GWAS-Identified Variants for Obesity Do Not Influence the Risk of Developing Multiple Myeloma: A Population-Based Study and Meta-Analysis
Abstract
:1. Introduction
2. Results
3. Discussion
4. Methods and Materials
4.1. Study Participants
4.2. SNP Selection and Genotyping
4.3. Statistical Analysis and Meta-Analysis
4.4. Cell Isolation, Differentiation, and Cytokine Quantitative Trait Loci (cQTL) in Relation to the GWAS-Identified Variants for Obesity
4.5. Correlation between GWAS-Identified Polymorphisms and Cell Counts of 91 Blood-Derived Immune Cell Populations and Serum/Plasmatic Proteomic Profile
4.6. Correlation between Obesity-Related SNPs and Serum Steroid Hormones
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Palumbo, A.; Anderson, K. Multiple myeloma. N. Engl. J. Med. 2011, 364, 1046–1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajkumar, S.V. Multiple myeloma: 2020 update on diagnosis, risk-stratification and management. Am. J. Hematol. 2020, 95, 548–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnidge, D.R.; Tschumper, R.C.; Theis, J.D.; Snyder, M.R.; Jelinek, D.F.; Katzmann, J.A.; Dispenzieri, A.; Murray, D.L. Monitoring M-proteins in patients with multiple myeloma using heavy-chain variable region clonotypic peptides and LC-MS/MS. J. Proteome Res. 2014, 13, 1905–1910. [Google Scholar] [CrossRef] [PubMed]
- Basen-Engquist, K.; Chang, M. Obesity and cancer risk: Recent review and evidence. Curr. Oncol. Rep. 2011, 13, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Calle, E.E.; Rodriguez, C.; Walker-Thurmond, K.; Thun, M.J. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N. Engl. J. Med. 2003, 348, 1625–1638. [Google Scholar] [CrossRef] [Green Version]
- Maskarinec, G.; Erber, E.; Gill, J.; Cozen, W.; Kolonel, L.N. Overweight and obesity at different times in life as risk factors for non-Hodgkin’s lymphoma: The multiethnic cohort. Cancer Epidemiol. Biomark. Prev. 2008, 17, 196–203. [Google Scholar] [CrossRef] [Green Version]
- Chiu, B.C.; Soni, L.; Gapstur, S.M.; Fought, A.J.; Evens, A.M.; Weisenburger, D.D. Obesity and risk of non-Hodgkin lymphoma (United States). Cancer Causes Control 2007, 18, 677–685. [Google Scholar] [CrossRef]
- Larsson, S.C.; Wolk, A. Obesity and risk of non-Hodgkin’s lymphoma: A meta-analysis. Int. J. Cancer 2007, 121, 1564–1570. [Google Scholar] [CrossRef]
- Skibola, C.F. Obesity, diet and risk of non-Hodgkin lymphoma. Cancer Epidemiol. Biomark. Prev. 2007, 16, 392–395. [Google Scholar] [CrossRef] [Green Version]
- Lichtman, M.A. Obesity and the risk for a hematological malignancy: Leukemia, lymphoma, or myeloma. Oncologist 2010, 15, 1083–1101. [Google Scholar] [CrossRef] [Green Version]
- Strom, S.S.; Yamamura, Y.; Kantarijian, H.M.; Cortes-Franco, J.E. Obesity, weight gain, and risk of chronic myeloid leukemia. Cancer Epidemiol. Biomark. Prev. 2009, 18, 1501–1506. [Google Scholar] [CrossRef] [Green Version]
- Hillers-Ziemer, L.E.; McMahon, R.Q.; Hietpas, M.; Paderta, G.; LeBeau, J.; McCready, J.; Arendt, L.M. Obesity Promotes Cooperation of Cancer Stem-Like Cells and Macrophages to Enhance Mammary Tumor Angiogenesis. Cancers 2020, 12, 502. [Google Scholar] [CrossRef] [Green Version]
- Ritter, A.; Kreis, N.N.; Hoock, S.C.; Solbach, C.; Louwen, F.; Yuan, J. Adipose Tissue-Derived Mesenchymal Stromal/Stem Cells, Obesity and the Tumor Microenvironment of Breast Cancer. Cancers 2022, 14, 3908. [Google Scholar] [CrossRef]
- Went, M.; Sud, A.; Law, P.J.; Johnson, D.C.; Weinhold, N.; Forsti, A.; van Duin, M.; Mitchell, J.S.; Chen, B.; Kuiper, R.; et al. Assessing the effect of obesity-related traits on multiple myeloma using a Mendelian randomisation approach. Blood Cancer J. 2017, 7, e573. [Google Scholar] [CrossRef] [Green Version]
- Cao, S.; Liu, J.; Song, L.; Ma, X. The protooncogene c-Maf is an essential transcription factor for IL-10 gene expression in macrophages. J. Immunol. 2005, 174, 3484–3492. [Google Scholar] [CrossRef] [Green Version]
- Trabanelli, S.; Ercolano, G.; Wyss, T.; Gomez-Cadena, A.; Falquet, M.; Cropp, D.; Imbratta, C.; Leblond, M.M.; Salvestrini, V.; Curti, A.; et al. c-Maf enforces cytokine production and promotes memory-like responses in mouse and human type 2 innate lymphoid cells. EMBO J. 2022, 41, e109300. [Google Scholar] [CrossRef]
- Kim, T.H.; Yang, K.; Kim, M.; Kim, H.S.; Kang, J.L. Apoptosis inhibitor of macrophage (AIM) contributes to IL-10-induced anti-inflammatory response through inhibition of inflammasome activation. Cell Death Dis. 2021, 12, 19. [Google Scholar] [CrossRef]
- Gabrysova, L.; Alvarez-Martinez, M.; Luisier, R.; Cox, L.S.; Sodenkamp, J.; Hosking, C.; Perez-Mazliah, D.; Whicher, C.; Kannan, Y.; Potempa, K.; et al. c-Maf controls immune responses by regulating disease-specific gene networks and repressing IL-2 in CD4(+) T cells. Nat. Immunol. 2018, 19, 497–507. [Google Scholar] [CrossRef] [PubMed]
- Weinhold, N.; Meissner, T.; Johnson, D.C.; Seckinger, A.; Moreaux, J.; Forsti, A.; Chen, B.; Nickel, J.; Chubb, D.; Rawstron, A.C.; et al. The 7p15.3 (rs4487645) association for multiple myeloma shows strong allele-specific regulation of the MYC-interacting gene CDCA7L in malignant plasma cells. Haematologica 2015, 100, e110–e113. [Google Scholar] [CrossRef] [Green Version]
- Gagliano Taliun, S.A.; VandeHaar, P.; Boughton, A.P.; Welch, R.P.; Taliun, D.; Schmidt, E.M.; Zhou, W.; Nielsen, J.B.; Willer, C.J.; Lee, S.; et al. Exploring and visualizing large-scale genetic associations by using PheWeb. Nat. Genet. 2020, 52, 550–552. [Google Scholar] [CrossRef]
- Sanchez-Maldonado, J.M.; Collado, R.; Cabrera-Serrano, A.J.; Ter Horst, R.; Galvez-Montosa, F.; Robles-Fernandez, I.; Arenas-Rodriguez, V.; Cano-Gutierrez, B.; Bakker, O.; Bravo-Fernandez, M.I.; et al. Type 2 Diabetes-Related Variants Influence the Risk of Developing Prostate Cancer: A Population-Based Case-Control Study and Meta-Analysis. Cancers 2022, 14, 2376. [Google Scholar] [CrossRef] [PubMed]
- The International Myeloma Working Group. Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: A report of the International Myeloma Working Group. Br. J. Haematol. 2003, 121, 749–757. [Google Scholar] [CrossRef] [Green Version]
- Rajkumar, S.V.; Dimopoulos, M.A.; Palumbo, A.; Blade, J.; Merlini, G.; Mateos, M.V.; Kumar, S.; Hillengass, J.; Kastritis, E.; Richardson, P.; et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014, 15, e538–e548. [Google Scholar] [CrossRef]
- Sainz, J.; Frank, B.; da Silva Filho, M.I.; Hoffmeister, M.; Rudolph, A.; Butterbach, K.; Chang-Claude, J.; Brenner, H.; Hemminki, K.; Forsti, A. GWAS-identified common variants for obesity are not associated with the risk of developing colorectal cancer. Cancer Epidemiol. Biomark. Prev. 2014, 23, 1125–1128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rios-Tamayo, R.; Lupianez, C.B.; Campa, D.; Hielscher, T.; Weinhold, N.; Martinez-Lopez, J.; Jerez, A.; Landi, S.; Jamroziak, K.; Dumontet, C.; et al. A common variant within the HNF1B gene is associated with overall survival of multiple myeloma patients: Results from the IMMEnSE consortium and meta-analysis. Oncotarget 2016, 7, 59029–59048. [Google Scholar] [CrossRef] [Green Version]
- Gong, J.; Nishimura, K.K.; Fernandez-Rhodes, L.; Haessler, J.; Bien, S.; Graff, M.; Lim, U.; Lu, Y.; Gross, M.; Fornage, M.; et al. Trans-ethnic analysis of metabochip data identifies two new loci associated with BMI. Int. J. Obes. 2018, 42, 384–390. [Google Scholar] [CrossRef]
- Felix, J.F.; Bradfield, J.P.; Monnereau, C.; van der Valk, R.J.; Stergiakouli, E.; Chesi, A.; Gaillard, R.; Feenstra, B.; Thiering, E.; Kreiner-Moller, E.; et al. Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index. Hum. Mol. Genet. 2016, 25, 389–403. [Google Scholar] [CrossRef] [Green Version]
- Stergiakouli, E.; Gaillard, R.; Tavare, J.M.; Balthasar, N.; Loos, R.J.; Taal, H.R.; Evans, D.M.; Rivadeneira, F.; St Pourcain, B.; Uitterlinden, A.G.; et al. Genome-wide association study of height-adjusted BMI in childhood identifies functional variant in ADCY3. Obesity (Silver Spring) 2014, 22, 2252–2259. [Google Scholar] [CrossRef] [Green Version]
- Shungin, D.; Winkler, T.W.; Croteau-Chonka, D.C.; Ferreira, T.; Locke, A.E.; Magi, R.; Strawbridge, R.J.; Pers, T.H.; Fischer, K.; Justice, A.E.; et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature 2015, 518, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Helgeland, O.; Vaudel, M.; Sole-Navais, P.; Flatley, C.; Juodakis, J.; Bacelis, J.; Koloen, I.L.; Knudsen, G.P.; Johansson, B.B.; Magnus, P.; et al. Characterization of the genetic architecture of infant and early childhood body mass index. Nat. Metab. 2022, 4, 344–358. [Google Scholar] [CrossRef]
- Warrington, N.M.; Howe, L.D.; Paternoster, L.; Kaakinen, M.; Herrala, S.; Huikari, V.; Wu, Y.Y.; Kemp, J.P.; Timpson, N.J.; St Pourcain, B.; et al. A genome-wide association study of body mass index across early life and childhood. Int. J. Epidemiol. 2015, 44, 700–712. [Google Scholar] [CrossRef] [Green Version]
- Graff, M.; Scott, R.A.; Justice, A.E.; Young, K.L.; Feitosa, M.F.; Barata, L.; Winkler, T.W.; Chu, A.Y.; Mahajan, A.; Hadley, D.; et al. Genome-wide physical activity interactions in adiposity—A meta-analysis of 200,452 adults. PLoS Genet. 2017, 13, e1006528. [Google Scholar] [CrossRef] [Green Version]
- Pulit, S.L.; Stoneman, C.; Morris, A.P.; Wood, A.R.; Glastonbury, C.A.; Tyrrell, J.; Yengo, L.; Ferreira, T.; Marouli, E.; Ji, Y.; et al. Meta-analysis of genome-wide association studies for body fat distribution in 694 649 individuals of European ancestry. Hum. Mol. Genet. 2019, 28, 166–174. [Google Scholar] [CrossRef] [Green Version]
- Locke, A.E.; Kahali, B.; Berndt, S.I.; Justice, A.E.; Pers, T.H.; Day, F.R.; Powell, C.; Vedantam, S.; Buchkovich, M.L.; Yang, J.; et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 2015, 518, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, T.J.; Choquet, H.; Yin, J.; Banda, Y.; Kvale, M.N.; Glymour, M.; Schaefer, C.; Risch, N.; Jorgenson, E. A Large Multiethnic Genome-Wide Association Study of Adult Body Mass Index Identifies Novel Loci. Genetics 2018, 210, 499–515. [Google Scholar] [CrossRef] [Green Version]
- Winkler, T.W.; Justice, A.E.; Graff, M.; Barata, L.; Feitosa, M.F.; Chu, S.; Czajkowski, J.; Esko, T.; Fall, T.; Kilpelainen, T.O.; et al. The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape: A Large-Scale Genome-Wide Interaction Study. PLoS Genet. 2015, 11, e1005378. [Google Scholar] [CrossRef] [Green Version]
- Justice, A.E.; Winkler, T.W.; Feitosa, M.F.; Graff, M.; Fisher, V.A.; Young, K.; Barata, L.; Deng, X.; Czajkowski, J.; Hadley, D.; et al. Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits. Nat. Commun. 2017, 8, 14977. [Google Scholar] [CrossRef] [Green Version]
- Akiyama, M.; Okada, Y.; Kanai, M.; Takahashi, A.; Momozawa, Y.; Ikeda, M.; Iwata, N.; Ikegawa, S.; Hirata, M.; Matsuda, K.; et al. Genome-wide association study identifies 112 new loci for body mass index in the Japanese population. Nat. Genet. 2017, 49, 1458–1467. [Google Scholar] [CrossRef]
- Karlsson, T.; Rask-Andersen, M.; Pan, G.; Hoglund, J.; Wadelius, C.; Ek, W.E.; Johansson, A. Contribution of genetics to visceral adiposity and its relation to cardiovascular and metabolic disease. Nat. Med. 2019, 25, 1390–1395. [Google Scholar] [CrossRef]
- Thorleifsson, G.; Walters, G.B.; Gudbjartsson, D.F.; Steinthorsdottir, V.; Sulem, P.; Helgadottir, A.; Styrkarsdottir, U.; Gretarsdottir, S.; Thorlacius, S.; Jonsdottir, I.; et al. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat. Genet. 2009, 41, 18–24. [Google Scholar] [CrossRef]
- Zhu, Z.; Guo, Y.; Shi, H.; Liu, C.L.; Panganiban, R.A.; Chung, W.; O’Connor, L.J.; Himes, B.E.; Gazal, S.; Hasegawa, K.; et al. Shared genetic and experimental links between obesity-related traits and asthma subtypes in UK Biobank. J. Allergy Clin. Immunol. 2020, 145, 537–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turcot, V.; Lu, Y.; Highland, H.M.; Schurmann, C.; Justice, A.E.; Fine, R.S.; Bradfield, J.P.; Esko, T.; Giri, A.; Graff, M.; et al. Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity. Nat. Genet. 2018, 50, 26–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berndt, S.I.; Gustafsson, S.; Magi, R.; Ganna, A.; Wheeler, E.; Feitosa, M.F.; Justice, A.E.; Monda, K.L.; Croteau-Chonka, D.C.; Day, F.R.; et al. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nat. Genet. 2013, 45, 501–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Speliotes, E.K.; Willer, C.J.; Berndt, S.I.; Monda, K.L.; Thorleifsson, G.; Jackson, A.U.; Lango Allen, H.; Lindgren, C.M.; Luan, J.; Magi, R.; et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat. Genet. 2010, 42, 937–948. [Google Scholar] [CrossRef] [Green Version]
- Wood, A.R.; Tyrrell, J.; Beaumont, R.; Jones, S.E.; Tuke, M.A.; Ruth, K.S.; Consortium, G.; Yaghootkar, H.; Freathy, R.M.; Murray, A.; et al. Variants in the FTO and CDKAL1 loci have recessive effects on risk of obesity and type 2 diabetes, respectively. Diabetologia 2016, 59, 1214–1221. [Google Scholar] [CrossRef] [Green Version]
- Heard-Costa, N.L.; Zillikens, M.C.; Monda, K.L.; Johansson, A.; Harris, T.B.; Fu, M.; Haritunians, T.; Feitosa, M.F.; Aspelund, T.; Eiriksdottir, G.; et al. NRXN3 is a novel locus for waist circumference: A genome-wide association study from the CHARGE Consortium. PLoS Genet. 2009, 5, e1000539. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Rhodes, L.; Graff, M.; Buchanan, V.L.; Justice, A.E.; Highland, H.M.; Guo, X.; Zhu, W.; Chen, H.H.; Young, K.L.; Adhikari, K.; et al. Ancestral diversity improves discovery and fine-mapping of genetic loci for anthropometric traits-The Hispanic/Latino Anthropometry Consortium. HGG Adv. 2022, 3, 100099. [Google Scholar] [CrossRef]
- Martin, S.; Cule, M.; Basty, N.; Tyrrell, J.; Beaumont, R.N.; Wood, A.R.; Frayling, T.M.; Sorokin, E.; Whitcher, B.; Liu, Y.; et al. Genetic Evidence for Different Adiposity Phenotypes and Their Opposing Influences on Ectopic Fat and Risk of Cardiometabolic Disease. Diabetes 2021, 70, 1843–1856. [Google Scholar] [CrossRef]
- Ng, M.C.Y.; Graff, M.; Lu, Y.; Justice, A.E.; Mudgal, P.; Liu, C.T.; Young, K.; Yanek, L.R.; Feitosa, M.F.; Wojczynski, M.K.; et al. Discovery and fine-mapping of adiposity loci using high density imputation of genome-wide association studies in individuals of African ancestry: African Ancestry Anthropometry Genetics Consortium. PLoS Genet. 2017, 13, e1006719. [Google Scholar] [CrossRef] [Green Version]
- Sakaue, S.; Kanai, M.; Tanigawa, Y.; Karjalainen, J.; Kurki, M.; Koshiba, S.; Narita, A.; Konuma, T.; Yamamoto, K.; Akiyama, M.; et al. A cross-population atlas of genetic associations for 220 human phenotypes. Nat. Genet. 2021, 53, 1415–1424. [Google Scholar] [CrossRef]
- Willer, C.J.; Speliotes, E.K.; Loos, R.J.; Li, S.; Lindgren, C.M.; Heid, I.M.; Berndt, S.I.; Elliott, A.L.; Jackson, A.U.; Lamina, C.; et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat. Genet. 2009, 41, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Couto Alves, A.; De Silva, N.M.G.; Karhunen, V.; Sovio, U.; Das, S.; Taal, H.R.; Warrington, N.M.; Lewin, A.M.; Kaakinen, M.; Cousminer, D.L.; et al. GWAS on longitudinal growth traits reveals different genetic factors influencing infant, child, and adult BMI. Sci. Adv. 2019, 5, eaaw3095. [Google Scholar] [CrossRef] [Green Version]
- Loos, R.J.; Lindgren, C.M.; Li, S.; Wheeler, E.; Zhao, J.H.; Prokopenko, I.; Inouye, M.; Freathy, R.M.; Attwood, A.P.; Beckmann, J.S.; et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat. Genet. 2008, 40, 768–775. [Google Scholar] [CrossRef] [Green Version]
- Meyre, D.; Delplanque, J.; Chevre, J.C.; Lecoeur, C.; Lobbens, S.; Gallina, S.; Durand, E.; Vatin, V.; Degraeve, F.; Proenca, C.; et al. Genome-wide association study for early-onset and morbid adult obesity identifies three new risk loci in European populations. Nat. Genet. 2009, 41, 157–159. [Google Scholar] [CrossRef]
- Graff, M.; Ngwa, J.S.; Workalemahu, T.; Homuth, G.; Schipf, S.; Teumer, A.; Volzke, H.; Wallaschofski, H.; Abecasis, G.R.; Edward, L.; et al. Genome-wide analysis of BMI in adolescents and young adults reveals additional insight into the effects of genetic loci over the life course. Hum. Mol. Genet. 2013, 22, 3597–3607. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Day, F.R.; Gustafsson, S.; Buchkovich, M.L.; Na, J.; Bataille, V.; Cousminer, D.L.; Dastani, Z.; Drong, A.W.; Esko, T.; et al. New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk. Nat. Commun. 2016, 7, 10495. [Google Scholar] [CrossRef] [Green Version]
- Monda, K.L.; Chen, G.K.; Taylor, K.C.; Palmer, C.; Edwards, T.L.; Lange, L.A.; Ng, M.C.; Adeyemo, A.A.; Allison, M.A.; Bielak, L.F.; et al. A meta-analysis identifies new loci associated with body mass index in individuals of African ancestry. Nat. Genet. 2013, 45, 690–696. [Google Scholar] [CrossRef] [Green Version]
- Bradfield, J.P.; Vogelezang, S.; Felix, J.F.; Chesi, A.; Helgeland, O.; Horikoshi, M.; Karhunen, V.; Lowry, E.; Cousminer, D.L.; Ahluwalia, T.S.; et al. A trans-ancestral meta-analysis of genome-wide association studies reveals loci associated with childhood obesity. Hum. Mol. Genet. 2019, 28, 3327–3338. [Google Scholar] [CrossRef]
- Ter Horst, R.; Jaeger, M.; Smeekens, S.P.; Oosting, M.; Swertz, M.A.; Li, Y.; Kumar, V.; Diavatopoulos, D.A.; Jansen, A.F.M.; Lemmers, H.; et al. Host and Environmental Factors Influencing Individual Human Cytokine Responses. Cell 2016, 167, 1111–1124.e1113. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Oosting, M.; Smeekens, S.P.; Jaeger, M.; Aguirre-Gamboa, R.; Le, K.T.T.; Deelen, P.; Ricano-Ponce, I.; Schoffelen, T.; Jansen, A.F.M.; et al. A Functional Genomics Approach to Understand Variation in Cytokine Production in Humans. Cell 2016, 167, 1099–1110.e1014. [Google Scholar] [CrossRef] [Green Version]
- Orru, V.; Steri, M.; Sole, G.; Sidore, C.; Virdis, F.; Dei, M.; Lai, S.; Zoledziewska, M.; Busonero, F.; Mulas, A.; et al. Genetic variants regulating immune cell levels in health and disease. Cell 2013, 155, 242–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguirre-Gamboa, R.; Joosten, I.; Urbano, P.C.M.; van der Molen, R.G.; van Rijssen, E.; van Cranenbroek, B.; Oosting, M.; Smeekens, S.; Jaeger, M.; Zorro, M.; et al. Differential Effects of Environmental and Genetic Factors on T and B Cell Immune Traits. Cell Rep. 2016, 17, 2474–2487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Gene_SNP ID | Discovery Cohort (n = 5482) | UKBiobank (n = 403,268) | FinnGen (n = 249,609) | Meta-Analysis (n = 658,359) | |||||
---|---|---|---|---|---|---|---|---|---|
OR (95% CI) ∂ | p | OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | PHet | |
ADCY3_rs11676272 | 1.04 (1.13–0.95) | 0.36 | 1.05 (0.93–1.17) | 0.44 | 1.09 (0.99–1.19) | 0.084 | 1.06 (1.00–1.11) | 0.046 | 0.47 0.36 |
ADPGK_rs7164727 | 1.01 (1.10–0.91) | 0.86 | 0.98 (0.87–1.10) | 0.71 | 1.07 (0.97–1.18) | 0.20 | 0.98 (0.92–1.04) | 0.63 | |
AKAP6_rs17522122 | 0.94 (1.06–0.84) | 0.31 | 1.08 (0.96–1.21) | 0.22 | 1.02 (0.93–1.12) | 0.66 | 1.01 (0.95–1.08) | 0.70 | 0.22 0.97 |
BDNF_rs6265 | 1.00 (1.36–0.74) | 1.00 | 0.97 (0.83–1.12) | 0.65 | 0.97 (0.86–1.10) | 0.63 | 0.97 (0.88–1.07) | 0.51 | |
DNASE1_rs1053874 | 1.08 (1.20–0.96) | 0.19 | 1.04 (0.92–1.18) | 0.52 | 0.91 (0.82–1.00) | 0.056 | 1.00 (0.93–1.06) | 0.88 | 0.12 0.73 |
FAIM2_rs7138803 | 0.99 (1.08–0.91) | 0.85 | 1.01 (0.90–1.13) | 0.90 | 0.95 (0.86–1.04) | 0.28 | 0.98 (0.93–1.04) | 0.48 | |
FLT3_rs1933437 | 0.94 (1.04–0.83) | 0.27 | 0.98 (0.85–1.09) | 0.69 | 0.91 (0.81–1.01) | 0.090 | 0.94 (0.87–1.00) | 0.054 | 0.77 0.34 0.008 |
FTO_rs1421085 | 0.95 (1.04–0.85) | 0.33 | 1.10 (0.97–1.24) | 0.14 | 1.01 (0.93–1.11) | 0.77 | 1.01 (0.95–1.06) | 0.78 | |
FTO_rs7190492 | 1.06 (1.16–0.98) | 0.15 | 0.93 (0.79–1.05) | 0.27 | 1.01 (0.92–1.10) | 0.79 | 1.02 (0.96–1.08) | 0.54 | |
GNPDA2_rs10938397 | 1.05 (1.14–0.96) | 0.26 | 1.01 (0.90–1.12) | 0.93 | 1.01 (0.93–1.10) | 0.80 | 1.03 (0.97–1.08) | 0.37 | 0.62 0.69 |
GPRC5B_rs12444979 | 1.13 (1.62–0.79) | 0.51 | 0.96 (0.82–1.13) | 0.65 | 1.03 (0.90–1.17) | 0.70 | 1.01 (0.91–1.12) | 0.85 | |
ITH4_rs4687657 | 1.04 (1.15–0.94) | 0.48 | 0.97 (0.85–1.10) | 0.61 | 1.07 (0.96–1.18) | 0.22 | 1.03 (0.97–1.10) | 0.33 | 0.72 0.93 |
KCTD15_rs11084753 | 1.04 (1.17–0.92) | 0.53 | 0.99 (0.87–1.10) | 0.91 | 0.99 (0.89–1.08) | 0.84 | 1.00 (0.94–1.07) | 0.88 | |
LMOD1_rs2820312 | 0.99 (1.09–0.91) | 0.89 | 0.96 (0.85–1.08) | 0.49 | 0.96 (0.87–1.06) | 0.40 | 0.97 (0.92–1.03) | 0.36 | 0.94 0.61 0.99 |
LOC400652_rs17782313 | 1.06 (1.15–0.96) | 0.23 | 1.01 (0.89–1.15) | 0.88 | 1.03 (0.92–1.16) | 0.57 | 1.04 (0.97–1.10) | 0.24 | |
MAF_rs1424233 | 0.99 (1.07–0.92) | 0.83 | 1.01 (0.89–1.11) | 0.89 | 1.00 (0.91–1.08) | 0.99 | 1.00 (0.95–1.05) | 0.95 | |
MC4R_rs17700633 | 1.04 (1.15–0.94) | 0.43 | 0.99 (0.88–1.12) | 0.92 | 0.91 (0.82–1.02) | 0.096 | 0.98 (0.92–1.05) | 0.60 | 0.37 0.92 0.43 |
MST1R_rs2230590 | 0.95 (1.04–0.85) | 0.26 | 1.00 (0.88–1.14) | 0.98 | 0.97 (0.89–1.07) | 0.57 | 0.97 (0.91–1.03) | 0.30 | |
MTCH2_rs3817334 | 0.89 (0.99–0.81) | 0.024 | 0.98 (0.88–1.10) | 0.78 | 0.99 (0.91–1.08) | 0.91 | 0.95 (0.90–1.01) | 0.12 | |
NEGR1_rs2815752 | 0.95 (1.04–0.86) | 0.32 | 1.03 (0.91–1.14) | 0.63 | 1.05 (0.96–1.14) | 0.29 | 1.01 (0.95–1.06) | 0.83 | 0.16 |
NPC1_rs1805081 | 1.16 (1.35–0.91) | 0.19 | 0.93 (0.83–1.05) | 0.24 | 1.02 (0.93–1.11) | 0.71 | 1.00 (0.93–1.07) | 0.96 | 0.20 0.88 |
NT5C2_rs11191580 | 0.98 (1.14–0.79) | 0.81 | 0.97 (0.78–1.19) | 0.77 | 1.03 (0.88–1.21) | 0.73 | 1.00 (0.89–1.09) | 0.94 | |
PCSK1_rs6235 | 1.01 (1.11–0.91) | 0.92 | 1.10 (0.98–1.21) | 0.099 | 1.05 (0.95–1.14) | 0.35 | 1.05 (0.98–1.12) | 0.16 | 0.36 |
POC5_rs2112347 | 1.09 (1.17–1.00) | 0.055 | 1.07 (0.95–1.21) | 0.28 | 1.07 (0.98–1.18) | 0.13 | 1.08 (1.02–1.13) | 0.0083 | 0.96 |
SEC16B_rs543874 | 1.03 (1.14–0.90) | 0.63 | 0.93 (0.81–1.08) | 0.35 | 1.04 (0.92–1.16) | 0.56 | 1.01 (0.93–1.08) | 0.87 | 0.67 |
SH2B1_rs7359397 | 0.94 (1.06–0.84) | 0.33 | 0.97 (0.86–1.09) | 0.63 | 1.12 (1.02–1.23) | 0.017 | 1.03 (0.96–1.09) | 0.41 | 0.043 0.19 |
STK33_rs10769908 | 1.00 (1.10–0.88) | 0.96 | 0.91 (0.77–1.03) | 0.14 | 1.06 (0.97–1.15) | 0.17 | 1.00 (0.94–1.06) | 0.91 | |
TFAP2B_rs2206277 | 1.03 (1.16–0.91) | 0.65 | 1.13 (0.96–1.32) | 0.14 | 1.00 (0.90–1.10) | 0.97 | 1.04 (0.96–1.11) | 0.34 | 0.17 |
TMEM18_rs6548238 | 0.94 (1.06–0.83) | 0.30 | 1.05 (0.89–1.18) | 0.53 | 0.99 (0.86–1.10) | 0.84 | 0.98 (0.91–1.06) | 0.65 | 0.73 |
TRAF3_rs10133111 | 1.05 (1.19–0.92) | 0.46 | 1.00 (0.87–1.16) | 0.97 | 1.10 (0.99–1.23) | 0.080 | 1.06 (0.99–1.15) | 0.11 | 0.68 |
UHRF1BP1_rs11755393 | 0.99 (1.14–0.82) | 0.90 | 1.02 (0.90–1.14) | 0.79 | 0.97 (0.88–1.07) | 0.53 | 0.99 (0.91–1.06) | 0.72 | 0.95 |
ZZZ3_rs17381664 | 0.97 (1.06–0.87) | 0.51 | 0.95 (0.84–1.07) | 0.39 | – | – | 0.96 (0.88–1.03) | 0.29 | 0.91 |
Gene Name | dbSNP rs# | Effect Allele | Context | References |
---|---|---|---|---|
ADCY3 | rs11676272 | G | missense_variant | [26,27,28,29,30,31] |
AKAP6|NPAS3 | rs17522122 | G | 3_prime_UTR_variant | [32,33,34,35,36] |
ADPGK|ADPGK-AS | rs7164727 | T | downstream_gene_variant | [32,34,35,37] |
BDNF|BDNF-AS | rs6265 | A | missense_variant | [29,33,35,38,39,40,41] |
DNASE1 | rs1053874 | A | missense_variant | [37,42] |
FAIM2|BCDIN3D | rs7138803 | A | intergenic_variant | [27,29,32,33,34,35,36,37,38,43,44,45,46] |
FLT3 | rs1933437 | C | missense_variant | [35] |
FTO | rs1421085 | C | intron_variant | [38] |
FTO | rs7190492 | A | intron_variant | [40] |
GNPDA2 | rs10938397 | G | intergenic_variant | [27,29,32,33,34,35,36,37,38,43,44,45,47,48,49,50,51,52] |
GPRC5B|GPR139|PDILT | rs12444979 | T | intergenic_variant | [44] |
HIVEP1 | rs2228213 | A | missense_variant | [33,34,35,38] |
ITH4 | rs4687657 | T | missense_variant | [37] |
KCTD15 | rs11084753 | A | intergenic_variant | [51] |
LMOD1 | rs2820312 | A | missense_variant | [34,37,42,51] |
LOC400652|LOC342784 | rs17782313 | C | intergenic_variant | [32,51,53,54] |
MAF | rs1424233 | T | regulatory_region_variant | [54] |
MC4R | rs17700633 | A | n/s | [53] |
MST1R | rs2230590 | C | missense_variant | [36,37,42] |
MTCH2 | rs3817334 | T | intron_variant | [32,34,35,36,37,38,44,45] |
NEGR1|LOC105378797 | rs2815752 | C | intron_variant | [44,51] |
NPC1|SLC35F4 | rs1805081 | C | missense_variant | [54] |
NT5C2 | rs11191580 | C | intron_variant | [36] |
PCSK1 | rs6235 | C | missense_variant | [33] |
POC5|FLJ35779 | rs2112347 | G | intergenic_variant | [29,32,33,34,35,36,37,38,43,44,45,48,50] |
SEC16B | rs543874 | G | upstream_gene_variant | [26,27,29,32,33,34,35,36,37,38,44,45,47,49,50,55,56,57] |
SH2B1 | rs7359397 | T | intron_variant | [44] |
STK33 | rs10769908 | C | intron_variant | [51] |
TFAP2B | rs2206277 | A | intron_variant | [29,33,36,38,43,58] |
TMEM18 | rs6548238 | T | TF_binding_site_variant | [51] |
TRAF3 | rs10133111 | A | 3_prime_UTR_variant | [36,37] |
UHRF1BP1 | rs11755393 | G | missense_variant | [37,42] |
ZZZ3 | rs17381664 | C | intron_variant | [32,35,36,43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Maldonado, J.M.; Cabrera-Serrano, A.J.; Chattopadhyay, S.; Campa, D.; Garrido, M.d.P.; Macauda, A.; Ter Horst, R.; Jerez, A.; Netea, M.G.; Li, Y.; et al. GWAS-Identified Variants for Obesity Do Not Influence the Risk of Developing Multiple Myeloma: A Population-Based Study and Meta-Analysis. Int. J. Mol. Sci. 2023, 24, 6029. https://doi.org/10.3390/ijms24076029
Sánchez-Maldonado JM, Cabrera-Serrano AJ, Chattopadhyay S, Campa D, Garrido MdP, Macauda A, Ter Horst R, Jerez A, Netea MG, Li Y, et al. GWAS-Identified Variants for Obesity Do Not Influence the Risk of Developing Multiple Myeloma: A Population-Based Study and Meta-Analysis. International Journal of Molecular Sciences. 2023; 24(7):6029. https://doi.org/10.3390/ijms24076029
Chicago/Turabian StyleSánchez-Maldonado, José Manuel, Antonio José Cabrera-Serrano, Subhayan Chattopadhyay, Daniele Campa, María del Pilar Garrido, Angelica Macauda, Rob Ter Horst, Andrés Jerez, Mihai G. Netea, Yang Li, and et al. 2023. "GWAS-Identified Variants for Obesity Do Not Influence the Risk of Developing Multiple Myeloma: A Population-Based Study and Meta-Analysis" International Journal of Molecular Sciences 24, no. 7: 6029. https://doi.org/10.3390/ijms24076029
APA StyleSánchez-Maldonado, J. M., Cabrera-Serrano, A. J., Chattopadhyay, S., Campa, D., Garrido, M. d. P., Macauda, A., Ter Horst, R., Jerez, A., Netea, M. G., Li, Y., Hemminki, K., Canzian, F., Försti, A., & Sainz, J. (2023). GWAS-Identified Variants for Obesity Do Not Influence the Risk of Developing Multiple Myeloma: A Population-Based Study and Meta-Analysis. International Journal of Molecular Sciences, 24(7), 6029. https://doi.org/10.3390/ijms24076029