A New Strategy for Mapping Epitopes of LACK and PEPCK Proteins of Leishmania amazonensis Specific for Major Histocompatibility Complex Class I
Abstract
:1. Introduction
2. Results
2.1. Promiscuity Analysis of Human and Murine MHC I Alleles
2.2. Prediction of LACK and PEPCK Epitopes
2.3. Prediction of Physicochemical Parameters
2.4. Validation of Predicted Epitopes in Spleen Cells from Infected Mice by ELISpot
2.5. Quantification of the T Lymphocyte Subpopulations Reactive to the Predicted Epitopes
3. Discussion
4. Materials and Methods
4.1. Human Population Coverage and Murine MHC Class I Allele
4.2. Recovery of Peptide Sequences
4.3. Prediction of T Lymphocyte Epitopes
4.4. Tap Transport/Proteasomal Cleavage
4.5. Physicochemical Parameters and Antigenicity Prediction
4.6. Synthesis of Peptides and Purification
4.7. Mice and Infections
4.8. Enzyme-Linked Immunospot Assay (ELISpot)
4.9. Flow Cytometric Detection of T Cells Binding Complexed with Recombinant Dimers of MHC Class I (H-2Db) Molecule
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO Leishmaniasis. Available online: https://www.who.int/health-topics/leishmaniasis#tab=tab_1 (accessed on 17 November 2022).
- Ghorbani, M.; Farhoudi, R. Leishmaniasis in humans: Drug or vaccine therapy? Drug Des. Devel. Ther. 2018, 12, 25–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zutshi, S.; Kumar, S.; Chauhan, P.; Bansode, Y.; Nair, A.; Roy, S.; Sarkar, A.; Saha, B. Anti-leishmanial vaccines: Assumptions, approaches, and annulments. Vaccines 2019, 7, 156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loría-Cervera, E.N.; Andrade-Narváez, F.J. Review: Animal models for the study of leishmaniasis immunology. Rev. Inst. Med. Trop. Sao Paulo 2014, 56, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Soto, M.; Ramírez, L.; Solana, J.C.; Cook, E.C.L.; Hernández-García, E.; Requena, J.M.; Iborra, S. Inoculation of the Leishmania infantum hsp70-ii null mutant induces long-term protection against L. amazonensis infection in BALB/c mice. Microorganisms 2021, 9, 363. [Google Scholar] [CrossRef]
- Valle, T.Z.D.; Gaspar, E.B.; Souza-Lemos, C.; Souza, C.S.F.; Márquez, F.B.Z.; Baetas-Da-Cruz, W.; D’Escofier, L.N.; Côrte-Real, S.; Calabrese, K.S.; Da Costa, S.C.G. Experimental Leishmania (L.) amazonensis leishmaniasis: Characterization and immunogenicity of subcellular fractions. Immunol. Investig. 2007, 36, 473–492. [Google Scholar] [CrossRef]
- de Paula, K.C. Identification of a Leishmania (L) amazonensis Antigen Associated with Protection against Leishmaniasis in a Murine Model. Master’s Thesis, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil, 2003. [Google Scholar]
- Brito, R.; Ruiz, J.; Cardoso, J.; Ostolin, T.; Reis, L.; Mathias, F.; Aguiar-Soares, R.; Roatt, B.; Corrêa-Oliveira, R.; Resende, D.; et al. Chimeric vaccines designed by immunoinformatics-activated polyfunctional and memory T cells that trigger protection against experimental visceral leishmaniasis. Vaccines 2020, 8, 252. [Google Scholar] [CrossRef]
- Abdellahi, L.; Iraji, F.; Mahmoudabadi, A.; Hejazi, S.H. Vaccination in leishmaniasis: A review article. Iran. Biomed. J. 2022, 26, 1–35. [Google Scholar] [CrossRef]
- Brito, R.C.F.; Guimarães, F.G.; Velloso, J.P.L.; Corrêa-Oliveira, R.; Ruiz, J.C.; Reis, A.B.; Resende, D.M. Immunoinformatics features linked to Leishmania vaccine development: Data integration of experimental and in silico studies. Int. J. Mol. Sci. 2017, 18, 371. [Google Scholar] [CrossRef] [Green Version]
- Jajarmi, V.; Salehi-Sangani, G.; Mohebali, M.; Khamesipour, A.; Bandehpour, M.; Mahmoudi, M.; Zahedi-Zavaram, H. Immunization against Leishmania major infection in BALB/c mice using a subunit-based DNA vaccine derived from TSA, LmSTI1, KMP11, and LACK predominant antigens. Iran. J. Basic Med. Sci. 2019, 22, 1493–1501. [Google Scholar] [CrossRef]
- Kar, T.; Narsaria, U.; Basak, S.; Deb, D.; Castiglione, F.; Mueller, D.M.; Srivastava, A.P. A candidate multi-epitope vaccine against SARS-CoV-2. Sci. Rep. 2020, 10, 10895. [Google Scholar] [CrossRef]
- Rawal, K.; Sinha, R.; Abbasi, B.A.; Chaudhary, A.; Nath, S.K.; Kumari, P.; Preeti, P.; Saraf, D.; Singh, S.; Mishra, K.; et al. Identification of vaccine targets in pathogens and design of a vaccine using computational approaches. Sci. Rep. 2021, 11, 17626. [Google Scholar] [CrossRef] [PubMed]
- Hamrouni, S.; Bras-Gonçalves, R.; Kidar, A.; Aoun, K.; Chamakh-Ayari, R.; Petitdidierid, E.; Messaoudi, Y.; Pagniez, J.; Lemesre, J.L.; Meddeb-Garnaoui, A. Design of multi-epitope peptides containing hla class-i and class-ii-restricted epitopes derived from immunogenic Leishmania proteins, and evaluation of CD4+ and CD8+ T cell responses induced in cured cutaneous leishmaniasis subjects. PLoS Negl. Trop. Dis. 2020, 14, e0008093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alves-Silva, M.V.; Nico, D.; Morrot, A.; Palatnik, M.; Palatnik-de-Sousa, C.B. A chimera containing CD4+ and CD8+ T-cell epitopes of the Leishmania donovani nucleoside hydrolase (NH36) optimizes cross-protection against Leishmania amazonesis infection. Front. Immunol. 2017, 8, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malonis, R.J.; Lai, J.R.; Vergnolle, O. Peptide-Based Vaccines: Current Progress and Future Challenges. Chem. Rev. 2020, 120, 3210–3229. [Google Scholar] [CrossRef] [Green Version]
- Abd-Aziz, N.; Poh, C.L. Development of Peptide-Based Vaccines for Cancer. J. Oncol. 2022, 2022, 9749363. [Google Scholar] [CrossRef]
- Abdullah, T.; Bhatt, K.; Eggermont, L.J.; O’Hare, N.; Memic, A.; Bencherif, S.A. Supramolecular Self-Assembled Peptide-Based Vaccines: Current State and Future Perspectives. Front. Chem. 2020, 8, 598160. [Google Scholar] [CrossRef]
- Forner, M.; Cañas-Arranz, R.; Defaus, S.; de León, P.; Rodríguez-Pulido, M.; Ganges, L.; Blanco, E.; Sobrino, F.; Andreu, D. Peptide-Based Vaccines: Foot-and-Mouth Disease Virus, a Paradigm in Animal Health. Vaccines 2021, 9, 477. [Google Scholar] [CrossRef]
- Apostolopoulos, V.; Bojarska, J.; Chai, T.T.; Elnagdy, S.; Kaczmarek, K.; Matsoukas, J.; New, R.; Parang, K.; Lopez, O.P.; Parhiz, H.; et al. A Global Review on Short Peptides: Frontiers and Perspectives. Molecules 2021, 26, 430. [Google Scholar] [CrossRef]
- Ayari-Riabi, S.; Ben khalaf, N.; Bouhaouala-Zahar, B.; Verrier, B.; Trimaille, T.; Benlasfar, Z.; Chenik, M.; Elayeb, M. Polylactide Nanoparticles as a Biodegradable Vaccine Adjuvant: A Study on Safety, Protective Immunity and Efficacy against Human Leishmaniasis Caused by Leishmania Major. Molecules 2022, 27, 8677. [Google Scholar] [CrossRef]
- Ikeogu, N.M.; Akaluka, G.N.; Edechi, C.A.; Salako, E.S.; Onyilagha, C.; Barazandeh, A.F.; Uzonna, J.E. Leishmania Immunity: Advancing Immunotherapy and Vaccine Development. Microorganisms 2020, 8, 1201. [Google Scholar] [CrossRef]
- Chamakh-Ayari, R.; Chenik, M.; Chakroun, A.S.; Bahi-Jaber, N.; Aoun, K.; Meddeb-Garnaoui, A. Leishmania major large RAB GTPase is highly immunogenic in individuals immune to cutaneous and visceral leishmaniasis. Parasites Vectors 2017, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Genome, M.; Consortium, S.; Consortium, M.G.S.; Waterston, R.H.; Lindblad-Toh, K.; Birney, E.; Rogers, J.; Abril, J.F.; Agarwal, P.; Agarwala, R.; et al. Initial sequencing and comparative analysis of the mouse genome. Nature 2002, 420, 520–562. [Google Scholar]
- Bottomly, D.; Walter, N.A.R.; Hunter, J.E.; Darakjian, P.; Kawane, S.; Buck, K.J.; Searles, R.P.; Mooney, M.; McWeeney, S.K.; Hitzemann, R. Evaluating gene expression in C57BL/6J and DBA/2J mouse striatum using RNA-Seq and microarrays. PLoS ONE 2011, 6, e17820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dikhit, M.R.; Kumar, A.; Das, S.; Dehury, B.; Rout, A.K.; Jamal, F.; Sahoo, G.C.; Topno, R.K.; Pandey, K.; Das, V.N.R.; et al. Identification of potential MHC Class-II-restricted epitopes derived from Leishmania donovani antigens by reverse vaccinology and evaluation of their CD4+ T-cell responsiveness against visceral leishmaniasis. Front. Immunol. 2017, 8, 1763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iborra, S.; Solana, J.C.; Requena, J.M.; Soto, M. Vaccine candidates against leishmania under current research. Expert Rev. Vaccines 2018, 17, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Seyed, N.; Taheri, T.; Rafati, S. Post-Genomics and Vaccine Improvement for Leishmania. Front. Microbiol. 2016, 7, 467. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, F.O.; Zaverucha-do-Valle, T.; Almeida-Souza, F.; Abreu-Silva, A.L.; Calabrese, K.D.S. Modulation of Cytokines and Extracellular Matrix Proteins Expression by Leishmania amazonensis in Susceptible and Resistant Mice. Front. Microbiol. 2020, 11, 1986. [Google Scholar] [CrossRef] [PubMed]
- Joon, S.; Singla, R.K.; Shen, B. Vaccines and Immunoinformatics for Vaccine Design. Adv. Exp. Med. Biol. 2022, 1368, 95–110. [Google Scholar] [CrossRef] [PubMed]
- Elfaki, M.E.E.; Khalil, E.A.G.; De Groot, A.S.; Musa, A.M.; Gutierrez, A.; Younis, B.M.; Salih, K.A.M.; El-Hassan, A.M. Immunogenicity and immune modulatory effects of in silico predicted L. donovani candidate peptide vaccines. Hum. Vaccines Immunother. 2012, 8, 1769–1774. [Google Scholar] [CrossRef] [Green Version]
- Herrera-Najera, C.; Piña-Aguilar, R.; Xacur-Garcia, F.; Ramirez-Sierra, M.J.; Dumonteil, E. Mining the Leishmania genome for novel antigens and vaccine candidates. Proteomics 2009, 9, 1293–1301. [Google Scholar] [CrossRef]
- Khalil, E.A.G.; Ayed, N.B.; Musa, A.M.; Ibrahim, M.E.; Mukhtar, M.M.; Zijlstra, E.E.; Elhassan, I.M.; Smith, P.G.; Kieny, P.M.; Ghalib, H.W.; et al. Dichotomy of protective cellular immune responses to human visceral leishmaniasis. Clin. Exp. Immunol. 2005, 140, 349–353. [Google Scholar] [CrossRef] [PubMed]
- Mendes, T.M.; Roma, E.H.; Costal-Oliveira, F.; Dhom-Lemos, L.D.C.; Toledo-Machado, C.M.; Bruna-Romero, O.; Bartholomeu, D.C.; Fujiwara, R.T.; Chávez-Olórtegui, C. Epitope mapping of recombinant Leishmania donovani virulence factor A2 (recLdVFA2) and canine leishmaniasis diagnosis using a derived synthetic bi-epitope. PLoS Negl. Trop. Dis. 2017, 11, e0005562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Oliveira, B.C.; Duthie, M.S.; Pereira, V.R.A. Vaccines for leishmaniasis and the implications of their development for American tegumentary leishmaniasis. Hum. Vaccines Immunother. 2020, 16, 919–930. [Google Scholar] [CrossRef] [PubMed]
- Akya, A.; Farasat, A.; Ghadiri, K.; Rostamian, M. Identification of HLA-I restricted epitopes in six vaccine candidates of Leishmania tropica using immunoinformatics and molecular dynamics simulation approaches. Infect. Genet. Evol. 2019, 75, 103953. [Google Scholar] [CrossRef] [PubMed]
- Elmahallawy, E.K.; Alkhaldi, A.A.M.; Saleh, A. Host immune response against leishmaniasis and parasite persistence strategies: A review and assessment of recent research. Biomed. Pharmacother. 2021, 139, 111671. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, J.T.; Rubinsteyn, A.; Bonsack, M.; Riemer, A.B.; Laserson, U.; Hammerbacher, J. MHCflurry: Open-Source Class I MHC Binding Affinity Prediction. Cell Syst. 2018, 7, 129–132. [Google Scholar] [CrossRef] [Green Version]
- Bahrami, A.A.; Payandeh, Z.; Khalili, S.; Zakeri, A.; Bandehpour, M. Immunoinformatics: In Silico Approaches and Computational Design of a Multi-epitope, Immunogenic Protein. Int. Rev. Immunol. 2019, 38, 307–322. [Google Scholar] [CrossRef]
- Tilocca, B.; Britti, D.; Urbani, A.; Roncada, P. Computational Immune Proteomics Approach to Target COVID-19. J. Proteome Res. 2020, 19, 4233–4241. [Google Scholar] [CrossRef]
- Verma, S.; Deep, D.K.; Gautam, P.; Singh, R.; Salotra, P. Proteomic analysis of leishmania donovani membrane components reveals the role of activated protein C kinase in host-parasite interaction. Pathogens 2021, 10, 1194. [Google Scholar] [CrossRef]
- Sinha, S.; Kumar, A.; Sundaram, S. Hypothesis A comprehensive analysis of LACK (Leishmania homologue of receptors for activated C kinase) in the context of Visceral Leishmaniasis. Bioinformation 2013, 9, 832. [Google Scholar] [CrossRef]
- Launois, P.; Pingel, S.; Himmelrich, H.; Locksley, R.; Louis, J. Different epitopes of the LACK protein are recognized by Vβ4 Vα8 CD4+ T cells in H-2b and H-2d mice susceptible to Leishmania major. Microbes Infect. 2007, 9, 1260–1266. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Contreras, D.; Hamilton, N. Gluconeogenesis in Leishmania mexicana: Contribution of glycerol kinase, phosphoenolpyruvate carboxykinase, and pyruvate phosphate dikinase. J. Biol. Chem. 2014, 289, 32989–33000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mou, Z.; Li, J.; Boussoffara, T.; Kishi, H.; Hamana, H.; Ezzati, P.; Hu, C.; Yi, W.; Liu, D.; Khadem, F.; et al. Identification of broadly conserved cross-species protective Leishmania antigen and its responding CD4+ T cells. Sci. Transl. Med. 2015, 7, 310ra167. [Google Scholar] [CrossRef] [PubMed]
- Louis, L.; Clark, M.; Wise, M.C.; Glennie, N.; Wong, A.; Broderick, K.; Uzonna, J.; Weiner, D.B.; Scott, P. Intradermal synthetic DNA vaccination generates leishmania-specific T cells in the skin and protection against leishmania major. Infect. Immun. 2019, 87, e00227-19. [Google Scholar] [CrossRef] [Green Version]
- Seder, R.A.; Hill, A.V.S. Vaccines against intracellular infections requiring cellular immunity. Nature 2000, 406, 793–798. [Google Scholar] [CrossRef]
- Bertholet, S.; Goldszmid, R.; Morrot, A.; Debrabant, A.; Afrin, F.; Collazo-Custodio, C.; Houde, M.; Desjardins, M.; Sher, A.; Sacks, D. Leishmania Antigens Are Presented to CD8 T Cells by a Transporter Associated with Antigen Processing-Independent Pathway In Vitro and In Vivo. J. Immunol. 2006, 177, 3525–3533. [Google Scholar] [CrossRef] [Green Version]
- Carneiro, M.B.; Peters, N.C. The Paradox of a Phagosomal Lifestyle: How Innate Host Cell-Leishmania amazonensis Interactions Lead to a Progressive Chronic Disease. Front. Immunol. 2021, 12, 3468. [Google Scholar] [CrossRef]
- Souza-Silva, F.; Pereira, B.; Finkelstein, L.C. Dynamic identification of H2 epitopes from Leishmania (Leishmania) amazonensis cysteine proteinase B with potential immune activity during murine infection. J. Mol. Recognit. 2014, 27, 98–105. [Google Scholar] [CrossRef]
- Ajay Amit, V.; Dikhit, M.R.; Singh, A.K.; Venkateshwaran, T.; Das, V.N.R.; Das, P.; Bimal, S. Immuno-informatics based approaches to identify CD8+ T cell epitopes within the Leishmania donovani 3-ectonucleotidase in cured visceral leishmaniasis subjects. Microbes Infect. 2017, 19, 358–369. [Google Scholar] [CrossRef]
- Agallou, M.; Athanasiou, E.; Koutsoni, O.; Dotsika, E.; Karagouni, E. Experimental validation of multi-epitope peptides including promising MHC class I- and II-restricted epitopes of four known Leishmania infantum proteins. Front. Immunol. 2014, 5, 268. [Google Scholar] [CrossRef] [Green Version]
- Brandt, A.M.L.; Batista, P.R.; Souza-Silva, F.; Alves, C.R.; Caffarena, E.R. Exploring the unbinding of Leishmania (L.) amazonensis CPB derived-epitopes from H2 MHC class I proteins. Proteins Struct. Funct. Bioinform. 2016, 84, 473–487. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Galarza, F.F.; McCabe, A.; Dos Santos, E.J.M.; Jones, J.; Takeshita, L.; Ortega-Rivera, N.D.; Cid-Pavon, G.M.D.; Ramsbottom, K.; Ghattaoraya, G.; Alfirevic, A.; et al. Allele frequency net database (AFND) 2020 update: Gold-standard data classification, open access genotype data and new query tools. Nucleic Acids Res. 2020, 48, D783–D788. [Google Scholar] [CrossRef] [PubMed]
- H2 Haplotypes. Available online: http://www.informatics.jax.org/downloads/datasets/misc/H2Haplotypes/H2_haplotypes.html#table3 (accessed on 19 November 2022).
- Real, F.; Vidal, R.O.; Carazzolle, M.F.; Mondego, J.M.C.; Costa, G.G.L.; Herai, R.H.; Würtele, M.; De Carvalho, L.M.; Ferreira, R.C.E.; Mortara, R.A.; et al. The genome sequence of leishmania (Leishmania) amazonensis: Functional annotation and extended analysis of gene models. DNA Res. 2013, 20, 567–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vita, R.; Mahajan, S.; Overton, J.A.; Dhanda, S.K.; Martini, S.; Cantrell, J.R.; Wheeler, D.K.; Sette, A.; Peters, B. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res. 2019, 47, D339–D343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rammensee, H.G.; Friede, T.; Stevanović, S. MHC ligands and peptide motifs: First listing. Immunogenetics 1995, 41, 178–228. [Google Scholar] [CrossRef]
- Bailey, T.L.; Johnson, J.; Grant, C.E.; Noble, W.S. The MEME Suite. Nucleic Acids Res. 2015, 43, W39–W49. [Google Scholar] [CrossRef] [Green Version]
- Corpet, F. Nucleic Acids Research Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 1988, 16, 10881–10890. [Google Scholar] [CrossRef]
- Larsen, M.V.; Lundegaard, C.; Lamberth, K.; Buus, S.; Lund, O.; Nielsen, M. Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinform. 2007, 8, 424. [Google Scholar] [CrossRef] [Green Version]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein Identification and Analysis Tools on the ExPASy Server. In The Proteomics Protocols Handbook; Springer: Berlin/Heidelberg, Germany, 2005; pp. 571–607. [Google Scholar]
- Doytchinova, I.A.; Flower, D.R. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform. 2007, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Prado, I.C.; Chino, M.E.; Santos, A.L.; Souza, A.L.A.; Gomes, L.P.; Lemos, E.R.S.; De Simone, S.G. Development of an electrochemical immunosensor for the diagnostic testing of spotted fever using synthetic peptides. Biosens. Bioelectron. 2018, 100, 115–122. [Google Scholar] [CrossRef]
ID | Sequence | Score | Proteasomal Cleavage Score | Tap Transport Efficiency | Antigenicity |
---|---|---|---|---|---|
pL1-H2 | SLEHPIVVSGS | 58.8 | 0.4515 | −23.190 | 0.7372 |
pL2-H2 | PSLEHPIVVSG | 53.9 | 0.9244 | −0.1090 | 0.8165 |
pL3-H2 | PDGAKPSECIS | 78.7 | 0.0403 | −0.9380 | 1.0405 |
pL4-HLA | YVSTVTVSPDG | 61.5 | 0.6117 | 0.2170 | 1.1232 |
pL5-HLA | VSTVTVSPDGS | 77.5 | 0.1775 | −17.510 | 0.8993 |
pL6-HLA | TVTVSPDGSLC | 92.5 | 0.0438 | −21.660 | 1.5174 |
pL7-HLA | YIKVVSTSRDG | 81 | 0.9537 | 15.890 | 1.2568 |
pL8-HLA | VSTSRDGTAIS | 78.5 | 0.3099 | −0.4710 | 1.4326 |
pL9-HLA | STSRDGTAISW | 81.5 | 0.7774 | 0.5600 | 0.7833 |
pL10-HLA | IKVVSTSRDGT | 74.5 | 0.1949 | −16.670 | 1.1628 |
pL11-HLA | KVVSTSRDGT | 2 * | 0.1808 | −10.740 | 1.4372 |
pP12-H2 | VRENVEWGSVN | 77.2 | 0.0844 | −21.230 | −0.1759 |
pP13-H2 | TDDVRENVEWG | 60.4 | 0.0418 | −20.720 | 1.1467 |
pP14-H2 | ENVEWGSVNVK | 58.8 | 0.1463 | −15.960 | 0.1724 |
pP15-H2 | DDVRENVEWGS | 62.2 | 0.9084 | 0.3370 | 1.2258 |
pP16-H2 | PELVQWALKLE | 75.2 | 0.7149 | −0.1350 | 1.0838 |
pP17-H2 | APELVQWALK | 2 * | 0.9779 | 0.6480 | 0.6729 |
pP18-H2 | LTAPELVQWA | 3 * | 0.9543 | 0.8820 | 0.3878 |
pP19-HLA | VFNIEGGCYAK | 61.5 | 0.7825 | 30.580 | −0.0962 |
pP20-HLA | IEGGCYAKAIG | 85.5 | 0.3468 | −0.8130 | 0.9997 |
pP21-HLA | GGCYAKAIGLN | 73 | 0.0299 | −18.340 | 0.5172 |
pP22-HLA | RGALCVLSYAK | 41 | 0.9094 | 29.170 | −0.0153 |
pP23-HLA | LCVLSYAKTGR | 85 | 0.1467 | −0.6050 | 0.1837 |
pP24-HLA | CVLSYAKTGRS | 66 | 0.2616 | −12.820 | 0.1697 |
pP25-HLA | LCVLSYAKTG | 7 * | 0.1408 | −0.6050 | 0.1645 |
pP26-HLA | ALCVLSYAKT | 7 * | 0.7315 | 0.6350 | −0.2272 |
ID | Aminoacids | Molecular Weight | pI | Half-Life M * | Half-Life Y ** | Half-Life E *** | Instability | Aliphatic | GRAVY |
---|---|---|---|---|---|---|---|---|---|
pL1-H2 | 11 | 1124.26 | 5.22 | 1.9 h | >20 h | >10 h | −8.1 | 123.64 | 0.509 |
pL2-H2 | 11 | 1134.30 | 5.25 | >20 h | >20 h | - | 9.41 | 123.64 | 0.436 |
pL3-H2 | 11 | 1103.21 | 4.37 | >20 h | >20 h | - | 62.63 | 44.55 | −0.664 |
pL4-HLA | 11 | 1124.21 | 3.80 | 2.8 h | 10 min | 2 min | 34.46 | 79.09 | 0.255 |
pL5-HLA | 11 | 1048.12 | 3.80 | 100 h | >20 h | >10 h | 34.46 | 79.09 | 0.300 |
pL6-HLA | 11 | 1078.20 | 3.80 | 7.2 h | >20 h | >10 h | 34.46 | 88.18 | 0.564 |
pL7-HLA | 11 | 1224.38 | 8.59 | 2.8 h | 10 min | 2 min | 11.16 | 88.18 | −0.273 |
pL8-HLA | 11 | 1093.16 | 5.81 | 100 h | >20 h | >10 h | 18.88 | 70.91 | −0.155 |
pL9-HLA | 11 | 1180.24 | 5.55 | 1.9 h | >20 h | >10 h | 18.88 | 44.55 | −0.618 |
pL10-HLA | 11 | 1162.31 | 8.75 | 20 h | 30 min | >10 h | 3.45 | 88.18 | −0.218 |
pL11-HLA | 10 | 1049.15 | 8.75 | 1.3 h | 3 min | 3 min | 11.28 | 58.00 | −0.690 |
pP12-H2 | 11 | 1288.38 | 4.53 | 100 h | >20 h | >10 h | −14.00 | 79.09 | −0.727 |
pP13-H2 | 11 | 1319.35 | 3.92 | 7.2 h | >20 h | >10 h | −14.00 | 52.73 | −1.418 |
pP14-H2 | 11 | 1260.37 | 4.53 | 1 h | 30 min | >10 h | −16.62 | 79.09 | −0.673 |
pP15-H2 | 11 | 1305.32 | 3.92 | 1.1 h | 3 min | >10 h | −14.00 | 52.73 | −1.427 |
pP16-H2 | 11 | 1325.57 | 4.53 | >20 h | >20 h | - | −4.21 | 141.82 | 0.045 |
pP17-H2 | 10 | 1154.37 | 6.05 | 4.4 h | >20 h | >10 h | 22.12 | 127.00 | 0.200 |
pP18-H2 | 10 | 1127.31 | 4.00 | 5.5 h | 3 min | 2 min | 30.61 | 127.00 | 0.520 |
pP19-HLA | 11 | 1200.37 | 5.96 | 100 h | >20 h | >10 h | 121.73 | 70.91 | 0.255 |
pP20-HLA | 11 | 1081.25 | 5.99 | 20 h | 30 min | >10 h | 81.78 | 89.09 | 0.473 |
pP21-HLA | 11 | 1066.24 | 8.20 | 30 h | >20 h | >10 h | 41.84 | 89.09 | 0.409 |
pP22-HLA | 11 | 1180.43 | 9.31 | 1 h | 2 min | 2 min | 8.33 | 115.45 | 0.636 |
pP23-HLA | 11 | 1210.46 | 9.31 | 5.5 h | 3 min | 2 min | 16.05 | 106.36 | 0.409 |
pP24-HLA | 10 | 1184.38 | 9.31 | 1.2 h | >20 h | >10 h | 55.99 | 70.91 | −0.009 |
pP25-HLA | 10 | 1054.27 | 8.20 | 5.5 h | 3 min | 2 min | 16.65 | 117.00 | 0.900 |
pP26-HLA | 10 | 1068.30 | 8.24 | 4.4 h | >20 h | >10 h | 25.14 | 127.00 | 1.120 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira-Sena, E.P.; Hardoim, D.d.J.; Cardoso, F.d.O.; d’Escoffier, L.N.; Soares, I.F.; Carvalho, J.P.R.d.S.; Angnes, R.A.; Fragoso, S.P.; Alves, C.R.; De-Simone, S.G.; et al. A New Strategy for Mapping Epitopes of LACK and PEPCK Proteins of Leishmania amazonensis Specific for Major Histocompatibility Complex Class I. Int. J. Mol. Sci. 2023, 24, 5972. https://doi.org/10.3390/ijms24065972
Ferreira-Sena EP, Hardoim DdJ, Cardoso FdO, d’Escoffier LN, Soares IF, Carvalho JPRdS, Angnes RA, Fragoso SP, Alves CR, De-Simone SG, et al. A New Strategy for Mapping Epitopes of LACK and PEPCK Proteins of Leishmania amazonensis Specific for Major Histocompatibility Complex Class I. International Journal of Molecular Sciences. 2023; 24(6):5972. https://doi.org/10.3390/ijms24065972
Chicago/Turabian StyleFerreira-Sena, Edlainne Pinheiro, Daiana de Jesus Hardoim, Flavia de Oliveira Cardoso, Luiz Ney d’Escoffier, Isabela Ferreira Soares, João Pedro Rangel da Silva Carvalho, Ricardo Almir Angnes, Stenio Perdigão Fragoso, Carlos Roberto Alves, Salvatore Giovanni De-Simone, and et al. 2023. "A New Strategy for Mapping Epitopes of LACK and PEPCK Proteins of Leishmania amazonensis Specific for Major Histocompatibility Complex Class I" International Journal of Molecular Sciences 24, no. 6: 5972. https://doi.org/10.3390/ijms24065972
APA StyleFerreira-Sena, E. P., Hardoim, D. d. J., Cardoso, F. d. O., d’Escoffier, L. N., Soares, I. F., Carvalho, J. P. R. d. S., Angnes, R. A., Fragoso, S. P., Alves, C. R., De-Simone, S. G., Lima-Junior, J. d. C., Bertho, A. L., Zaverucha-do-Valle, T., da Silva, F. S., & Calabrese, K. d. S. (2023). A New Strategy for Mapping Epitopes of LACK and PEPCK Proteins of Leishmania amazonensis Specific for Major Histocompatibility Complex Class I. International Journal of Molecular Sciences, 24(6), 5972. https://doi.org/10.3390/ijms24065972