Direct Application of 3-Maleimido-PROXYL for Proving Hypoalbuminemia in Cases of SARS-CoV-2 Infection: The Potential Diagnostic Method of Determining Albumin Instability and Oxidized Protein Level in Severe COVID-19
Abstract
:1. Introduction
2. Results
2.1. Clinical Dates of Hemoglobin, C-Reactive Protein, and Lactate Dehydrogenase Levels in Patients with COVID-19
2.2. Clinical Dates of Serum Albumin Level
2.3. Chest X-ray in a Patient with COVID-19
2.4. CW-EPR and SDSL-EPR Spectroscopy
Correlation Analysis
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. The Patients
4.3. Biological Samples and Clinical Dates
4.4. Measuring of the Serum Albumin Level
4.5. Radiography of the Lungs
4.6. EPR Spectroscopy
4.6.1. EPR—TEMPOL
4.6.2. SDSL-EPR Evaluation of 3-Maleimido-PROXYL
4.7. Measurement of Free Thiols
4.8. Statistical Analysis
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ARDS | Acute respiratory distress |
BCG | Bromcresolgreen |
DMSO | Dimethyl sulfoxide |
DNA | Deoxyribonucleic acid |
HSA | Human albumin serum |
Hgb | Hemoglobin |
CRP | C-reactive protein |
LDH | Lactate dehydrogenase |
mitoROS | Mitochondrial generating reactive oxygen spices |
OS | Oxidative stress |
PT | Prothrombin time |
ROS | Reactive oxygen spices |
RNA | Ribonucleic acid |
RNS | Reactive nitrogen spices |
SDSL-EPR | Site-Directed Spin Labeling Electron Paramagnetic Resonance Spectroscopy |
3-Maleimido-PROXYL | 3-Maleimido-2,2,5,5-tetramethyl-1-pyrrolidinyloxy free radical |
References
- Urrechaga, E.; Zalba, S.; Otamendi, I.; Zabalegui, M.A.; Galbete, A.; Ongay, E.; Fernandez, M.; García-Erce, J.A. Hemoglobin and anemia in COVID19 patients. Hematol. Med. Oncol. 2020, 5, 1–4. [Google Scholar] [CrossRef]
- Paliogiannis, P.; Mangoni, A.A.; Cangemi, M.; Fois, A.G.; Carru, C.; Zinellu, A. Serum albumin concentrations are associated with disease severity and outcomes in coronavirus 19 disease (COVID-19): A systematic review and meta-analysis. Clin. Exp. Med. 2021, 21, 343–354. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Li, C.; Wang, Z.; Wang, H.; Zhou, N.; Jiang, J.; Ni, L.; Zhang, X.A.; Wang, D.W. Decreased serum albumin level indicates poor prognosis of COVID-19 patients: Hepatic injury analysis from 2,623 hospitalized cases. Sci. China Life Sci. 2020, 63, 1678–1687. [Google Scholar] [CrossRef]
- Huang, J.; Cheng, A.; Kumar, R.; Fang, Y.; Chen, G.; Zhu, Y.; Lin, S. Hypoalbuminemia predicts the outcome of COVID-19 independent of age and co-morbidity. J. Med. Virol. 2020, 92, 2152–2158. [Google Scholar] [CrossRef] [PubMed]
- Checa, J.; Aran, J.M. Reactive oxygen species: Drivers of physiological and pathological processes. J. Inflamm. Res. 2020, 13, 1057. [Google Scholar] [CrossRef] [PubMed]
- Violi, F.; Cangemi, R.; Romiti, G.F.; Ceccarelli, G.; Oliva, A.; Alessandri, F.; Pirro, M.; Pignatelli, P.; Lichtner, M.; Carraro, A.; et al. Is albumin predictor of mortality in COVID-19? Antioxid. Redox Signal. 2021, 35, 139–142. [Google Scholar] [CrossRef] [PubMed]
- Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 2014, 20, 1126–1167. [Google Scholar] [CrossRef] [Green Version]
- Forrester, S.J.; Kikuchi, D.S.; Hernandes, M.S.; Xu, Q.; Griendling, K.K. Reactive Oxygen Species in Metabolic and Inflammatory Signaling. Circ. Res. 2018, 122, 877–902. [Google Scholar] [CrossRef]
- Yu, Z.; Li, Q.; Wang, J.; Yu, Y.; Wang, Y.; Zhou, Q.; Li, P. Reactive oxygen species-related nanoparticle toxicity in the biomedical field. Nanoscale Res. Lett. 2020, 15, 1–14. [Google Scholar] [CrossRef]
- Juan, C.A.; Pérez de la Lastra, J.M.; Plou, F.J.; Pérez-Lebeña, E. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int. J. Mol. Sci. 2021, 22, 4642. [Google Scholar] [CrossRef]
- Sivertsen, A.; Isaksson, J.; Leiros, H.K.S.; Svenson, J.; Svendsen, J.S.; Brandsdal, B.O. Synthetic cationic antimicrobial peptides bind with their hydrophobic parts to drug site II of human serum albumin. BMC Struct. Biol. 2014, 14, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zatloukalova, M.; Mojovic, M.; Pavicevic, A.; Kabelac, M.; Freeman, B.A.; Pekarova, M.; Vacek, J. Redox properties and human serum albumin binding of nitro-oleic acid. Redox Biol. 2019, 24, 101213. [Google Scholar] [CrossRef] [PubMed]
- Berliner, L.J. The evolution of biomedical EPR (ESR). Biomed. Spectrosc. Imaging 2016, 5, 5–26. [Google Scholar] [CrossRef] [Green Version]
- Torricella, F.; Pierro, A.; Mileo, E.; Belle, V.; Bonucci, A. Nitroxide spin labels and EPR spectroscopy: A powerful association for protein dynamics studies. Biochim. Biophys. Acta Proteins Proteom. 2021, 1869, 140653. [Google Scholar] [CrossRef]
- García-Rubio, I. EPR of site-directed spin-labeled proteins: A powerful tool to study structural flexibility. Arch. Biochem. Biophys. 2020, 684, 108323. [Google Scholar] [CrossRef]
- Singewald, K.; Lawless, M.J.; Saxena, S. Increasing nitroxide lifetime in cells to enable in-cell protein structure and dynamics measurements by electron spin resonance spectroscopy. J. Magn. Reson. 2019, 299, 21–27. [Google Scholar] [CrossRef]
- Melanson, M.; Sood, A.; Török, F.; Török, M. Introduction to spin label electron paramagnetic resonance spectroscopy of proteins. Biochem. Mol. Biol. Educ. 2013, 41, 156–162. [Google Scholar] [CrossRef]
- Thompson, A.R.; Binder, B.P.; McCaffrey, J.E.; Svensson, B.; Thomas, D.D. Bifunctional Spin Labeling of Muscle Proteins: Accurate Rotational Dynamics, Orientation, and Distance by EPR. Methods Enzymol. 2015, 564, 101–123. [Google Scholar] [CrossRef]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Acharya, R.; Poudel, D.; Patel, A.; Schultz, E.; Bourgeois, M.; Paswan, R.; Stockholm, S.; Batten, M.; Kafle, S.; Atkinson, A.; et al. Low serum albumin and the risk of hospitalization in COVID-19 infection: A retrospective case-control study. PLoS ONE 2021, 16, e0250906. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, Y.; Zhao, X.; Tao, M.; Yan, W.; Fu, Y. Hypoalbuminemia—An Indicator of the Severity and Prognosis of COVID-19 Patients: A Multicentre Retrospective Analysis. Infect. Drug Resist. 2021, 14, 3699–3710. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069. [Google Scholar] [CrossRef] [PubMed]
- Pavićević, A.; Luo, J.; Popović-Bijelić, A.; Mojović, M. Maleimido-proxyl as an EPR spin label for the evaluation of conformational changes of albumin. Eur. Biophys. J. 2017, 46, 773–787. [Google Scholar] [CrossRef] [PubMed]
- Terpos, E.; Ntanasis-Stathopoulos, I.; Elalamy, I.; Kastritis, E.; Sergentanis, T.N.; Politou, M.; Psaltopoulou, T.; Gerotziafas, G.; Dimopoulos, M.A. Hematological findings and complications of COVID-19. Am. J. Hematol. 2020, 95, 834–847. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Shi, L.; Wang, Y.; Duan, G.; Yang, H. Albumin and total bilirubin for severity and mortality in coronavirus disease 2019 patients. J. Clin. Lab. Anal. 2020, 34, e23412. [Google Scholar] [CrossRef]
- Wu, C.; Chen, X.; Cai, Y.; Xia, J.; Zhou, X.; Xu, S.; Huang, H.; Zhang, L.; Zhou, X.; Du, C.; et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern. Med. 2020, 180, 934–943. [Google Scholar] [CrossRef] [Green Version]
- Kulier, A.; Gombotz, H. Perioperative Anämie [Perioperative anemia]. Anaesthesist 2001, 50, 73–86. [Google Scholar] [CrossRef]
- García-Erce, J.A.; Lorente-Aznar, T.; Rivilla-Marugán, L. Influence of gender, age and residence altitude on haemoglobin levels and the prevalence of anaemia. Med. Clin. 2019, 153, 424–429. [Google Scholar] [CrossRef]
- Poggiali, E.; Zaino, D.; Immovilli, P.; Rovero, L.; Losi, G.; Dacrema, A.; Nuccetelli, M.; Vadacca, G.B.; Guidetti, D.; Vercelli, A.; et al. Lactate dehydrogenase and C-reactive protein as predictors of respiratory failure in CoVID-19 patients. Clin. Chim. Acta 2020, 509, 135–138. [Google Scholar] [CrossRef]
- Bai, H.X.; Hsieh, B.; Xiong, Z.; Halsey, K.; Choi, J.W.; Tran, T.M.; Pan, I.; Shi, L.B.; Wang, D.C.; Mei, J.; et al. Performance of radiologists in differentiating COVID-19 from non-COVID-19 viral pneumonia at chest CT. Radiology 2020, 296, E46–E54. [Google Scholar] [CrossRef] [Green Version]
- Song, F.; Shi, N.; Shan, F.; Zhang, Z.; Shen, J.; Lu, H.; Ling, Y.; Jiang, Y.; Shi, Y. Emerging 2019 novel coronavirus (2019-nCoV) pneumonia. Radiology 2020, 295, 210–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinstock, M.B.; Echenique, A.N.; Russell, J.W.; Leib, A.R.; Miller, J.; Cohen, D.; Waite, S.; Frye, A.; Illuzzi, F. Chest x-ray findings in 636 ambulatory patients with COVID-19 presenting to an urgent care center: A normal chest x-ray is no guarantee. J. Urgent Care Med. 2020, 14, 13–18. [Google Scholar]
- Diaz, A.; Bujnowski, D.; McMullen, P.; Lysandrou, M.; Ananthanarayanan, V.; Husain, A.N.; Freeman, R.; Vigneswaran, W.T.; Ferguson, M.K.; Donington, J.S.; et al. Pulmonary parenchymal changes in COVID-19 survivors. Ann. Thorac. Surg. 2021, 144, 301–310. [Google Scholar] [CrossRef]
- Wiedermann, C.J. Hypoalbuminemia as Surrogate and Culprit of Infections. Int. J. Mol. Sci. 2021, 22, 4496. [Google Scholar] [CrossRef]
- de la Rica, R.; Borges, M.; Aranda, M.; Del Castillo, A.; Socias, A.; Payeras, A.; Rialp, G.; Socias, L.; Masmiquel, L.; Gonzalez-Freire, M. Low albumin levels are associated with poorer outcomes in a case series of COVID-19 patients in Spain: A retrospective cohort study. Microorganisms 2020, 8, 1106. [Google Scholar] [CrossRef]
- Lapenna, D. Hypoalbuminemia in COVID-19. J. Intern. Med. 2021, 291, 388. [Google Scholar] [CrossRef]
- Naser, M.N.; Al-Ghatam, R.; Darwish, A.H.; Alqahtani, M.M.; Alahmadi, H.A.; Mohamed, K.A.; Hasan, N.K.; Perez, N.S. Risk factors, predictions, and progression of acute kidney injury in hospitalized COVID-19 patients: An observational retrospective cohort study. PLoS ONE 2021, 16, 0257253. [Google Scholar] [CrossRef] [PubMed]
- Soetedjo, N.N.M.; Iryaningrum, M.R.; Damara, F.A.; Permadhi, I.; Sutanto, L.B.; Hartono, H.; Rasyid, H. Prognostic properties of hypoalbuminemia in COVID-19 patients: A systematic review and diagnostic meta-analysis. Clin. Nutr. ESPEN 2021, 45, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Wagner, J.; Garcia-Rodriguez, V.; Yu, A.; Dutra, B.; Larson, S.; Cash, B.; DuPont, A.; Farooq, A. Elevated transaminases and hypoalbuminemia in Covid-19 are prognostic factors for disease severity. Sci. Rep. 2021, 11, 10308. [Google Scholar] [CrossRef] [PubMed]
- Aziz, M.; Fatima, R.; Assaly, R. Elevated interleukin-6 and severe COVID-19: A meta-analysis. J. Med. Virol. 2020, 92, 2283–2285. [Google Scholar] [CrossRef]
- Aziz, M.; Fatima, R.; Lee-Smith, W.; Assaly, R. The association of low serum albumin level with severe COVID-19: A systematic review and meta-analysis. Crit. Care 2020, 24, 255. [Google Scholar] [CrossRef]
- Kuten Pella, O.; Hornyák, I.; Horváthy, D.; Fodor, E.; Nehrer, S.; Lacza, Z. Albumin as a Biomaterial and Therapeutic Agent in Regenerative Medicine. Int. J. Mol. Sci. 2022, 23, 10557. [Google Scholar] [CrossRef]
- Taverna, M.; Marie, A.L.; Mira, J.P.; Guidet, B. Specific antioxidant properties of human serum albumin. Ann. Intensive Care 2013, 3, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Derouiche, S. Oxidative stress associated with SARS-Cov-2 (COVID-19) increases the severity of the lung disease-a systematic review. J. Infect. Dis. Epidemiol. 2020, 6, 121. [Google Scholar] [CrossRef]
- Belinskaia, D.A.; Voronina, P.A.; Shmurak, V.I.; Jenkins, R.O.; Goncharov, N.V. Serum albumin in health and disease: Esterase, antioxidant, transporting and signaling properties. Int. J. Mol. Sci. 2021, 22, 10318. [Google Scholar] [CrossRef] [PubMed]
- Rabbani, G.; Ahn, S.N. Roles of human serum albumin in prediction, diagnoses and treatment of COVID-19. Int. J. Biol. Macromol. 2021, 193, 948–955. [Google Scholar] [CrossRef]
- Maciążek-Jurczyk, M.; Morak-Młodawska, B.; Jeleń, M.; Kopeć, W.; Szkudlarek, A.; Owczarzy, A.; Kulig, K.; Rogóż, W.; Pożycka, J. The Influence of Oxidative Stress on Serum Albumin Structure as a Carrier of Selected Diazaphenothiazine with Potential Anticancer Activity. Pharmaceuticals 2021, 14, 285. [Google Scholar] [CrossRef] [PubMed]
- De Simone, G.; di Masi, A.; Ascenzi, P. Serum albumin: A multifaced enzyme. Int. J. Mol. Sci. 2021, 22, 10086. [Google Scholar] [CrossRef] [PubMed]
- Chubarov, A.S. Serum albumin for magnetic nanoparticles coating. Magnetochemistry 2022, 8, 13. [Google Scholar] [CrossRef]
- Chubarov, A.; Spitsyna, A.; Krumkacheva, O.; Mitin, D.; Suvorov, D.; Tormyshev, V.; Fedin, M.; Bowman, M.K.; Bagryanskaya, E. Reversible dimerization of human serum albumin. Molecules 2020, 26, 108. [Google Scholar] [CrossRef]
- Rahmani-Kukia, N.; Abbasi, A.; Pakravan, N.; Hassan, Z.M. Measurement of oxidized albumin: An opportunity for diagnoses or treatment of COVID-19. Bioorganic Chemistry 2020, 105, 104429. [Google Scholar] [CrossRef] [PubMed]
- Turell, L.; Steglich, M.; Torres, M.J.; Deambrosi, M.; Antmann, L.; Furdui, C.M.; Schopfer, F.J.; Alvarez, B. Sulfenic acid in human serum albumin: Reaction with thiols, oxidation and spontaneous decay. Free Radic. Biol. Med. 2021, 165, 254–264. [Google Scholar] [CrossRef]
- Badawy, M.A.; Yasseen, B.A.; El-Messiery, R.M.; Abdel-Rahman, E.A.; Elkhodiry, A.A.; Kamel, A.G.; El-Sayed, H.; Shedra, A.M.; Hamdy, R.; Zidan, M.; et al. Neutrophil-mediated oxidative stress and albumin structural damage predict COVID-19-associated mortality. Elife 2021, 10, e69417. [Google Scholar] [CrossRef] [PubMed]
- Turell, L.; Carballal, S.; Botti, H.; Radi, R.; Alvarez, B. Oxidation of the albumin thiol to sulfenic acid and its implications in the intravascular compartment. Braz. J. Med. Biol. Res. 2009, 42, 305–311. [Google Scholar] [CrossRef] [Green Version]
- Cavalcanti, L.F.; Chagas Silva, I.; do Nascimento, T.H.D.; de Melo, J.; Grion, C.M.C.; Cecchini, A.L.; Cecchini, R. Decreased plasma H2O2 levels are associated with the pathogenesis leading to COVID-19 worsening and mortality. Free. Radic. Res. 2023, 1, 1–9. [Google Scholar] [CrossRef]
- Wybranowski, T.; Napiórkowska, M.; Bosek, M.; Pyskir, J.; Ziomkowska, B.; Cyrankiewicz, M.; Pyskir, M.; Pilaczyńska-Cemel, M.; Rogańska, M.; Kruszewski, S.; et al. Study of Albumin Oxidation in COVID-19 Pneumonia Patients: Possible Mechanisms and Consequences. Int. J. Mol. Sci. 2022, 23, 10103. [Google Scholar] [CrossRef]
- Sahu, I.D.; Lorigan, G.A. Electron Paramagnetic Resonance as a Tool for Studying Membrane Proteins. Biomolecules 2020, 10, 763. [Google Scholar] [CrossRef] [PubMed]
- Hill, P.G. The measurement of albumin in serum and plasma. Ann. Clin. Biochem. 1985, 22, 565–578. [Google Scholar] [CrossRef]
- Tietz, N.W. Clinical Guide to Laboratory Tests, 3rd ed.; W.B. Saunders, Co.: Philadelphia, PA, USA, 1995; pp. 22–23. [Google Scholar]
- van Eijk, L.E.; Tami, A.; Hillebrands, J.L.; den Dunnen, W.F.A.; de Borst, M.H.; van der Voort, P.H.J.; Bulthuis, M.L.C.; Veloo, A.C.M.; Wold, K.I.; Vincenti González, M.F.; et al. Mild coronavirus disease 2019 (COVID-19) is marked by systemic oxidative stress: A pilot study. Antioxid 2021, 10, 2022. [Google Scholar] [CrossRef]
- Turell, L.; Radi, R.; Alvarez, B. The thiol pool in human plasma: The central contribution of albumin to redox processes. Free Radic. Biol. Med. 2013, 65, 244–253. [Google Scholar] [CrossRef] [Green Version]
Parameters | Patients with COVID-19 | Controls | p |
---|---|---|---|
n | 66 | 42 | |
Age [years] | 56.7 (49.0–65.0) | 51.0 (47.0–61.3) | 0.03 |
WBC [103/µL] | 4.60 (4.00–5.41) | 6.35 (5.30–7.21) | 0.03 |
RBC [106/µL] | 3.10 (3.00–4.50) | 4.70 (4.25–5.02) | 0.015 |
HGB [mg/dL] | 12.9 (11.30–13.70) | 15.80 (12.2–16.9) | <0.001 |
CRP [mg/L] | 21.66 (17.77–35.45) | 0.67 (0.30–1.20) | <0.001 |
LDH [IU/L] | 970.5 (850.0–1165.5) | 15.0 (11.0–20.5) | 0.035 |
Total protein [g/L] | 63.9 (55.0–81.0) | 52.5 (43.0–65.0) | 0.6 |
Albumin [g/dL] * | 3.66 (3.45–4.10) | 4.43 (4.10–5.00) | <0.001 |
Albumin [g/dL] ** | 2.19 (1.60–3.05) | none | |
Vaccinated | 0 | 38 | |
Intubated | 66 | none | |
Lung bilateral fibrotic changes | 66 | none | |
Oxygen Saturation % | 91 (87–93) | none | |
pH | 7.1 ± 0.06 | 7.37 ± 0.02 | <0.002 |
Group 1 Controls | HSA Levels | Group 2 COVID-19 | HSA Levels ** |
---|---|---|---|
male | 4.48 ± 0.44 | male | 2.24 ± 0.35 |
female | 4.39 ± 0.38 | female | 2.14 ± 0.026 |
Level of albumin in reference range: 3.5 to 5.2 g/dL | Hypoalbuminemia <3.5 g/dL |
COVID-19 Patients | Group 1 (Controls) | ||||||
---|---|---|---|---|---|---|---|
P1 | P2 | P3 | P4 | P5 | P6 | H1–H6 | |
Albumin, g/dL | 2.97 ± 0.6 | 2.57 ± 0.6 | 1.88 ± 0.8 | 2.60 ± 0.6 | 2.27 ± 0.5 | 2.19 ± 0.5 | 4.61 ± 0.6 |
Double-integrate EPR spectra of TEMPOL,a.u. | 18.67 ± 3.1 | 15.75 ± 2.5 | 6.92 ± 1.01 | 17.43 ± 2.1 | 16.84 ± 2.1 | 13.6 ± 1.9 | 85.41 ±4.24 |
Group 1 | |||
---|---|---|---|
EPR parameters | 3-Maleimido- PROXYL/DMSO | Control (male) | Control (female) |
ΔH0, G | 1.66 ± 0.0 | 3.42 ± 0.03 | 3.49 ± 0.02 |
Amax, G | 30 ± 0.00 | 61.5 ± 0.6 | 61.7 ± 0.4 |
Group 2 | |||
EPR parameters | 3-Maleimido- PROXYL/DMSO | Patients (male) | Patients (female) |
ΔH0, G | 1.66 ± 0.0 | 1.74 ± 0.01 | 1.74 ± 0.01 |
Amax, G | 30 ± 0.00 | 32.9 ± 0.4 | 32.9 ± 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Georgieva, E.; Atanasov, V.; Kostandieva, R.; Tsoneva, V.; Mitev, M.; Arabadzhiev, G.; Yovchev, Y.; Karamalakova, Y.; Nikolova, G. Direct Application of 3-Maleimido-PROXYL for Proving Hypoalbuminemia in Cases of SARS-CoV-2 Infection: The Potential Diagnostic Method of Determining Albumin Instability and Oxidized Protein Level in Severe COVID-19. Int. J. Mol. Sci. 2023, 24, 5807. https://doi.org/10.3390/ijms24065807
Georgieva E, Atanasov V, Kostandieva R, Tsoneva V, Mitev M, Arabadzhiev G, Yovchev Y, Karamalakova Y, Nikolova G. Direct Application of 3-Maleimido-PROXYL for Proving Hypoalbuminemia in Cases of SARS-CoV-2 Infection: The Potential Diagnostic Method of Determining Albumin Instability and Oxidized Protein Level in Severe COVID-19. International Journal of Molecular Sciences. 2023; 24(6):5807. https://doi.org/10.3390/ijms24065807
Chicago/Turabian StyleGeorgieva, Ekaterina, Vasil Atanasov, Rositsa Kostandieva, Vanya Tsoneva, Mitko Mitev, Georgi Arabadzhiev, Yovcho Yovchev, Yanka Karamalakova, and Galina Nikolova. 2023. "Direct Application of 3-Maleimido-PROXYL for Proving Hypoalbuminemia in Cases of SARS-CoV-2 Infection: The Potential Diagnostic Method of Determining Albumin Instability and Oxidized Protein Level in Severe COVID-19" International Journal of Molecular Sciences 24, no. 6: 5807. https://doi.org/10.3390/ijms24065807
APA StyleGeorgieva, E., Atanasov, V., Kostandieva, R., Tsoneva, V., Mitev, M., Arabadzhiev, G., Yovchev, Y., Karamalakova, Y., & Nikolova, G. (2023). Direct Application of 3-Maleimido-PROXYL for Proving Hypoalbuminemia in Cases of SARS-CoV-2 Infection: The Potential Diagnostic Method of Determining Albumin Instability and Oxidized Protein Level in Severe COVID-19. International Journal of Molecular Sciences, 24(6), 5807. https://doi.org/10.3390/ijms24065807