Liquid Biopsy in Endometriosis: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Method
2.2. Study Selection
2.3. Extraction and Quantification of miRNAs
2.3.1. Extracellular Vesicles Classification
2.3.2. Extracellular Vesicles Analysis
3. Results
3.1. Studies’ Characteristics
3.2. Outcomes
3.2.1. Early Diagnosis
3.2.2. Early Diagnosis
3.2.3. MiRNAs Relative Expression in Patients and Controls
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Burney, R.O.; Giudice, L.C. Pathogenesis and pathophysiology of endometriosis. Fertil. Steril. 2012, 98, 511–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jadoul, P.; Kitajima, M.; Donnez, O.; Squifflet, J.; Donnez, J. Surgical treatment of ovarian endometriomas: State of the art? Fertil. Steril. 2012, 98, 556–563. [Google Scholar] [CrossRef] [PubMed]
- Giudice, L.C.; Kao, L.C. Endometriosis. Lancet 2004, 364, 1789–1799. [Google Scholar] [CrossRef]
- Brosens, I.; Brosens, J. Is laparoscopy the gold standard for the diagnosis of endometriosis? Eur. J. Obstet. Gynecol. Reprod. Biol. 2000, 88, 117–119. [Google Scholar] [CrossRef] [PubMed]
- Zachariah, R.; Schmid, S.; Radpour, R.; Buerki, N.; Fan, A.X.-C.; Hahn, S.; Holzgreve, W.; Zhong, X.Y. Circulating cell-free DNA as a potential biomarker for minimal and mild endometriosis. Reprod. Biomed. Online 2009, 18, 407–411. [Google Scholar] [CrossRef] [PubMed]
- Jia, S.-Z.; Yang, Y.; Lang, J.; Sun, P.; Leng, J. Plasma miR-17-5p, miR-20a and miR-22 are down-regulated in women with endometriosis. Hum. Reprod. 2013, 28, 322–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rekker, K.; Saare, M.; Roost, A.M.; Kaart, T.; Sõritsa, D.; Karro, H.; Sõritsa, A.; Simón, C.; Salumets, A.; Peters, M. Circulating miR-200–family micro-RNAs have altered plasma levels in patients with endometriosis and vary with blood collection time. Fertil. Steril. 2015, 104, 938–946.e2. [Google Scholar] [CrossRef]
- Zhang, B.; Pan, X.; Cobb, G.; Anderson, T. microRNAs as oncogenes and tumor suppressors. Dev. Biol. 2007, 302, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Stepicheva, N.A.; Song, J.L. Function and regulation of microRNA-31 in development and disease. Mol. Reprod. Dev. 2016, 83, 654–674. [Google Scholar] [CrossRef]
- Acunzo, M.; Romano, G.; Wernicke, D.; Croce, C.M. MicroRNA and cancer—A brief overview. Adv. Biol. Regul. 2015, 57, 1–9. [Google Scholar] [CrossRef]
- Lynam-Lennon, N.; Maher, S.; Reynolds, J.V. The roles of microRNA in cancer and apoptosis. Biol. Rev. 2009, 84, 55–71. [Google Scholar] [CrossRef] [PubMed]
- Varma, R.; Rollason, T.; Gupta, J.K.; Maher, E.R. Endometriosis and the neoplastic process. Reproduction 2004, 127, 293–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, S.-W. Endometriosis and ovarian cancer: Potential benefits and harms of screening and risk-reducing surgery. Fertil. Steril. 2015, 104, 813–830. [Google Scholar] [CrossRef]
- Matalliotakis, M.; Matalliotaki, C.; Goulielmos, G.N.; Patelarou, E.; Tzardi, M.; Spandidos, D.; Arici, A.; Matalliotakis, I. Association between ovarian cancer and advanced endometriosis. Oncol. Lett. 2018, 15, 7689–7692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucidi, A.; Buca, D.; Ronsini, C.; Tinari, S.; Bologna, G.; Buca, D.; Leombroni, M.; Liberati, M.; D’Antonio, F.; Scambia, G.; et al. Role of Extracellular Vesicles in Epithelial Ovarian Cancer: A Systematic Review. Int. J. Mol. Sci. 2020, 21, 8762. [Google Scholar] [CrossRef] [PubMed]
- Schmid, G.; Notaro, S.; Reimer, D.; Abdel-Azim, S.; Duggan-Peer, M.; Holly, J.; Fiegl, H.; Rössler, J.; Wiedemair, A.; Concin, N.; et al. Expression and promotor hypermethylation of miR-34a in the various histological subtypes of ovarian cancer. BMC Cancer 2016, 16, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, D.D.; Gercel-Taylor, C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol. Oncol. 2008, 110, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ba, Y.; Ma, L.; Cai, X.; Yin, Y.; Wang, K.; Guo, J.; Zhang, Y.; Chen, J.; Guo, X.; et al. Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008, 18, 997–1006. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Kong, W.; He, L.; Zhao, J.-J.; O’Donnell, J.D.; Wang, J.; Wenham, R.M.; Coppola, D.; Kruk, P.A.; Nicosia, S.V.; et al. MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res. 2008, 68, 425–433. [Google Scholar] [CrossRef] [Green Version]
- Farsimadan, M.; Haje, M.I.; Mawlood, C.K.; Arabipour, I.; Emamvirdizadeh, A.; Takamoli, S.; Masumi, M.; Vaziri, H. MicroRNA variants in endometriosis and its severity. Br. J. Biomed. Sci. 2021, 78, 206–210. [Google Scholar] [CrossRef]
- Noruzinia, M.; Bashti, O.; Garshasbi, M.; Abtahi, M. miR-31 and miR-145 as Potential Non-Invasive Regulatory Biomarkers in Patients with Endometriosis. Cell J. 2018, 20, 84–89. [Google Scholar] [CrossRef]
- Hidalgo, G.D.S.; Meola, J.; e Silva, J.C.R.; de Paz, C.C.P.; Ferriani, R.A. TAGLN expression is deregulated in endometriosis and may be involved in cell invasion, migration, and differentiation. Fertil. Steril. 2011, 96, 700–703. [Google Scholar] [CrossRef] [PubMed]
- Hull, M.L.; Escareno, C.R.; Godsland, J.M.; Doig, J.R.; Johnson, C.M.; Phillips, S.C.; Smith, S.K.; Tavaré, S.; Print, C.G.; Charnock-Jones, D.S. Endometrial-peritoneal interactions during endometriotic lesion establishment. Am. J. Pathol. 2008, 173, 700–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eggers, J.C.; Martino, V.; Reinbold, R.; Schäfer, S.D.; Kiesel, L.; Starzinski-Powitz, A.; Schüring, A.N.; Kemper, B.; Greve, B.; Götte, M. microRNA miR-200b affects proliferation, invasiveness and stemness of endometriotic cells by targeting ZEB1, ZEB2 and KLF4. Reprod. Biomed. Online 2016, 32, 434–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franzago, M.; Lanuti, P.; Fraticelli, F.; Marchioni, M.; Buca, D.; Di Nicola, M.; Liberati, M.; Miscia, S.; Stuppia, L.; Vitacolonna, E. Biological insight into the extracellular vesicles in women with and without gestational diabetes. J. Endocrinol. Investig. 2021, 44, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Buca, D.; Bologna, G.; D’Amico, A.; Cugini, S.; Musca, F.; Febbo, M.; D’Arcangelo, D.; Buca, D.; Simeone, P.; Liberati, M.; et al. Extracellular Vesicles in Feto–Maternal Crosstalk and Pregnancy Disorders. Int. J. Mol. Sci. 2020, 21, 2120. [Google Scholar] [CrossRef] [Green Version]
- Goossens, N.; Nakagawa, S.; Sun, X.; Hoshida, Y. Cancer biomarker discovery and validation. Transl. Cancer Res. 2015, 4, 256–269. [Google Scholar] [CrossRef]
- Di Tomo, P.; Lanuti, P.; Di Pietro, N.; Baldassarre, M.P.A.; Marchisio, M.; Pandolfi, A.; Consoli, A.; Formoso, G. Liraglutide mitigates TNF-α induced pro-atherogenic changes and microvesicle release in HUVEC from diabetic women. Diabetes/Metab. Res. Rev. 2017, 33, e2925. [Google Scholar] [CrossRef]
- Pieragostino, D.; Lanuti, P.; Cicalini, I.; Cufaro, M.C.; Ciccocioppo, F.; Ronci, M.; Simeone, P.; Onofrj, M.; van der Pol, E.; Fontana, A.; et al. Proteomics characterization of extracellular vesicles sorted by flow cytometry reveals a disease-specific molecular cross-talk from cerebrospinal fluid and tears in multiple sclerosis. J. Proteom. 2019, 204, 103403. [Google Scholar] [CrossRef]
- Grande, R.; Dovizio, M.; Marcone, S.; Szklanna, P.B.; Bruno, A.; Ebhardt, H.A.; Cassidy, H.; Ní Áinle, F.; Caprodossi, A.; Lanuti, P.; et al. Platelet-Derived Microparticles from Obese Individuals: Characterization of Number, Size, Proteomics, and Crosstalk With Cancer and Endothelial Cells. Front. Pharmacol. 2019, 10, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pieragostino, D.; Cicalini, I.; Lanuti, P.; Ercolino, E.; Di Ioia, M.; Zucchelli, M.; Zappacosta, R.; Miscia, S.; Marchisio, M.; Sacchetta, P.; et al. Enhanced release of acid sphingomyelinase-enriched exosomes generates a lipidomics signature in CSF of Multiple Sclerosis patients. Sci. Rep. 2018, 8, 3071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Codagnone, M.; Recchiuti, A.; Lanuti, P.; Pierdomenico, A.M.; Cianci, E.; Patruno, S.; Mari, V.C.; Simiele, F.; Di Tomo, P.; Pandolfi, A.; et al. Lipoxin A4 stimulates endothelial miR-126–5p expression and its transfer via microvesicles. FASEB J. 2017, 31, 1856–1866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Lu, S.; Pu, D.; Zhang, H.; Yang, L.; Zeng, P.; Su, F.; Chen, Z.; Guo, M.; Gu, Y.; et al. Detection of fetal trisomy and single gene disease by massively parallel sequencing of extracellular vesicle DNA in maternal plasma: A proof-of-concept validation. BMC Med. Genom. 2019, 12, 151. [Google Scholar] [CrossRef] [PubMed]
- Cufaro, M.C.; Pieragostino, D.; Lanuti, P.; Rossi, C.; Cicalini, I.; Federici, L.; De Laurenzi, V.; Del Boccio, P. Extracellular Vesicles and Their Potential Use in Monitoring Cancer Progression and Therapy: The Contribution of Proteomics. J. Oncol. 2019, 2019, 1639854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreu, Z.; Yáñez-Mó, M. Tetraspanins in Extracellular Vesicle Formation and Function. Front. Immunol. 2014, 5, 442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krause, M.; Rak-Raszewska, A.; Naillat, F.; Saarela, U.; Schmidt, C.; Ronkainen, V.-P.; Bart, G.; Ylä-Herttuala, S.; Vainio, S.J. Exosomes as secondary inductive signals involved in kidney organogenesis. J. Extracell. Vesicles 2018, 7, 1422675. [Google Scholar] [CrossRef] [Green Version]
- Helwa, I.; Cai, J.; Drewry, M.D.; Zimmerman, A.; Dinkins, M.B.; Khaled, M.L.; Seremwe, M.; Dismuke, W.M.; Bieberich, E.; Stamer, W.D.; et al. A Comparative Study of Serum Exosome Isolation Using Differential Ultracentrifugation and Three Commercial Reagents. PLoS ONE 2017, 12, e0170628. [Google Scholar] [CrossRef] [Green Version]
- Chairoungdua, A.; Smith, D.L.; Pochard, P.; Hull, M.; Caplan, M.J. Exosome release of β-catenin: A novel mechanism that antagonizes Wnt signaling. J. Cell Biol. 2010, 190, 1079–1091. [Google Scholar] [CrossRef] [Green Version]
- Buschow, S.I.; Nolte-‘t Hoen, E.N.M.N.; Van Niel, G.; Pols, M.S.; ten Broeke, T.T.; Lauwen, M.; Ossendorp, F.; Melief, C.J.M.; Raposo, G.; Wubbolts, R.; et al. MHC II in dendritic cells is targeted to lysosomes or t cell-induced exosomes via distinct multivesicular body pathways. Traffic 2009, 10, 1528–1542. [Google Scholar] [CrossRef]
- Escola, J.-M.; Kleijmeer, M.J.; Stoorvogel, W.; Griffith, J.M.; Yoshie, O.; Geuze, H.J. Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by humsan B-lymphocytes. J. Biol. Chem. 1998, 273, 20121–20127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nazarenko, I.; Rana, S.; Baumann, A.; McAlear, J.; Hellwig, A.; Trendelenburg, M.; Lochnit, G.; Preissner, K.T.; Zöller, M. Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Res. 2010, 70, 1668–1678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villarroya-Beltri, C.; Baixauli, F.; Gutiérrez-Vázquez, C.; Sánchez-Madrid, F.; Mittelbrunn, M. Sorting it out: Regulation of exosome loading. Semin. Cancer Biol. 2014, 28, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poon, I.K.H.; Parkes, M.A.F.; Jiang, L.; Atkin-Smith, G.K.; Tixeira, R.; Gregory, C.D.; Ozkocak, D.C.; Rutter, S.F.; Caruso, S.; Santavanond, J.P.; et al. Moving beyond size and phosphatidylserine exposure: Evidence for a diversity of apoptotic cell-derived extracellular vesicles in vitro. J. Extracell. Vesicles 2019, 8, 1608786. [Google Scholar] [CrossRef] [Green Version]
- Ciardiello, C.; Leone, A.; Lanuti, P.; Roca, M.S.; Moccia, T.; Minciacchi, V.R.; Minopoli, M.; Gigantino, V.; De Cecio, R.; Rippa, M.; et al. Large oncosomes overexpressing integrin alpha-V promote prostate cancer adhesion and invasion via AKT activation. J. Exp. Clin. Cancer Res. 2019, 38, 317. [Google Scholar] [CrossRef] [Green Version]
- Hartjes, T.A.; Mytnyk, S.; Jenster, G.W.; van Steijn, V.; van Royen, M.E. Extracellular Vesicle Quantification and Characterization: Common Methods and Emerging Approaches. Bioengineering 2019, 6, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, Y.H.; Shin, H.W.; Jung, A.R.; Kwon, O.S.; Choi, Y.-J.; Park, J.; Lee, J.Y. Author Correction: Prostate-specific extracellular vesicles as a novel biomarker in human prostate cancer. Sci. Rep. 2019, 9, 6051. [Google Scholar] [CrossRef] [Green Version]
- Linares, R.; Tan, S.; Gounou, C.; Brisson, A.R. Imaging and Quantification of Extracellular Vesicles by Transmission Electron Microscopy. Methods Mol. Biol. 2017, 1545, 43–54. [Google Scholar] [CrossRef]
- Sokolova, V.; Ludwig, A.-K.; Hornung, S.; Rotan, O.; Horn, P.A.; Epple, M.; Giebel, B. Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids Surf. B Biointerfaces 2011, 87, 146–150. [Google Scholar] [CrossRef]
- Casado, S.; Lobo, M.D.V.T.; Paíno, C.L. Dynamics of plasma membrane surface related to the release of extracellular vesicles by mesenchymal stem cells in culture. Sci. Rep. 2017, 7, 6767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nanou, A.; Crespo, M.; Flohr, P.; De Bono, J.S.; Terstappen, L.W.M.M. Scanning Electron Microscopy of Circulating Tumor Cells and Tumor-Derived Extracellular Vesicles. Cancers 2018, 10, 416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biggs, C.N.; Siddiqui, K.M.; Al-Zahrani, A.A.; Pardhan, S.; Brett, S.I.; Guo, Q.Q.; Yang, J.; Wolf, P.; Power, N.E.; Durfee, P.N.; et al. Prostate extracellular vesicles in patient plasma as a liquid biopsy platform for prostate cancer using nanoscale flow cytometry. Oncotarget 2016, 7, 8839–8849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardij, J.; Cecchet, F.; Berquand, A.; Gheldof, D.; Chatelain, C.; Mullier, F.; Chatelain, B.; Dogné, J.-M. Characterisation of tissue factor-bearing extracellular vesicles with AFM: Comparison of air-tapping-mode AFM and liquid Peak Force AFM. J. Extracell. Vesicles 2013, 2, 21045. [Google Scholar] [CrossRef] [PubMed]
- Vorselen, D.; Marchetti, M.; López-Iglesias, C.; Peters, P.J.; Roos, W.H.; Wuite, G.J.L. Multilamellar nanovesicles show distinct mechanical properties depending on their degree of lamellarity. Nanoscale 2018, 10, 5318–5324. [Google Scholar] [CrossRef] [PubMed]
- Gardiner, C.; Di Vizio, D.; Sahoo, S.; Théry, C.; Witwer, K.W.; Wauben, M.; Hill, A.F. Techniques used for the isolation and characterization of extracellular vesicles: Results of a worldwide survey. J. Extracell. Vesicles 2016, 5, 32945. [Google Scholar] [CrossRef] [PubMed]
- Poncelet, P.; Robert, S.; Bailly, N.; Garnache-Ottou, F.; Bouriche, T.; Devalet, B.; Segatchian, J.H.; Saas, P.; Mullier, F. Tips and tricks for flow cytometry-based analysis and counting of microparticles. Transfus. Apher. Sci. 2015, 53, 110–126. [Google Scholar] [CrossRef]
- Chandler, W.L. Measurement of microvesicle levels in human blood using flow cytometry. Cytom. Part B Clin. Cytom. 2016, 90, 326–336. [Google Scholar] [CrossRef]
- Deshmukh, A.; Kim, G.; Burke, M.; Anyanwu, E.; Jeevanandam, V.; Uriel, N.; Tung, R.; Ozcan, C. Atrial Arrhythmias and Electroanatomical Remodeling in Patients With Left Ventricular Assist Devices. J. Am. Heart Assoc. 2017, 6, e005340. [Google Scholar] [CrossRef] [Green Version]
- Cossarizza, A.; Chang, H.-D.; Radbruch, A.; Acs, A.; Adam, D.; Adam-Klages, S.; Agace, W.W.; Aghaeepour, N.; Akdis, M.; Allez, M.; et al. Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). Eur. J. Immunol. 2019, 49, 1457–1973. [Google Scholar] [CrossRef] [Green Version]
- van der Pol, E.; Coumans, F.; Varga, Z.; Krumrey, M.; Nieuwland, R. Innovation in detection of microparticles and exosomes. J. Thromb. Haemost. 2013, 11, 36–45. [Google Scholar] [CrossRef] [Green Version]
- Stoner, S.A.; Duggan, E.; Condello, D.; Guerrero, A.; Turk, J.R.; Narayanan, P.K.; Nolan, J.P. High sensitivity flow cytometry of membrane vesicles. Cytom. Part A 2016, 89, 196–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erdbrügger, U.; Rudy, C.K.; Etter, M.E.; Dryden, K.A.; Yeager, M.; Klibanov, A.L.; Lannigan, J. Imaging flow cytometry elucidates limitations of microparticle analysis by conventional flow cytometry. Cytom. Part A 2014, 85, 756–770. [Google Scholar] [CrossRef] [PubMed]
- Mastoridis, S.; Bertolino, G.M.; Whitehouse, G.; Dazzi, F.; Sanchez-Fueyo, A.; Martinez-Llordella, M. Multiparametric Analysis of Circulating Exosomes and Other Small Extracellular Vesicles by Advanced Imaging Flow Cytometry. Front. Immunol. 2018, 9, 1583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laudanski, P.; Charkiewicz, R.; Kuzmicki, M.; Szamatowicz, J.; Charkiewicz, A.; Niklinski, J. MicroRNAs expression profiling of eutopic proliferative endometrium in women with ovarian endometriosis. Reprod. Biol. Endocrinol. 2013, 11, 78. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.-T.; Zhao, Y.-N.; Han, B.-W.; Hong, S.-J.; Chen, Y.-Q. Circulating microRNAs identified in a genome-wide serum microRNA expression analysis as noninvasive biomarkers for endometriosis. J. Clin. Endocrinol. Metab. 2013, 98, 281–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suryawanshi, S.; Vlad, A.M.; Lin, H.-M.; Mantia-Smaldone, G.; Laskey, R.; Lee, M.; Lin, Y.; Donnellan, N.; Klein-Patel, M.; Lee, T.; et al. Plasma microRNAs as novel biomarkers for endometriosis and endometriosis-associated ovarian cancer. Clin. Cancer Res. 2013, 19, 1213–1224. [Google Scholar] [CrossRef] [Green Version]
- Braza-Boïls, A.; Salloum-Asfar, S.; Marí-Alexandre, J.; Arroyo, A.B.; González-Conejero, R.; Barceló-Molina, M.; García-Oms, J.; Vicente, V.; Estellés, A.; Gilabert-Estellés, J.; et al. Peritoneal fluid modifies the microRNA expression profile in endometrial and endometriotic cells from women with endometriosis. Hum. Reprod. 2015, 30, 2292–2302. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.; Mutlu, L.; Grechukhina, O.; Taylor, H.S. Circulating microRNAs as potential biomarkers for endometriosis. Fertil. Steril. 2015, 103, 1252–1260.e1. [Google Scholar] [CrossRef] [Green Version]
- Cosar, E.; Mamillapalli, R.; Ersoy, G.S.; Cho, S.; Seifer, B.; Taylor, H.S. Serum microRNAs as diagnostic markers of endometriosis: A comprehensive array-based analysis. Fertil. Steril. 2016, 106, 402–409. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Huang, W.; Ren, C.; Zhao, M.; Jiang, X.; Fang, X.; Xia, X. Analysis of Serum microRNA Profile by Solexa Sequencing in Women With Endometriosis. Reprod. Sci. 2016, 23, 1359–1370. [Google Scholar] [CrossRef] [PubMed]
- Nothnick, W.B.; Al-Hendy, A.; Lue, J.R. Circulating Micro-RNAs as Diagnostic Biomarkers for Endometriosis: Privation and Promise. J. Minim. Invasive Gynecol. 2015, 22, 719–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Li, Z.; Liu, J.; Yu, S.; Wei, Z. MicroRNA expression profiling in endometriosis-associated infertility and its relationship with endometrial receptivity evaluated by ultrasound. J. X-Ray Sci. Technol. 2017, 25, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, J.; Zhu, X.; Tang, L.; Luo, X.; Shi, Y. Role of miR449b3p in endometriosis via effects on endometrial stromal cell proliferation and angiogenesis. Mol. Med. Rep. 2018, 18, 3359–3365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maged, A.M.; Deeb, W.S.; El Amir, A.; Zaki, S.S.; El Sawah, H.; Al Mohamady, M.; Metwally, A.A.; Katta, M.A. Diagnostic accuracy of serum miR-122 and miR-199a in women with endometriosis. Int. J. Gynecol. Obstet. 2018, 141, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Pateisky, P.; Pils, D.; Szabo, L.; Kuessel, L.; Husslein, H.; Schmitz, A.; Wenzl, R.; Yotova, I. hsa-miRNA-154-5p expression in plasma of endometriosis patients is a potential diagnostic marker for the disease. Reprod. Biomed. Online 2018, 37, 449–466. [Google Scholar] [CrossRef]
- Wang, F.; Wang, H.; Jin, D.; Zhang, Y. Serum miR-17, IL-4, and IL-6 levels for diagnosis of endometriosis. Medicine 2018, 97, e10853. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Fu, J.; Xu, Y.; Gu, R.; Qu, R.; Li, L.; Sun, Y.; Sun, X. MicroRNA-451 is downregulated in the follicular fluid of women with endometriosis and influences mouse and human embryonic potential. Reprod. Biol. Endocrinol. 2019, 17, 96. [Google Scholar] [CrossRef]
- Nabiel, Y.; Elshahawy, H.; Mosbah, A. Intrauterine Bacterial Colonization and Endometrial MicroRNA-17-5p Levels in Association to Endometriosis: A Study in an Egyptian Population. Immunol. Investig. 2020, 49, 611–621. [Google Scholar] [CrossRef]
- Petracco, R.; De Oliveira Dias, A.C.; Taylor, H.; Petracco, Á.; Badalotti, M.; Michelon, J.D.R.; Marinowic, D.R.; Hentschke, M.; De Azevedo, P.N.; Zanirati, G.; et al. Evaluation of miR135a/b expression in endometriosis lesions. Biomed. Rep. 2019, 11, 181–187. [Google Scholar] [CrossRef] [Green Version]
- Vanhie, A.O.D.; Peterse, D.; Beckers, A.; Cuéllar, A.; Fassbender, A.; Meuleman, C.; Mestdagh, P.; D’Hooghe, T. Plasma miRNAs as biomarkers for endometriosis. Hum. Reprod. 2019, 34, 1650–1660. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, S.; Tang, L.; Wang, X.; Zhang, T.; Xia, X.; Fang, X. Downregulated circular RNA hsa_circ_0067301 regulates epithelial-mesenchymal transition in endometriosis via the miR-141/Notch signaling pathway. Biochem. Biophys. Res. Commun. 2019, 514, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Borisov, E.; Knyazeva, M.; Novak, V.; Zabegina, L.; Prisyazhnaya, T.; Karizkiy, A.; Berlev, I.; Malek, A. Analysis of Reciprocally Dysregulated miRNAs in Eutopic Endometrium Is a Promising Approach for Low Invasive Diagnostics of Adenomyosis. Diagnostics 2020, 10, 782. [Google Scholar] [CrossRef]
- da Silva, L.F.I.; Da Broi, M.G.; da Luz, C.M.; da Silva, L.E.C.M.; Ferriani, R.A.; Meola, J.; Navarro, P.A. miR-532-3p: A possible altered miRNA in cumulus cells of infertile women with advanced endometriosis. Reprod. Biomed. Online 2021, 42, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.-L.; Zhang, Z.; Fan, W.-S.; Li, L.-A.; Ye, M.-X.; Zhang, Q.; Zhang, N.-N.; Li, Z.; Meng, Y.-G. Identification of MicroRNAs as Potential Biomarkers in Ovarian Endometriosis. Reprod. Sci. 2020, 27, 1715–1723. [Google Scholar] [CrossRef]
- Mai, H.; Xu, H.; Lin, H.; Wei, Y.; Yin, Y.; Huang, Y.; Huang, S.; Liao, Y. LINC01541 Functions as a ceRNA to Modulate the Wnt/β-Catenin Pathway by Decoying miR-506-5p in Endometriosis. Reprod. Sci. 2021, 28, 665–674. [Google Scholar] [CrossRef]
- Moustafa, S.; Burn, M.; Mamillapalli, R.; Nematian, S.; Flores, V.; Taylor, H.S. Accurate diagnosis of endometriosis using serum microRNAs. Am. J. Obstet. Gynecol. 2020, 223, 557.e1–557.e11. [Google Scholar] [CrossRef]
- Papari, E.; Noruzinia, M.; Kashani, L.; Foster, W.G. Identification of candidate microRNA markers of endometriosis with the use of next-generation sequencing and quantitative real-time polymerase chain reaction. Fertil. Steril. 2020, 113, 1232–1241. [Google Scholar] [CrossRef]
- Razi, M.H.; Eftekhar, M.; Ghasemi, N.; Sheikhha, M.H.; Firoozabadi, A.D. Expression levels of circulatory mir-185-5p, vascular endothelial growth factor, and platelet-derived growth factor target genes in endometriosis. Int. J. Reprod. Biomed. 2020, 18, 347–358. [Google Scholar] [CrossRef]
- Wu, J.; Huang, H.; Huang, W.; Wang, L.; Xia, X.; Fang, X. Analysis of exosomal lncRNA, miRNA and mRNA expression profiles and ceRNA network construction in endometriosis. Epigenomics 2020, 12, 1193–1213. [Google Scholar] [CrossRef]
- Zhang, L.; Li, H.; Yuan, M.; Li, D.; Sun, C.; Wang, G. Serum Exosomal MicroRNAs as Potential Circulating Biomarkers for Endometriosis. Dis. Markers 2020, 2020, 2456340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, L.; Chen, S.; Wang, D.; Yang, Q. LINC01116 promotes proliferation and migration of endometrial stromal cells by targeting FOXP1 via sponging miR-9-5p in endometriosis. J. Cell. Mol. Med. 2020, 25, 2000–2012. [Google Scholar] [CrossRef] [PubMed]
- Misir, S.; Hepokur, C.; Oksasoglu, B.; Yildiz, C.; Yanik, A.; Aliyazicioglu, Y. Circulating serum miR-200c and miR-34a-5p as diagnostic biomarkers for endometriosis. J. Gynecol. Obstet. Hum. Reprod. 2021, 50, 102092. [Google Scholar] [CrossRef] [PubMed]
- Pokrovenko, D.A.; Vozniuk, V.; Medvediev, M.V. MicroRNA let-7: A promising non-invasive biomarker for diagnosing and treating external genital endometriosis. J. Turk. Soc. Obstet. Gynecol. 2021, 18, 291–297. [Google Scholar] [CrossRef]
- Wang, D.; Cui, L.; Yang, Q.; Wang, J. Circular RNA circZFPM2 promotes epithelial-mesenchymal transition in endometriosis by regulating miR-205-5p/ZEB1 signalling pathway. Cell. Signal. 2021, 87, 110145. [Google Scholar] [CrossRef]
- Wu, J.; Fang, X.; Huang, H.; Huang, W.; Wang, L.; Xia, X. Construction and topological analysis of an endometriosis-related exosomal circRNA-miRNA-mRNA regulatory network. Aging 2021, 13, 12607–12630. [Google Scholar] [CrossRef] [PubMed]
- Zafari, N.; Bahramy, A.; Zolbin, M.M.; Allahyari, S.E.; Farazi, E.; Hassannejad, Z.; Yekaninejad, M.S. microRNAs as novel diagnostic biomarkers in endometriosis patients: A systematic review and meta-analysis. Expert Rev. Mol. Diagn. 2022, 22, 479–495. [Google Scholar] [CrossRef]
- Bao, Q.; Zheng, Q.; Wang, S.; Tang, W.; Zhang, B. LncRNA HOTAIR regulates cell invasion and migration in endometriosis through miR-519b-3p/PRRG4 pathway. Front. Oncol. 2022, 12, 953055. [Google Scholar] [CrossRef]
- Bendifallah, S.; Dabi, Y.; Suisse, S.; Delbos, L.; Poilblanc, M.; Descamps, P.; Golfier, F.; Jornea, L.; Bouteiller, D.; Touboul, C.; et al. Endometriosis Associated-miRNome Analysis of Blood Samples: A Prospective Study. Diagnostics 2022, 12, 1150. [Google Scholar] [CrossRef]
- Dabi, Y.; Suisse, S.; Jornea, L.; Bouteiller, D.; Touboul, C.; Puchar, A.; Daraï, E.; Bendifallah, S. Clues for Improving the Pathophysiology Knowledge for Endometriosis Using Serum Micro-RNA Expression. Diagnostics 2022, 12, 175. [Google Scholar] [CrossRef]
- He, S.; Jing, L.; Ma, D.; Liu, Z.; Lv, N. MicroRNA-148a targets ADAMTS5 to inhibit proliferation of endometriosis cells. Pak. J. Pharm. Sci. 2022, 35, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhu, L.; Li, H.; Ye, J.; Lin, N.; Chen, M.; Pan, D.; Chen, Z. Endometriosis derived exosomal miR-301a-3p mediates macrophage polarization via regulating PTEN-PI3K axis. Biomed. Pharmacother. 2022, 147, 112680. [Google Scholar] [CrossRef] [PubMed]
- Iurova, I.M.; Eldarov, E.C.; Bobrov, B.M.; Khabas, K.G.; Pavlovich, P.S. Expression of exosomal microRNA in high-grade ovarian cancer and ovarian endometriotic cysts. Obstet. Gynecol. 2022, 3, 68–79. [Google Scholar] [CrossRef]
- Jaafar, S.O.; Jaffar, J.O.; Ibrahim, S.A.; Jarjees, K.K. MicroRNA Variants miR-27a rs895819 and miR-423 rs6505162, but not miR-124-1 rs531564, are Linked to Endometriosis and its Severity. Br. J. Biomed. Sci. 2022, 79, 10207. [Google Scholar] [CrossRef]
- Nai, M.; Zhang, Y.; Li, L.; Jin, Y.; Li, Y.; Wang, L.; Ren, C. Effects of miR-363 on the Biological Activities of Eutopic Endometrial Stromal Cells in Endometriosis. BioMed. Res. Int. 2022, 2022, 7663379. [Google Scholar] [CrossRef] [PubMed]
- Barnabas, G.D.; Bahar-Shany, K.; Sapoznik, S.; Helpman, L.; Kadan, Y.; Beiner, M.; Weitzner, O.; Arbib, N.; Korach, J.; Perri, T.; et al. Microvesicle Proteomic Profiling of Uterine Liquid Biopsy for Ovarian Cancer Early Detection. Mol. Cell. Proteom. 2019, 18, 865–875. [Google Scholar] [CrossRef] [Green Version]
- Dabi, Y.; Suisse, S.; Puchar, A.; Delbos, L.; Poilblanc, M.; Descamps, P.; Haury, J.; Golfier, F.; Jornea, L.; Bouteiller, D.; et al. Endometriosis-associated infertility diagnosis based on saliva microRNA signatures. Reprod. Biomed. Online 2023, 46, 138–149. [Google Scholar] [CrossRef]
Author, Year of Publication | Country | Period of Enrollment | Study Type | No. of Patients | No. of Controls |
---|---|---|---|---|---|
Laudanski 2013 [65] | Poland | N/A | Monocenter prospective case-control | 21 | 25 |
Jia 2013 [6] | China | 2012 | Monocenter prospective case-control | 23 | 23 |
Wang 2013 [66] | China | 2011 | Monocenter prospective case-control | 60 | 25 |
Suryawanshi 2014 [67] | USA | 2006–2011 | Monocenter prospective case-control | 33 | 20 |
Braza-Boïls 2015 [68] | Spain | N/A | Multicenter prospective case-control | 8 | 11 |
Cho 2015 [69] | South Korea | 2010–2013 | Monocenter prospective case-control | 24 | 24 |
Rekker 2015 [7] | Spain | 2010–2014 | Multicenter prospective case-control | 61 | 65 |
Cosar 2016 [70] | USA | 2010–2013 | Multicenter prospective case-control | 24 | 24 |
Wang 2016 [71] | China | 2011–2013 | Monocenter prospective case-control | 30 | 20 |
Nothnick 2017 [72] | USA | N/A | Multicenter prospective case-control | 41 | 40 |
Xu 2017 [73] | China | 2015 | Monocenter prospective case-control | 14 | 10 |
Bashti 2018 [21] | Iran | N/A | Monocenter prospective case-control | 55 | 23 |
Liu 2018 [74] | China | 2017 | Monocenter prospective case-control | 19 | 35 |
Maged 2018 [75] | Egypt | 2015–2016 | Monocenter prospective case-control | 45 | 35 |
Pateisky 2018 [76] | Austria Germany | 2010–2012 | Monocenter prospective case-control | 51 | 41 |
Wang 2018 [77] | China | 2016–2017 | Monocenter prospective case-control | 80 | 60 |
Li 2019 [78] | China | N/A | Prospective case-control | 30 | 30 |
Nabiel 2019 [79] | Egypt | 2017–2019 | Monocenter prospective case-control | 51 | 51 |
Petracco 2019 [80] | Brazil | 2013–2014 | Monocenter prospective cohort | 23 | 0 |
Vanhie 2019 [81] | Belgium | N/A | Monocenter prospective case-control | 82 | 38 |
Zhang 2019 [82] | China | N/A | Monocenter prospective case-control | 10 | 10 |
Borisov 2020 [83] | Russia | N/A | Monocenter prospective case-control | 10 | 10 |
Da Silva 2020 [84] | Brazil | 2014–2014 | Monocenter prospective case-control | 40 | 13 |
Gu 2020 [85] | China | N/A | Monocenter prospective case-control | 10 | 10 |
Mai 2020 [86] | China | N/A | Monocenter prospective case-control | 18 | 10 |
Moustafa 2020 [87] | USA | 2016–2017 | Monocenter prospective case-control | 41 | 59 |
Papari 2020 [88] | Canada | N/A | Monocenter prospective case-control | 25 | 28 |
Hossein Razi 2020 [89] | Iran | 2018–2019 | Monocenter prospective case-control | 25 | 25 |
Wu 2020 [90] | China | N/A | Monocenter prospective case-control | 10 | 10 |
Zhang 2020 [91] | China | N/A | Monocenter prospective case-control | 27 | 31 |
Cui 2021 [92] | China | 2018–2019 | Monocenter prospective case-control | 6 | 6 |
Farsimadan 2021 [20] | Iran | N/A | Monocenter prospective case-control | 260 | 260 |
Misir 2021 [93] | Turkey | 2017–2018 | Monocenter prospective case-control | 58 | 60 |
Pokrovenko 2021 [94] | Ukraine | N/A | Prospective case-control | 64 | 24 |
Wang 2021 [95] | China | 2019 | Monocenter prospective case-control | 30 | 24 |
Wu 2021 [96] | China | N/A | Prospective case-control | 6 | 3 |
Zafari 2021 [97] | Iran | N/A | Monocenter prospective case-control | 25 | 25 |
Bao 2022 [98] | China | 2020 | Monocenter prospective case-control | 20 | 10 |
Bendifallah 2022 [99] | France | 2021 | Prospective case-control | 153 | 47 |
Dabi 2022 [100] | France | 2021 | Prospective case-control | 153 | 47 |
He 2022 [101] | China | N/A | Monocenter prospective case-control | 23 | 20 |
Huang 2022 [102] | China | N/A | Monocenter prospective case-control | N/A | N/A |
Iurova 2022 [103] | Russia | N/A | Monocenter prospective cross-sectional | 6 | 5 |
Jaafar 2022 [104] | Iraq | N/A | Monocenter prospective case-control | 220 | 220 |
Nai 2022 [105] | China | 2019 | Monocenter prospective case-control | 30 | 30 |
Author, Year of Publication | MicroRNAs | Source | ASRM Stage of Disease | Regulation in Endometriosis |
---|---|---|---|---|
Wang 2013 [66] | miR-199a miR-122 | Serum | III–IV | Up |
Suryawanshi 2014 [67] | miR-16 miR-191 miR-195 | Plasma | N/A | Up |
Braza-Boïls 2015 [68] | miR-16-5p miR-21-5p miR-29c-3p miR-106b-5p miR-130a-5p miR-185-5p miR-195-5p miR-424-5p | Endometrial stromal cells Ectopic endometrium Eutopic endometrium | III–IV | Up |
Cosar 2016 [70] | miR-125b-5p miR-451a | Serum | III–IV | Up |
Wang 2016 [71] | miR-20a-5p | Serum | I–II | Up |
Nothnick 2017 [72] | miR-451a | Serum | I–IV | Up |
Xu 2017 [73] | miR-1304-3p miR-544b miR-3684 miR-494-5p miR-4683 miR-6747-3p | Eutopic endometrium | N/A | Up |
Bashti 2018 [21] | miR-145 | Plasma | I–IV | Up |
Maged 2018 [75] | miR-199 miR-122 | Serum | I–IV | Up |
Pateisky 2018 [76] | miR-33a-5p | Serum | I–IV | Up |
Nabiel 2019 [79] | miR-17-5p | Eutopic endometrium | I–IV | Up |
Vanhie 2019 [81] | miR-125b-5p miR-28-5p miR-29a3p | Serum | I–IV | Up |
Borisov 2020 [83] | miR-191 | Eutopic endometrium | N/A | Up |
Mai 2020 [86] | miR-506-5p | Serum | III–IV | Up |
Moustafa 2020 [87] | miR125b-5p miR-150-5p miR-342-3p miR-451a | Ectopic endometrium | I–IV | Up |
Hossein Razi 2020 [89] | miR-185-5p | Plasma | III–IV | Up |
Wu 2020 [90] | miR-423-5p | Endometrial stromal cells Ectopic endometrium Eutopic endometrium | III–IV | Up |
Zhang 2020 [91] | miR-202-3p | Endometrial stromal cells Ectopic endometrium Eutopic endometrium | III–IV | Up |
Farsimadan 2021 [20] | miR-146a rs2910164 miR-149 rs2292832 | Serum | N/A | Up |
Zafari 2021 [97] | miR-199b-3p | Serum | I–IV | Up |
Bao 2022 [98] | miR-519b-3p/PRRG4 | Endometrial stromal cells Ectopic endometrium Eutopic endometrium | N/A | Up |
Bendifallah 2022 [99] | hsa-miR-29b-1-5p hsa-miR-4748 hsa-miR-515-5p hsa-miR-548j-5p hsa-miR-6502-5p | Serum | I–IV | Up |
Dabi 2022 [100] | miR-124-3p | Endometrial stromal cells Ectopic endometrium Eutopic endometrium Plasma | N/A | Up |
Huang 2022 [102] | miR-301a-3p/PI3K | Ectopic endometrium Normal serum | N/A | Up |
Iurova 2022 [103] | miR-92b-5p miR-4732-5p miR-3184-3p miR-423-5p miR-486-5p | Plasma | III–IV | Up |
Jaafar 2022 [104] | miR-27a rs895819 miR-423 rs6505162 | Serum | I–IV | Up |
Author, Year of Publication | MicroRNAs | Source | ASRM Stage of Disease | Regulation in Endometriosis |
---|---|---|---|---|
Laudanski 2013 [65] | hsa-miR-483-5p hsa-miR-629 | Eutopic endometrium | III–IV | Down |
Jia 2013 [6] | miR-17-5p miR-20a miR-22 | Serum | III–IV | Down |
Wang 2013 [66] | miR-145 miR-141 miR-542-3p | Serum | III–IV | Down |
Cho 2015 [69] | miR-let-7a–f miR-135a/b | Serum | III–IV | Down |
Rekker 2015 [7] | miR-200a-3p miR-200b-3p miR-141-3p | Plasma | I–IV | Down |
Cosar 2016 [70] | miR-3613-5p | Serum | III–IV | Down |
Wang 2016 [71] | miR-30c-5p miR127-3p miR-99b-5p miR-15b-5p | Serum | I–II | Down |
Xu 2017 [73] | miR-3935 miR-4427 miR-652-5p miR-205-5p | Eutopic endometrium | N/A | Down |
Bashti 2018 [21] | miR-31 | Plasma | I–IV | Down |
Liu 2018 [74] | miR-449b-3p | Endometrial stromal cells Ectopic endometrium Eutopic endometrium | I–II | Down |
Pateisky 2018 [76] | miR-154-5p miR-196b-5p miR-378a-3p | Serum | I–IV | Down |
Wang 2018 [77] | miR-17 | Serum | I–IV | Down |
Li 2019 [78] | miR-451 | Follicular fluid | III–IV | Down |
Petracco 2019 [80] | miR-135a/b | Ectopic endometrium Eutopic endometrium | II–III | Down |
Zhang 2019 [82] | miR-141-5p | Ectopic endometrium Eutopic endometrium | III–IV | Down |
Borisov 2020 [83] | miR-10b miR-200c | Eutopic endometrium | N/A | Down |
Da Silva 2020 [84] | miR-532-3p | Cumulus cells | I–IV | Down |
Gu 2020 [85] | let-7a-5p let-7b-5p let-7d-5p let-7f-5p let-7g-5p let-7i-5p miR-199a3p miR-320a miR-320b miR-320c miR-320d miR-328-3p miR-331-3p miR320e | Serum | III–IV | Down |
Moustafa 2020 [87] | miR-3613-5p let-7b | Ectopic endometrium | I–IV | Down |
Papari 2020 [88] | miR-17-5p miR-20a-5p miR-199a-3p miR-143-3p let-7b-5p | Plasma | III–IV | Down |
Cui 2021 [92] | miR-9-5p | Endometrial stromal cells Ectopic endometrium Eutopic endometrium | III–IV | Down |
Misir 2021 [93] | miR-34a-5p | Serum | I–IV | Down |
Pokrovenko 2021 [94] | miR-let-7 | N/A | I–IV | Down |
Wang 2021 [95] | miR-205-5p/ZEB1 | Ectopic endometrium Eutopic endometrium | III–IV | Down |
Wu 2021 [96] | miR-15a-5p | Endometrial stromal cells Ectopic endometrium Eutopic endometrium | III–IV | Down |
Zafari 2021 [97] | miR-224-5p miR let-7d-3p | Serum | I–IV | Down |
Bendifallah 2022 [99] | hsa-miR-3137 hsa-miR-3168 | Serum | I–IV | Down |
He 2022 [101] | miR-148a | Serum | I–IV | Down |
Huang 2022 [102] | miR-301a-3p/PTEN | Ectopic endometrium Normal serum | N/A | Down |
Nai 2022 [105] | miR-363 | Endometrial stromal cells Ectopic endometrium Eutopic endometrium | N/A | Down |
Author, Year of Publication | ASRM Stage of Disease | MicroRNAs | Dysmenorrhea (%) | Infertility (%) | Delta Patients vs. Controls |
---|---|---|---|---|---|
Laudanski 2013 [65] | III–IV | hsa-miR-483-5p hsa-miR-629 | 42.8 | N/A | 0.5 0.3 |
Jia 2013 [6] | III–IV | miR-17-5p miR-20a miR-22 | N/A | 21.7 | N/A |
Wang 2013 [66] | III–IV | miR-17-5p miR-20a miR-22 miR-199a miR-122 | 60.0 | 88.0 | N/A |
III–IV | miR-145 miR-141 miR-542-3p | 60.0 | 88.0 | N/A | |
Suryawanshi 2014 [67] | N/A | miR-16 miR-191 miR-195 | N/A | N/A | 2.8 4.8 4.0 |
Braza-Boïls 2015 [68] | III–IV | miR-16-5p miR-21-5p miR-29c-3p miR-106b-5p miR-130a-5p miR-185-5p miR-195-5p miR-424-5p | N/A | N/A | 0.1 6.8 3.0 4.8 0.7 1.0 7.7 1.2 |
Cho 2015 [69] | III–IV | miR-let-7a–f miR-135a/b | N/A | N/A | N/A |
Rekker 2015 [7] | I–IV | miR-200a-3p miR-200b-3p miR-141-3p | 57.3 | 63.9 | 0.6 0.5 0.7 |
Cosar 2016 [70] | III–IV | miR-125b-5pmiR-451a | N/A | N/A | 0.1 0.4 |
III–IV | miR-3613-5p | N/A | N/A | 0.2 | |
Wang 2016 [71] | I–II | miR-30c-5p miR127-3p miR-99b-5p miR-15b-5p miR-20a-5p | 66 | 43 | N/A |
Nothnik 2017 [72] | I–IV | miR-451a | N/A | N/A | 5.2 |
Xu 2017 [73] | N/A | miR-1304-3p miR-544b miR-3684 miR-494-5p miR-4683 miR-6747-3p | N/A | 100 | N/A |
N/A | miR-3935 miR-4427 miR-652-5p miR-205-5p | N/A | 100 | N/A | |
Bashti 2018 [21] | I–IV | miR-145 | 0.0 | 0.0 | 6.5 |
I–IV | miR-31 | 0.0 | 0.0 | 0.95 | |
Liu 2018 [74] | I–II | miR-449b-3p | N/A | N/A | 0.5 |
Maged 2018 [75] | I–IV | miR-199 miR-122 | 53.3 | N/A | N/A |
Pateisky 2018 [76] | I–IV | miR-154-5p miR-196b-5p miR-33a-5p miR-378a-3p | N/A | N/A | N/A |
Wang 2018 [77] | I–IV | miR-17 | N/A | N/A | N/A |
Li 2019 [78] | III–IV | miR-451 | N/A | 100 | 2.2 |
Nabiel 2019 [79] | I–IV | miR-17-5p | N/A | N/A | 1.5 |
Petracco 2019 [80] | II–III | miR-135a/b | N/A | 69.5 | 0.52 |
Vanhie 2019 [81] | I–IV | miR-125b-5p miR28-5p miR29a-3p | N/A | N/A | N/A |
Zhang 2019 [82] | III–IV | miR-141-5p | N/A | N/A | 0.75 |
Borisov 2020 [83] | N/A | miR-191 | N/A | N/A | 35 |
N/A | miR-10b miR-200c | N/A | N/A | 2.6 4 | |
Da Silva 2020 [84] | I–IV | miR-532-3p | N/A | 100 | 0.7 |
Gu 2020 [85] | III–IV | hsa-let-7a-5p hsa-let-7b-5p hsa-let-7d-5p hsa-let-7f-5p hsa-let-7g-5p hsa-let-7i-5p miR-199a3p miR-320a miR-320b miR-320c miR-320d miR-328-3p miR-331-3p miR320e | N/A | N/A | N/A |
Mai 2020 [86] | III–IV | miR-506-5p | N/A | N/A | N/A |
Moustafa 2020 [87] | I–IV | miR125b-5p miR-150-5p miR-342-3p miR-451a | N/A | N/A | N/A |
I–IV | miR-3613-5p let-7b | N/A | N/A | N/A | |
Papari 2020 [88] | III–IV | miR-17-5p miR-20a-5p miR-199a-3p miR-143-3p let-7b-5p | 44.0 | N/A | 0.2 4.5 2.1 0.1 0.5 |
Hossein Razi 2020 [89] | III–IV | miR-185-5p | N/A | N/A | 0.04 |
Wu 2020 [90] | III–IV | miR-423-5p | N/A | N/A | 0.3 |
III–IV | miR-214-3p | N/A | N/A | 0.7 | |
Zhang 2020 [91] | III–IV | miR-202-3p | N/A | N/A | 0.3 |
Cui 2021 [92] | III–IV | miR-9-5p | N/A | N/A | 0.7 |
Farsimadan 2021 [20] | N/A | miR-146a rs2910164 miR-149 rs2292832 | N/A | 100 | 2.2 2.9 |
Misir 2021 [93] | I–IV | miR-34a-5p miR-200c | 73.2 | 94.1 | N/A |
Pokrovenko 2021 [94] | I–IV | miR-let-7 | 100 | 100 | 0.6 |
Wang 2021 [95] | III–IV | miR-205-5p/ZEB1 | N/A | N/A | 2.6 |
Wu 2021 [96] | III–IV | miR-15a-5p | N/A | 0.0 | 13 |
Zafari 2021 [97] | I–IV | miR-199b-3p miR-224-5p miR let-7d-3p | N/A | N/A | N/A |
Bao 2022 [98] | N/A | miR-519b-3p/PRRG4 | N/A | N/A | 3.37 |
Bendifallah 2022 [99] | I–IV | hsa-miR-29b-1-5p hsa-miR-4748 hsa-miR-515-5p hsa-miR-548j-5p hsa-miR-6502-5p | 100 | N/A | N/A |
I–IV | hsa-miR-3137 hsa-miR-3168 | 100 | N/A | N/A | |
Dabi 2022 [100] | N/A | miR-124-3p | 100 | N/A | N/A |
He 2022 [101] | I–IV | miR-148a | 0.0 | 0.0 | 0.2 |
Huang 2022 [102] | N/A | miR-301a-3p/PI3K | N/A | N/A | 0.2 |
N/A | miR-301a-3p/PTEN | N/A | N/A | 0.57 | |
Iurova 2022 [103] | III–IV | miR-92b-5p miR-4732-5p miR-3184-3p miR-423-5p miR-486-5p | N/A | N/A | N/A |
Jaafar 2022 [104] | I–IV | miR-27a rs895819 miR-423 rs6505162 | N/A | 100 | 0.9 2.4 |
Nai 2022 [105] | N/A | miR-363 | N/A | N/A | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ronsini, C.; Fumiento, P.; Iavarone, I.; Greco, P.F.; Cobellis, L.; De Franciscis, P. Liquid Biopsy in Endometriosis: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 6116. https://doi.org/10.3390/ijms24076116
Ronsini C, Fumiento P, Iavarone I, Greco PF, Cobellis L, De Franciscis P. Liquid Biopsy in Endometriosis: A Systematic Review. International Journal of Molecular Sciences. 2023; 24(7):6116. https://doi.org/10.3390/ijms24076116
Chicago/Turabian StyleRonsini, Carlo, Pietro Fumiento, Irene Iavarone, Pier Francesco Greco, Luigi Cobellis, and Pasquale De Franciscis. 2023. "Liquid Biopsy in Endometriosis: A Systematic Review" International Journal of Molecular Sciences 24, no. 7: 6116. https://doi.org/10.3390/ijms24076116
APA StyleRonsini, C., Fumiento, P., Iavarone, I., Greco, P. F., Cobellis, L., & De Franciscis, P. (2023). Liquid Biopsy in Endometriosis: A Systematic Review. International Journal of Molecular Sciences, 24(7), 6116. https://doi.org/10.3390/ijms24076116