. Update 2018, 24, 135–161. [Google Scholar] [CrossRef]
- Gleicher, N.; Metzger, J.; Croft, G.; Kushnir, V.A.; Albertini, D.F.; Barad, D.H. A single trophectoderm biopsy at blastocyst stage is mathematically unable to determine embryo ploidy accurately enough for clinical use. Reprod. Biol. Endocrinol. 2017, 15, 33. [Google Scholar] [CrossRef] [PubMed]
- Barad, D.H.; Albertini, D.F.; Molinari, E.; Gleicher, N. IVF outcomes of embryos with abnormal PGT-A biopsy previously refused transfer: A prospective cohort study. Hum. Reprod. 2022, 37, 1194–1206. [Google Scholar] [CrossRef]
- Saito, K.; Siomi, M.C. Small RNA-mediated quiescence of transposable elements in animals. Dev. Cell 2010, 19, 687–697. [Google Scholar] [CrossRef] [Green Version]
- Rowe, H.M.; Trono, D. Dynamic control of endogenous retroviruses during development. Virology 2011, 411, 273–287. [Google Scholar] [CrossRef] [Green Version]
- Roovers, E.F.; Rosenkranz, D.; Mahdipour, M.; Han, C.T.; He, N.; Chuva de Sousa Lopes, S.M.; van der Westerlaken, L.A.; Zischler, H.; Butter, F.; Roelen, B.A.; et al. Piwi proteins and piRNAs in mammalian oocytes and early embryos. Cell Rep. 2015, 10, 2069–2082. [Google Scholar] [CrossRef] [Green Version]
- Houwing, S.; Kamminga, L.M.; Berezikov, E.; Cronembold, D.; Girard, A.; van den Elst, H.; Filippov, D.V.; Blaser, H.; Raz, E.; Moens, C.B.; et al. A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell 2007, 129, 69–82. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhang, F.; Chen, Q.; Li, M.; Lv, X.; Xiao, Y.; Zhang, Z.; Hou, L.; Lai, Y.; Zhang, Y.; et al. The piRNA pathway is essential for generating functional oocytes in golden hamsters. Nat. Cell Biol. 2021, 23, 1013–1022. [Google Scholar] [CrossRef]
- Loubalova, Z.; Fulka, H.; Horvat, F.; Pasulka, J.; Malik, R.; Hirose, M.; Ogura, A.; Svoboda, P. Formation of spermatogonia and fertile oocytes in golden hamsters requires piRNAs. Nat. Cell Biol. 2021, 23, 992–1001. [Google Scholar] [CrossRef] [PubMed]
- Kamaliyan, Z.; Pouriamanesh, S.; Soosanabadi, M.; Gholami, M.; Mirfakhraie, R. Investigation of piwi-interacting RNA pathway genes role in idiopathic non-obstructive azoospermia. Sci. Rep. 2018, 8, 142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, A.; Ji, G.; Shi, X.; Long, Y.; Xia, Y.; Song, L.; Wang, S.; Wang, X. Genetic variants in Piwi-interacting RNA pathway genes confer susceptibility to spermatogenic failure in a Chinese population. Hum. Reprod. 2010, 25, 2955–2961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Q.; Li, R.; Lyu, Q.; Hou, L.; Liu, Z.; Sun, Q.; Liu, M.; Shi, H.; Xu, B.; Yin, M.; et al. Single-cell CAS-seq reveals a class of short PIWI-interacting RNAs in human oocytes. Nat. Commun. 2019, 10, 3389. [Google Scholar] [CrossRef] [Green Version]
- Cimadomo, D.; Rienzi, L.; Giancani, A.; Alviggi, E.; Dusi, L.; Canipari, R.; Noli, L.; Ilic, D.; Khalaf, Y.; Ubaldi, F.M.; et al. Definition and validation of a custom protocol to detect miRNAs in the spent media after blastocyst culture: Searching for biomarkers of implantation. Hum. Reprod. 2019, 34, 1746–1761. [Google Scholar] [CrossRef]
- Eivazi, S.; Tanhaye Kalate Sabz, F.; Amiri, S.; Zandieh, Z.; Bakhtiyari, M.; Rashidi, M.; Aflatoonian, R.; Mehraein, F.; Amjadi, F. MiRNAs secreted by human blastocysts could be potential gene expression regulators during implantation. Mol. Biol. Rep. 2022, 50, 1375–1383. [Google Scholar] [CrossRef]
- Cuman, C.; Menkhorst, E.M.; Rombauts, L.J.; Holden, S.; Webster, D.; Bilandzic, M.; Osianlis, T.; Dimitriadis, E. Preimplantation human blastocysts release factors that differentially alter human endometrial epithelial cell adhesion and gene expression relative to IVF success. Hum. Reprod. 2013, 28, 1161–1171. [Google Scholar] [CrossRef] [Green Version]
- Wright, K.; de Silva, K.; Purdie, A.C.; Plain, K.M. Comparison of methods for miRNA isolation and quantification from ovine plasma. Sci. Rep. 2020, 10, 825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dellett, M.; Simpson, D.A. Considerations for optimization of microRNA PCR assays for molecular diagnosis. Expert Rev. Mol. Diagn. 2016, 16, 407–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Reference (First Author) | Sample Type | Mean Age (Years) | Causes of Infertility | Insemination Method | Embryo Assessment Method | Pregnancy Diagnosis Method |
---|---|---|---|---|---|---|
Rosenbluth EM. 2014 [38] | SCM | NA | NA | IVF/ICSI | NA | Live birth |
Cuman C. 2015 [39] | SCM | 34.8 | Male factors | ICSI | NA | Term pregnancy |
Feng R. 2015 [40] | FF | 34.3 | Male factors, Tubal factors | ICSI | Veeck L. [41] | NA |
Capalbo A. 2016 [42] | SCM | NA | NA | IVF | Gardner DK. [43] | Fetal heartbeat |
Borges E. 2016 [44] | SCM | NA | NA | ICSI | NA | Implantation * |
Scalici E. 2016 [45] | FF | 34.3 | Primary (n = 57) or Secondary infertility (n = 34) | IVF/ICSI | Gardner DK. [7] | Fetal heartbeat |
Machtinger R. 2017 [46] | FF | 30.7 | Male factors, Mechanical or Unexplained factors | IVF/ICSI | ALPHA/ESHRE [47] | NA |
Martinez RM. 2018 [48] | FF | 31.0 | NA | IVF/ICSI | ALPHA/ESHRE [47] | NA |
Fu J. 2018 [49] | FF | 30.5 | Primary (n = 64) or Secondary infertility (n = 27) | ICSI | Gardner DK. [7] | NA |
Timofeeva AV. 2019 [50] | SCM | 32.0 | Tubal factors, Male factors | IVF/ICSI | Gardner DK. [43] | β-HCG level |
Abu-Halima M. 2020 [51] | SCM | 27.9 | NA | ICSI | Veeck L. [41] | Implantation * |
Timofeeva AV. 2020 [52] | SCM | 33.0 | Male factors, Tubal factors, DOR | ICSI | Tao J. [53] | Live birth |
Fang F. 2021 [54] | SCM | 30.7 | Primary (n = 43) or Secondary infertility (n = 17) | IVF/ICSI | ALPHA/ESHRE [47] | Implantation * |
Wang S. 2021 [37] | SCM | 30.3 | NA | NA | ALPHA/ESHRE [47] | Fetal heartbeat |
Timofeeva AV. 2021 [55] | SCM | 32.4 | Primary (n = 52) or Secondary infertility (n = 58) | ICSI | NA | β-HCG level |
Acuña-González RJ. 2021 [56] | SCM | 36.3 | NA | IVF | NA | Gestational sac |
Coticchio G. 2021 [57] | SCM | 36.0 | Male factors, Tubal factors, Polycystic ovary | IVF/ICSI | Eeva system [58] | NA |
Khan HL. 2021 [59] | FF | 34.6 | Female (n = 48) or Unexplained factors (n = 97) | IVF | ALPHA/ESHRE [47] | Fetal heartbeat |
Dysregulated sncRNAs | Comparison Groups | Stimulation Protocol | Ref. |
---|---|---|---|
Down: miR-320, miR-197 | Poor- (n = 24) vs. Good-quality (n = 29) day 3 embryo | Agonist protocol (n = 53) | [40] |
Up: let-7b | No blastocyst vs. Viable blastocyst | Antagonist protocol (n = 48) Agonist protocol (n = 39) | [45] |
Up: let-7b | Non-expanded vs. Expanded blastocyst | ||
Down: miR-29a | Non-pregnant vs. Pregnant | ||
Down: miR-202-5p, miR-206, miR-16-1-3p, miR-1244 | Failed (n = 5) vs. Normal fertilization (n = 30) | Antagonist protocol | [46] |
Up: miR-454-5p, miR-425-3p, miR-16-5p, miR-222-3p | Abnormal (n = 4) vs. Normal fertilization (n = 30) | ||
Down: miR-766-3p, miR-663b, miR-132-3p, miR-16-5 | Impaired (n = 10) vs. Top-quality (n = 19) day3 embryo | ||
Down: miR-92a, miR-130b | Failed (n = 33) vs. Normal fertilization (n = 93) | Antagonist protocol | [48] |
Down: miR-888. Up: miR-214, miR-454 | Impaired (n = 48) vs. Top-quality (n = 42) day 3 embryo | ||
Down: miR-663b | No blastocyst (n = 53) vs. Viable blastocyst (n = 38) | Antagonist protocol | [49] |
Down: miR-663b | Poor-scoring (n = 21) vs. Top-scoring (n = 17) blastocyst | ||
Down: miR-320a | Non-top-quality embryo vs. Top-quality day 3 embryo | Antagonist protocol (n = 73) Agonist protocol (n = 72) | [59] |
Down: miR-212-3p | No blastocyst vs. Viable blastocyst | ||
Down: miR-212-3p | Non-expanded blastocyst vs. Expanded blastocyst | ||
Down: miR-21-5p | Non-pregnant vs. Pregnant |
Dysregulated sncRNAs | Comparison Groups | Collection Time | Ref. |
---|---|---|---|
Up: miR-191 | Aneuploid (n = 19) vs. Euploid (n = 9) embryos | Day 4 and 5 | [38] |
Up: miR-645, miR-372, miR-191 | Non-pregnant (n = 9) vs. Pregnant (n = 18) | ||
Up: miR-661 | Non-pregnant (n = 13) vs. Pregnant (n = 13) | Day 5 | [39] |
Down: miR-20a, miR-30c | Non-pregnant (n = 28) vs. Pregnant (n = 25) | Day 3 to5 | [42] |
Up: miR-142-3p | Non-pregnant (n = 18) vs. Pregnant (n = 18) | Day 3 | [44] |
Up: let-7i-5p | Poor (n = 6) vs. Excellent (n = 32) | Day 4 | [50] |
Down: piR-17716 | Poor (n = 6) vs. Good (n = 16) | ||
Down: piR-16735 | Fair (n = 11) vs. Good (n = 16) | ||
Up: piR-020401, let-7i-5p | Non-pregnant (n = 25) vs. Pregnant (n = 14) | ||
Up: miR-320a, miR-15a-5p | G2 (n = 23) vs. G1 (n = 23) * | Day 3 | [51] |
Down: miR-21-5p | G3 (n = 23) vs. G1 (n = 23) * | ||
Down: miR-423-5p, miR-20a-5p | G3 (n = 23) vs. G2 (n = 23) * | ||
Up: miR-19b-3p | Non-pregnant (n = 22) vs. Pregnant (n = 24) | ||
Down: piR-011291, piR-019122, piR-001311, piR-015026, piR-015462, piR-016735, piR-019675, piR-020381, piR-020485, piR-004880, piR-000807, let-7b-5p, let-7i-5p | Morula without (n = 20) vs. with (n = 29) blastulation potential | Day 4 | [52] |
Up: miR-26b-5p, miR-21-5p | Non-pregnant (n = 30) vs. Pregnant (n = 30) | Day 3 and 5 | [54] |
Up: miR-483-5p (Day3), miR-432-5p (Day5); Down: miR-199a-3p > miR-199b-3p, miR-199a-5p, miR-379-5p, miR-99a-5p (Day 5) | Non-pregnant (n = 3) vs. Pregnant (n = 5) | Day 3 and 5 | [37] |
Up: piR-020485, piR-015249 (Day4); Down: piR000765, piR-022628, let-7i-5p, piR-008112, piR-022258, piR-015026 (Day4), piR-008113, miR-381-3p, let-7a-5p, piR-001312 (Day5) | Non-pregnant (n = 49) vs. Pregnant (n = 25) | Day 4 and 5 | [55] |
Up: miR-24-1-5p; Down: miR-191-5p | Non-pregnant (n = 25) vs. Pregnant (n = 25) | Day 5 | [56] |
Up: miR-30c; Down: miR-20a | Eeva scores (from 5 to 1) (n = 136) | Day 5 | [57] |
Prediction | sncRNAs | AUC | 95% CI | Sensitivity (%) | Specificity (%) | Sample Type | Ref. |
---|---|---|---|---|---|---|---|
Pregnancy outcome | miR-20a | 0.773 | 0.737–0.908 | NA | NA | SCM | [57] |
miR-30c | 0.786 | 0.663–0.909 | NA | NA | SCM | [57] | |
miR-19b-3p | 0.818 | 0.696–0.940 | NA | NA | SCM | [51] | |
miR-26b-5p | 0.725 | 0.622–0.829 | NA | NA | SCM | [54] | |
miR-21-5p | 0.736 | 0.639–0.833 | NA | NA | SCM | [54] | |
piR-016735 + piR-02038+ let-7b-5p + let-7i-5p | 0.708 | NA | 100 | 33.3 | SCM | [52] | |
miR-29a | 0.680 | 0.550–0.790 | 83.3 | 53.5 | FF | [45] | |
miR-21-5p | 0.774 | 0.628–0.856 | 74.8 | 83.7 | FF | [59] | |
Day 3 embryo quality | miR-320a | 0.768 | 0.633–0.904 | NA | NA | SCM | [51] |
miR-15a-5p | 0.815 | 0.691–0.937 | NA | NA | SCM | [51] | |
miR-21-5p | 0.753 | 0.609–0.898 | NA | NA | SCM | [51] | |
miR-20a-5p | 0.855 | 0.746–0.965 | NA | NA | SCM | [51] | |
miR-320a | 0.753 | 0.651–0.855 | 80.0 | 71.0 | FF | [59] | |
Blastocyst formation | let-7b | 0.660 | 0.550–0.760 | 77.2 | 59.1 | FF | [45] |
miR-212-3p | 0.744 | 0.648–0.841 | 79.0 | 69.0 | FF | [59] | |
Expanded blastocyst | let-7b | 0.670 | 0.540–0.790 | 70.0 | 64.3 | FF | [45] |
miR-212-3p | 0.726 | 0.623–0.829 | 71.0 | 88.0 | FF | [59] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, W.; Chen, A.C.H.; Ng, E.H.Y.; Yeung, W.S.B.; Lee, Y.L. Non-Coding RNAs as Biomarkers for Embryo Quality and Pregnancy Outcomes: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2023, 24, 5751. https://doi.org/10.3390/ijms24065751
Huang W, Chen ACH, Ng EHY, Yeung WSB, Lee YL. Non-Coding RNAs as Biomarkers for Embryo Quality and Pregnancy Outcomes: A Systematic Review and Meta-Analysis. International Journal of Molecular Sciences. 2023; 24(6):5751. https://doi.org/10.3390/ijms24065751
Chicago/Turabian StyleHuang, Wen, Andy Chun Hang Chen, Ernest Hung Yu Ng, William Shu Biu Yeung, and Yin Lau Lee. 2023. "Non-Coding RNAs as Biomarkers for Embryo Quality and Pregnancy Outcomes: A Systematic Review and Meta-Analysis" International Journal of Molecular Sciences 24, no. 6: 5751. https://doi.org/10.3390/ijms24065751
APA StyleHuang, W., Chen, A. C. H., Ng, E. H. Y., Yeung, W. S. B., & Lee, Y. L. (2023). Non-Coding RNAs as Biomarkers for Embryo Quality and Pregnancy Outcomes: A Systematic Review and Meta-Analysis. International Journal of Molecular Sciences, 24(6), 5751. https://doi.org/10.3390/ijms24065751