Hemicyanine-Based Near-Infrared Fluorescence Off–On Probes for Imaging Intracellular and In Vivo Nitroreductase Activity
Abstract
:1. Introduction
2. Results
2.1. Design and Synthesis of NIR-HCy-NO2 1–3
2.2. Optical Properties of NIR-HCy-NO2 1–3
2.3. Selectivity Study
2.4. Quantitative Analysis
2.5. Michaelis–Menten Kinetics
2.6. NTR Activity Imaging in Live Cells
2.7. In Vivo Imaging
3. Discussion
4. Materials and Methods
4.1. Characterization of Optical Properties
4.2. Mass Analysis of Reduced NIR-HCy-NO2 1–3
4.3. Cell Culture
4.4. Cytotoxicity Assay
4.5. Confocal Fluorescence Imaging in Living Cells
4.6. Reductase Inhibition Test in Live Cells
4.7. Fluorescence Imaging in Xenograft Mice
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koder, R.L.; Miller, A.-F. Steady-state kinetic mechanism, stereospecificity, substrate and inhibitor specificity of Enterobacter cloacae nitroreductase. Biochim. Biophys. Acta Protein Struct. Mol. Enzym. 1998, 1387, 395–405. [Google Scholar] [CrossRef]
- de Oliveira, I.M.; Bonatto, D.; Henriques, J.A.P. Nitroreductases: Enzymes with environmental, biotechnological and clinical importance. Curr. Res. Technol. Educ. Top. Appl. Microbiol. Microb. Biotechnol. 2010, 2, 1008–1019. [Google Scholar]
- Bryant, C.; DeLuca, M. Purification and characterization of an oxygen-insensitive NAD (P) H nitroreductase from Enterobacter cloacae. J. Biol. Chem. 1991, 266, 4119–4125. [Google Scholar] [CrossRef]
- Hannink, N.; Rosser, S.J.; French, C.E.; Basran, A.; Murray, J.A.; Nicklin, S.; Bruce, N.C. Phytodetoxification of TNT by transgenic plants expressing a bacterial nitroreductase. Nat. Biotechnol. 2001, 19, 1168–1172. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, L. Design of anticancer prodrugs for reductive activation. Med. Res. Rev. 2009, 29, 29–64. [Google Scholar] [CrossRef] [PubMed]
- Bhaumik, S.; Sekar, T.; Depuy, J.; Klimash, J.; Paulmurugan, R. Noninvasive optical imaging of nitroreductase gene-directed enzyme prodrug therapy system in living animals. Gene Ther. 2012, 19, 295–302. [Google Scholar] [CrossRef] [Green Version]
- McCormick, N.G.; Feeherry, F.E.; Levinson, H.S. Microbial transformation of 2, 4, 6-trinitrotoluene and other nitroaromatic compounds. Appl. Environ. Microbiol. 1976, 31, 949–958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masuda, Y.; Ozaki, M. Reduction of nitro and azo compounds by NADPH-cytochrome P-450 reductase-cytochrome c heme peptide system. Biol. Pharm. Bull. 1993, 16, 112–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Oliveira, I.M.; Henriques, J.A.P.; Bonatto, D. In silico identification of a new group of specific bacterial and fungal nitroreductases-like proteins. Biochem. Biophys. Res. Commun. 2007, 355, 919–925. [Google Scholar] [CrossRef]
- Williams, E.M.; Little, R.F.; Mowday, A.M.; Rich, M.H.; Chan-Hyams, J.V.; Copp, J.N.; Smaill, J.B.; Patterson, A.V.; Ackerley, D.F. Nitroreductase gene-directed enzyme prodrug therapy: Insights and advances toward clinical utility. Biochem. J. 2015, 471, 131–153. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Sun, Y.; Li, J.; Su, Q.; Yuan, W.; Dai, Y.; Han, C.; Wang, Q.; Feng, W.; Li, F. Ultrasensitive near-infrared fluorescence-enhanced probe for in vivo nitroreductase imaging. J. Am. Chem. Soc. 2015, 137, 6407–6416. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Chen, W.; Kuang, Y.-Q.; Liu, W.; Liu, X.-J.; Tang, L.-J.; Jiang, J.-H. A novel off–on fluorescent probe for sensitive imaging of mitochondria-specific nitroreductase activity in living tumor cells. Org. Biomol. Chem. 2017, 15, 4383–4389. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Sun, S.; Li, Q.; Yue, Y.; Li, Y.; Shao, S. A rapid response “turn-on” fluorescent probe for nitroreductase detection and its application in hypoxic tumor cell imaging. Analyst 2015, 140, 574–581. [Google Scholar] [CrossRef]
- Li, Z.; Li, X.; Gao, X.; Zhang, Y.; Shi, W.; Ma, H. Nitroreductase detection and hypoxic tumor cell imaging by a designed sensitive and selective fluorescent probe, 7-[(5-nitrofuran-2-yl) methoxy]-3 H-phenoxazin-3-one. Anal. Chem. 2013, 85, 3926–3932. [Google Scholar] [CrossRef] [PubMed]
- Karan, S.; Cho, M.Y.; Lee, H.; Lee, H.; Park, H.S.; Sundararajan, M.; Sessler, J.M.; Hong, K.S. Near-infrared fluorescent probe activated by nitroreductase for in vitro and in vivo hypoxic tumor detection. J. Med. Chem. 2021, 64, 2971–2981. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, S.; Li, D.; Yuan, J.; Xu, J.; Shao, S. A mitochondria-targeting nitroreductase fluorescent probe with large Stokes shift and long-wavelength emission for imaging hypoxic status in tumor cells. Anal. Chim. Acta 2020, 1103, 202–211. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, H.; Li, K.; Xie, Y.; Li, Z. A Novel NIR Fluorescent Probe for Highly Selective Detection of Nitroreductase and Hypoxic-Tumor-Cell Imaging. Molecules 2021, 26, 4425. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.A.; Chun, J.; Kang, C.; Lee, M.H. Self-Calibrating Bipartite Fluorescent Sensor for Nitroreductase Activity and Its Application to Cancer and Hypoxic Cells. ACS Appl. Bio Mater. 2021, 4, 2052–2057. [Google Scholar] [CrossRef]
- Wan, S.; Vohs, T.; Steenwinkel, T.E.; White, W.R.; Lara-Ramirez, A.; Luck, R.L.; Werner, T.; Tanasova, M.; Liu, H. Near-Infrared Fluorescent Probes with Amine-Incorporated Xanthene Platforms for the Detection of Hypoxia. ACS Appl. Bio Mater. 2022, 5, 4294–4300. [Google Scholar] [CrossRef]
- Chevalier, A.; Zhang, Y.; Khdour, O.M.; Kaye, J.B.; Hecht, S.M. Mitochondrial nitroreductase activity enables selective imaging and therapeutic targeting. J. Am. Chem. Soc. 2016, 138, 12009–12012. [Google Scholar] [CrossRef] [PubMed]
- Gray, M.W.; Burger, G.; Lang, B.F. Mitochondrial evolution. Science 1999, 283, 1476–1481. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, J.M. Converting bacteria to organelles: Evolution of mitochondrial protein sorting. Trends Microbiol. 2003, 11, 74–79. [Google Scholar] [CrossRef]
- Chan, J.; Dodani, S.C.; Chang, C.J. Reaction-based small-molecule fluorescent probes for chemoselective bioimaging. Nat. Chem. 2012, 4, 973–984. [Google Scholar] [CrossRef]
- Race, P.R.; Lovering, A.L.; Green, R.M.; Ossor, A.; White, S.A.; Searle, P.F.; Wrighton, C.J.; Hyde, E.I. Structural and mechanistic studies of Escherichia coli nitroreductase with the antibiotic nitrofurazone: Reversed binding orientations in different redox states of the enzyme. J. Biol. Chem. 2005, 280, 13256–13264. [Google Scholar] [CrossRef] [Green Version]
- Pitsawong, W.; Hoben, J.P.; Miller, A.-F. Understanding the broad substrate repertoire of nitroreductase based on its kinetic mechanism. J. Biol. Chem. 2014, 289, 15203–15214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, H.; Luby-Phelps, K.; Mickey, B.E.; Habib, A.A.; Mason, R.P.; Zhao, D. Dynamic near-infrared optical imaging of 2-deoxyglucose uptake by intracranial glioma of athymic mice. PLoS ONE 2009, 4, e8051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasaki, E.; Kojima, H.; Nishimatsu, H.; Urano, Y.; Kikuchi, K.; Hirata, Y.; Nagano, T. Highly sensitive near-infrared fluorescent probes for nitric oxide and their application to isolated organs. J. Am. Chem. Soc. 2005, 127, 3684–3685. [Google Scholar] [CrossRef]
- Xu, X.; Cao, Y.-C.; Liu, J.A.; Lin, Y. Quaternary Ammonium Polyamidoamine Dendrimer Modified Quantum Dots as Fluorescent Probes for p-Fluorophenoxyacetic Acid Detection in Aqueous Solution. J. Fluoresc. 2017, 27, 2195–2200. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; Song, F.; Chen, G.; Sun, W.; Wang, J.; Gao, P.; Zhang, Y.; Qiao, B.; Li, W.; Sun, S. Construction of Long-Wavelength Fluorescein Analogues and Their Application as Fluorescent Probes. Chem. Eur. J. 2013, 19, 6538–6545. [Google Scholar] [CrossRef]
- Li, Z.; He, X.; Wang, Z.; Yang, R.; Shi, W.; Ma, H. In vivo imaging and detection of nitroreductase in zebrafish by a new near-infrared fluorescence off–on probe. Biosens. Bioelectron. 2015, 63, 112–116. [Google Scholar] [CrossRef]
- Zhu, D.; Xue, L.; Li, G.; Jiang, H. A highly sensitive near-infrared ratiometric fluorescent probe for detecting nitroreductase and cellular imaging. Sens. Actuators B Chem. 2016, 222, 419–424. [Google Scholar] [CrossRef]
- Yang, J.; Choi, J.; Bang, D.; Kim, E.; Lim, E.K.; Park, H.; Suh, J.S.; Lee, K.; Yoo, K.H.; Kim, E.K. Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells. Angew. Chem. Int. Ed. 2011, 123, 461–464. [Google Scholar] [CrossRef]
- Pansare, V.J.; Hejazi, S.; Faenza, W.J.; Prud’homme, R.K. Review of long-wavelength optical and NIR imaging materials: Contrast agents, fluorophores, and multifunctional nano carriers. Chem. Mater. 2012, 24, 812–827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richard, J.-A. De novo synthesis of phenolic dihydroxanthene near-infrared emitting fluorophores. Org. Biomol. Chem. 2015, 13, 8169–8172. [Google Scholar] [CrossRef]
- Park, C.S.; Ha, T.H.; Kim, M.; Raja, N.; Yun, H.-S.; Sung, M.J.; Kwon, O.S.; Yoon, H.; Lee, C.-S. Fast and sensitive near-infrared fluorescent probes for ALP detection and 3d printed calcium phosphate scaffold imaging in vivo. Biosens. Bioelectron. 2018, 105, 151–158. [Google Scholar] [CrossRef]
- Gürses, A.; Açıkyıldız, M.; Güneş, K.; Gürses, M.S. Dyes and pigments: Their structure and properties. In Dyes and Pigments; Springer: Berlin/Heidelberg, Germany, 2016; pp. 13–29. [Google Scholar]
- Misra, R.; Bhttacharyya, S. Intramolecular Charge Transfer: Theory and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Hao, M.; Chi, W.; Wang, C.; Xu, Z.; Li, Z.; Liu, X. Molecular origins of photoinduced backward intramolecular charge transfer. J. Phys. Chem. C 2020, 124, 16820–16826. [Google Scholar] [CrossRef]
- Kubin, R.F.; Fletcher, A.N. Fluorescence quantum yields of some rhodamine dyes. J. Lumin. 1982, 27, 455–462. [Google Scholar] [CrossRef]
- Choi, H.S.; Nasr, K.; Alyabyev, S.; Feith, D.; Lee, J.H.; Kim, S.H.; Ashitate, Y.; Hyun, H.; Patonay, G.; Strekowski, L.; et al. Synthesis and In Vivo Fate of Zwitterionic Near-Infrared Fluorophores. Angew. Chem. Int. Ed. 2011, 50, 6258–6263. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.H.; Park, C.S.; Lee, K.K.; Han, T.-H.; Ban, H.S.; Lee, C.-S. Hemicyanine-Based Near-Infrared Fluorescence Off–On Probes for Imaging Intracellular and In Vivo Nitroreductase Activity. Int. J. Mol. Sci. 2023, 24, 6074. https://doi.org/10.3390/ijms24076074
Lee SH, Park CS, Lee KK, Han T-H, Ban HS, Lee C-S. Hemicyanine-Based Near-Infrared Fluorescence Off–On Probes for Imaging Intracellular and In Vivo Nitroreductase Activity. International Journal of Molecular Sciences. 2023; 24(7):6074. https://doi.org/10.3390/ijms24076074
Chicago/Turabian StyleLee, Sun Hyeok, Chul Soon Park, Kyung Kwan Lee, Tae-Hee Han, Hyun Seung Ban, and Chang-Soo Lee. 2023. "Hemicyanine-Based Near-Infrared Fluorescence Off–On Probes for Imaging Intracellular and In Vivo Nitroreductase Activity" International Journal of Molecular Sciences 24, no. 7: 6074. https://doi.org/10.3390/ijms24076074
APA StyleLee, S. H., Park, C. S., Lee, K. K., Han, T. -H., Ban, H. S., & Lee, C. -S. (2023). Hemicyanine-Based Near-Infrared Fluorescence Off–On Probes for Imaging Intracellular and In Vivo Nitroreductase Activity. International Journal of Molecular Sciences, 24(7), 6074. https://doi.org/10.3390/ijms24076074