In Vitro Studies of Nanoparticles as a Potentially New Antimicrobial Agent for the Prevention and Treatment of Lameness and Digital Dermatitis in Cattle
Abstract
:1. Introduction
2. Results
2.1. Identification of the Isolated Microorganisms
2.2. Determination of the Nanoparticles’ Morphology and Their Complexes
2.3. Determination of Physicochemical Properties of Nanoparticles and Their Complexes
2.4. Biocidal Properties of AuNPs, AgNPs, PtNPs, CuNPs, and FeNPs against Microorganisms Isolated from Hoof Lesions
2.5. Biocidal Properties of AuNP, AgNP, and CuNP Complexes against Microorganisms Isolated from Hoof Lesions
3. Discussion
4. Materials and Methods
4.1. Isolated Bacteria Cultures
4.2. Nanoparticles
4.3. Determination of the Nanoparticles’ Morphology
4.4. Determination of the Physicochemical Properties of Nanoparticles
4.5. Determination of Bacterial Viability after Treatment with Nanoparticles and Their Complexes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Steinfeld, H. The livestock revolution—A global veterinary mission. Vet. Parasitol. 2004, 125, 19–41. [Google Scholar] [CrossRef] [PubMed]
- Ndou, S.P.; Muchenje, V.; Chimonyo, M. Animal welfare in multipurpose cattle production Systems and its implications on beef quality. Afr. J. Biotechnol. 2011, 10, 1049–1064. [Google Scholar]
- Miglior, F.; Fleming, A.; Malchiodi, F.; Brito, L.F.; Martin, P.; Baes, C.F. A 100-Year Review: Identification and genetic selection of economically important traits in dairy cattle. J. Dairy Sci. 2017, 100, 10251–10271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schroeder, C.M.; Parlor, K.W.; Marsh, T.L.; Ames, N.K.; Goeman, A.K.; Walker, R.D. Characterization of the predominant anaerobic bacterium recovered from digital dermatitis lesions in three Michigan dairy cows. Anaerobe 2003, 9, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Wilson-Welder, J.H.; Alt, D.P.; Nally, J.E. Digital Dermatitis in Cattle: Current Bacterial and Immunological Findings. Animals 2015, 5, 1114–1135. [Google Scholar] [CrossRef]
- Zinicola, M.; Lima, F.; Lima, S.; Machado, V.; Gomez, M.; Döpfer, D.; Guard, C.; Bicalho, R. Altered Microbiomes in Bovine Digital Dermatitis Lesions, and the Gut as a Pathogen Reservoir. PLoS ONE 2015, 10, e0120504. [Google Scholar] [CrossRef]
- Knappe-Poindecker, M.; Gilhuus, M.; Jensen, T.K.; Kitgaard, K.; Larssen, R.B.; Fjeldaas, T. Interdigital dermatitis, heel horn erosion, and digital dermatitis in 14 Norwegian dairy herds. J. Dairy Sci. 2013, 96, 7617–7629. [Google Scholar] [CrossRef] [Green Version]
- Krull, A.C.; Shearer, J.K.; Gorden, P.J.; Cooper, V.L.; Phillips, G.J.; Plummer, P.J. Deep Sequencing Analysis Reveals Temporal Microbiota Changes Associated with Development of Bovine Digital Dermatitis. Infect. Immun. 2014, 82, 3359–3373. [Google Scholar] [CrossRef] [Green Version]
- Laven, R.A.; Logue, D.N. Treatment strategies for digital dermatitis for the UK. Vet. J. 2006, 171, 79–88. [Google Scholar] [CrossRef]
- Evans, N.J.; Murray, R.D.; Carter, S.D. Bovine digital dermatitis: Current concepts from laboratory to farm. Vet. J. 2016, 211, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Berry, S.L.; Read, D.H.; Famula, T.R.; Mongini, A.; Döpfer, D. Long-term observations on the dynamics of bovine digital dermatitis lesions on a California dairy after topical treatment with lincomycin HCl. Vet. J. 2012, 193, 654–658. [Google Scholar] [CrossRef] [PubMed]
- Morones, J.B.; Elechiguerra, J.L.; Camacho, A.; Holt, K.; Kouri, J.B.; Ramírez, J.T.; Yacaman, M.J. The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16, 2346–2353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.H.; Park, S.J.; Lee, H.J.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C.Y.; et al. Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2007, 3, 95–101. [Google Scholar] [CrossRef]
- Cavalieri, F.; Tortora, M.; Stringaro, A.; Colone, M.; Baldassarri, L. Nanomedicines for antimicrobial interventions. J. Hosp. Infect. 2014, 88, 183–190. [Google Scholar] [CrossRef]
- Panáček, A.; Kvítek, L.; Prucek, R.; Kolář, M.; Večeřová, R.; Pizúrová, N.; Sharma, V.K.; Nevěčná, T.; Zbořil, R. Silver Colloid Nanoparticles: Synthesis, Characterization, and Their Antibacterial Activity. J. Phys. Chem. B 2006, 110, 16248–16253. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Cristobal, L.F.; Martinez-Castanon, G.A.; Martinez-Martinez, R.E.; Loyola-Rodriguez, J.P.; Patino-Marin, N.; Reyes-Macias, J.F.; Ruiz, F. Antibacterial effect of silver nanoparticles against Streptococcus mutans. Mater. Lett. 2009, 63, 2603–2606. [Google Scholar] [CrossRef]
- Saravanan, M.; Nanda, A. Extracellular synthesis of silver bionanoparticles from Aspergillus clavatus and its antimicrobial activity against MRSA and MRSE. Colloids Surf. B 2010, 77, 214–218. [Google Scholar] [CrossRef]
- Mi, G.; Shi, D.; Wang, M.; Webster, T.J. Reducing Bacterial Infections and Biofilm Formation Using Nanoparticles and Nanostructured Antibacterial Surfaces. Adv. Healthc. Mater. 2018, 7, e1800103. [Google Scholar] [CrossRef]
- Li, X.; Robinson, S.M.; Gupta, A.; Saha, K.; Jiang, Z.; Moyano, D.F.; Sahar, A.; Riley, M.A.; Rotello, V.M. Functional Gold Nanoparticles as Potent Antimicrobial Agents against Multi-Drug-Resistant Bacteria. ACS Nano 2014, 8, 10682–10686. [Google Scholar] [CrossRef] [Green Version]
- Wernicki, A.; Puchalski, A.; Urban-Chmiel, R.; Dec, M.; Stęgierska, D.; Dudzic, A.; Wójcik, A. Antimicrobial properties of gold, silver, copper and platinum nanoparticles against selected microorganisms isolated from cases of mastitis in cattle. Med. Weter 2014, 70, 564–567. [Google Scholar]
- Jan, H.; Gul, R.; Andleeb, A.; Ullah, S.; Shah, M.; Khanum, M.; Ullah, I.; Hano, C.; Bilal Haider Abbasi, B.H. A detailed review on biosynthesis of platinum nanoparticles (PtNPs), their potential antimicrobial and biomedical applications. J. Saudi Chem. Soc. 2021, 25, 101297. [Google Scholar] [CrossRef]
- Vitta, Y.; Figueroa, M.; Calderon, M.; Ciangherotti, C. Synthesis of iron nanoparticles from aqueous extract of Eucalyptus robusta Sm and evaluation of antioxidant and antimicrobial activity. Mater. Sci. Energy Technol. 2020, 3, 97–103. [Google Scholar] [CrossRef]
- Ramyadevi, J.; Jeyasubramanian, K.; Marikani, A.; Rajakumar, G.; Rahuman, A.A. Synthesis and antimicrobial activity of copper nanoparticles. Mater. Lett. 2012, 71, 114–116. [Google Scholar] [CrossRef]
- Kalińska, A.; Jaworski, J.; Wierzbicki, M.; Gołębiewski, M. Silver and Copper Nanoparticles—An Alternative in Future Mastitis Treatment and Prevention? Int. J. Mol. Sci. 2019, 20, 1672. [Google Scholar] [CrossRef] [Green Version]
- Munita, J.M.; Arias, C.A. Mechanisms of Antibiotic Resistance. Microbiol. Spectr. 2016, 4, 481–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majumder, S.; Jung, D.; Ronholm, J.; George, S. Prevalence and mechanisms of antibiotic resistance in Escherichia coli isolated from mastitic dairy cattle in Canada. BMC Microbiol. 2021, 21, 1–14. [Google Scholar] [CrossRef]
- Singer, R.S.; Finch, R.; Wegener, H.C.; Bywater, R.; Walters, J.; Lipsitch, M. Antibiotic resistance—The interplay between antibiotic use in animals and human beings. Lancet Infect. Dis. 2003, 3, 47–51. [Google Scholar] [CrossRef]
- Schwarz, S.; Kehrenberg, C.; Walsh, T.R. Use of antimicrobial agents in veterinary medicine and food animal production. Int. J. Antimicrob. Agents 2001, 17, 431–437. [Google Scholar] [CrossRef]
- Martinez, J.L.; Fajardo, A.; Garmendia, L.; Hermandez, A.; Linares, J.F.; Martinez-Solano, L.; Sánchez, M.B. A global view of antibiotic resistance. FEMS Microbiol. Rev. 2009, 34, 44–65. [Google Scholar] [CrossRef] [Green Version]
- Carlet, J.; Pulcini, C.; Piddock, L.V.J. Antibiotic resistance: A geopolitical issue. Clin. Microbiol. Infect. 2014, 20, 949–953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khezerlou, A.; Alizadeh-Sani, M.; Azizi-Lalabadi, M.; Ehsani, A. Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses. Microbiol. Pathog. 2018, 123, 505–526. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Son, J.; Yoo, K.M.; Lo, Y.M.; Moon, B. Characterization of the antioxidant activity of gold and platinum nanoparticles. RSC Adv. 2014, 38, 19824–19830. [Google Scholar] [CrossRef]
- Hajipour, M.J.; Fromm, K.M.; Ashkarran, A.A.; Jimenez de Aberasturi, D.; Ruiz de Larramendi, I.; Rojo, T.; Serpooshan, V.; Parak, W.J.; Mahmoudi, M. Antibacterial properties of nanoparticles. Trends Biotechnol. 2012, 30, 499–511. [Google Scholar] [CrossRef] [Green Version]
- Tang, S.; Zheng, J. Antibacterial Activity of Silver Nanoparticles: Structural Effects. Adv. Healthc. Mater. 2018, 7, e1701503. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, J.; Shearer, J.K. Efficacy of oxytetracycline for treatment of papillomatous digital dermatitis lesions on various anatomic locations in dairy cows. J. Am. Vet. Med. Assoc. 2000, 216, 1288–1290. [Google Scholar] [CrossRef] [PubMed]
- Umadevi, M.; Rani, T.; Balakrishnan, T.; Ramanibai, R. Antimicrobial Activity of Silver Nanoparticles Prepared Under an Ultrasonic Field. Int. J. Pharm. Sci. Nanotechnol. 2011, 4, 1491–1496. [Google Scholar]
- Shamaila, S.; Zafar, N.; Riaz, S.; Sharif, R.; Nazir, J.; Naseem, S. Gold Nanoparticles: An Efficient Antimicrobial Agent against Enteric Bacterial Human Pathogen. Nanomaterials 2016, 6, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rai, M.K.; Deshmukh, S.D.; Ingle, A.P.; Gade, A.K. Silver nanoparticles: The powerful nanoweapon against multidrug-resistant bacteria. J. App. Microbiol. 2012, 112, 841–852. [Google Scholar] [CrossRef]
- Alizadeh, H.; Salouti, M.; Shapouri, R. Intramacrophage antimicrobial effect of silver nanoparticles against Brucella melitensis 16M. Sci. Iran. 2013, 20, 1035–3098. [Google Scholar] [CrossRef]
- Han, D.W.; Woo, Y.I.; Lee, M.H.; Lee, J.H.; Lee, J.; Park, J.C. In-Vivo and In-Vitro Biocompatibility Evaluations of Silver Nanoparticles with Antimicrobial Activity. J. Nanosci. Nanotechnol. 2012, 12, 5205–5209. [Google Scholar] [CrossRef]
- Shankar, S.; Rhim, J.W. Effect of copper salts and reducing agents on characteristics and antimicrobial activity of copper nanoparticles. Mater. Lett. 2014, 132, 307–311. [Google Scholar] [CrossRef]
- Chowdhury, M.N.K.; Beg, M.D.H.; Khan, M.R.; Mina, M.F. Synthesis of copper nanoparticles and their antimicrobial performances in natural fibres. Matter Lett. 2013, 98, 26–29. [Google Scholar] [CrossRef] [Green Version]
- Dugal, S.; Mascarenhas, S. Chemical synthesis of copper nanoparticles and its antibacterial effect againt gram negative pathogens. J. Adv. Sci. Res. 2015, 6, 1–4. [Google Scholar]
- Lange, A.; Grzenia, A.; Wierzbicki, M.; Strojny-Cieslak, B.; Kalińska, A.; Gołębiewski, M.; Radzikowski, D.; Sawosz, E.; Jaworski, S. Silver and Copper Nanoparticles Inhibit Biofilm Formation by Mastitis Pathogens. Animals 2021, 11, 1884. [Google Scholar] [CrossRef]
- Belyakova, N.; Kovalenko, A.; Bordova, Y. Development of Drugs for Treatment of Mortellaro’s Disease in Cattle. In Advances in Biological Sciences Research, Proceedings of the 1st International Symposium Innovations in Life Sciences (ISILS 2019), Belgorod, Russia, 10–11 October 2019; Atlantis Press: Paris, France, 2019. [Google Scholar]
- Zhang, Y.; Dasari, T.P.S.; Deng, H.; Yu, H. Antimicrobial Activity of Gold Nanoparticles and Ionic Gold. J. Environ. Sci. Health C 2015, 33, 286–327. [Google Scholar] [CrossRef]
Matched Pattern | Score Value | NCBI Identifier |
---|---|---|
Ochrobactrum gallinifaecis | 1.76 | 215590 |
Ochrobactrum intermedium I | 2.0 | 94625 |
Ochrobactrum intermedium II | 1.78 | 94625 |
Identified Microorganism | Actinomyces odontolyticus | |||||||||||
Biochemical properties | dGAL | - | LeuA | + | ELLM | + | PheA | + | dMNE | - | BGURi | - |
dCEL | + | TyrA | + | APPA | - | dGLU | - | URE | - | PVATE | - | |
SAC | - | ARB | - | NAG | - | BGLUi | - | ARG | - | AIFUC | - | |
BGALi | - | AARA | - | AGALi | - | BMAN | - | AMANi | - | dXYL | + | |
MTE | - | ESC | + | BdFUC | - | BNAGi | - | AARAF | + | |||
PHOS | + | IARA | - | dRIB2 | - | OPS | - | PyrA | - | |||
GRAM | + | MORPH | - | AERO | + | ProA | + | dMAL | + | |||
Identified microorganism | Sphingomonas paucimobilis | |||||||||||
Biochemical properties | APPA | - | ADO | - | PyrA | - | IARL | - | dCEL | + | BGAL | - |
H2S | - | BNAG | - | AGLTp | - | dGLU | + | GGT | - | OFF | - | |
BGLU | - | dMAL | + | dMAN | - | dMNE | + | BXYL | - | BAIap | - | |
ProA | - | LIP | - | PLE | - | TyrA | + | URE | + | dSOR | - | |
SAC | - | dTAG | - | dTRE | + | CIT | - | MNT | - | 5KG | - | |
ILATk | - | AGLU | + | SUCT | - | NAGA | - | AGAL | - | PHOS | - | |
GlyA | - | ODC | - | LDC | - | IHISa | - | CMT | - | BGUR | - | |
O129R | - | GGAA | - | IMLTa | - | ELLM | + | ILATa | - |
Nanoparticle | Zeta Potential (mV) | Hydrodynamic Diameter (nm) | ||
---|---|---|---|---|
Values | Average | Values | Average | |
Ag | −26.30 | −26.20 | 157.20 | 154.50 |
−25.80 | 152.10 | |||
−26.50 | 154.20 | |||
Cu | 4.54 | 7.75 | 987.00 | 580.70 |
8.80 | 363.00 | |||
9.92 | 392.10 | |||
Pt | −3.10 | −3.66 | 221.10 | 171.23 |
−3.09 | 148.80 | |||
−4.79 | 143.80 | |||
Au | −17.50 | −18.00 | 201.50 | 189.50 |
−18.40 | 187.90 | |||
−18.10 | 179.10 | |||
Fe | −19.10 | −18.83 | 300.70 | 311.27 |
−19.10 | 314.70 | |||
−18.30 | 318.40 | |||
AuAg | −21.50 | −20.57 | 518.00 | 455.67 |
−18.90 | 425.60 | |||
−21.30 | 423.40 | |||
PtAg | −24.50 | −23.80 | 179.60 | 178.70 |
−21.40 | 183.70 | |||
−25.50 | 172.80 | |||
FeAg | −16.50 | −15.87 | 366.40 | 353.53 |
−15.90 | 350.40 | |||
−15.20 | 343.80 | |||
CuAg | 14.70 | 15.63 | 238.20 | 243.27 |
16.90 | 244.50 | |||
15.30 | 247.10 |
Nanoparticle | Size (nm) |
---|---|
AgNPs | 10–50 |
CuNPs | 1–10 |
FeNPs | 5–100 |
PtNPs | 5–100 |
AuNPs | 10–40 |
Nanoparticles (ppm) | Sphingomonas paucimobilis | Ochrobactrum intermedium I | Ochrobactrum intermedium II | Ochrobactrum gallinifaecis | Actinomyces odontolyticus |
---|---|---|---|---|---|
Control group | 100 ± 3.6 | 100 ± 4.2 | 100 ± 2.25 | 100 ± 7.86 | 100 ± 0.01 |
Au 1.56 | 102.12 ± 3.54 | 86.17 ± 4.3 | 101.86 ± 4.2 | 106.96 ± 12.22 | 103.57 ± 1.44 |
Au 3.125 | 104.4 ± 2.9 | 85.64 ± 7.9 | 103.25 ± 3.8 | 101.9 ± 15.06 | 104.6 ± 1.23 |
Au 6.25 | 95.4 ± 2.6 | 76.76 ± 3.1 * | 101.72 ± 1.9 | 101.64 ± 3.98 | 104.92 ± 0.27 |
Au 12.5 | 94.2 ± 3.7 | 62.15 ± 4.6 * | 99.8 ± 3.6 | 70.68 ± 7.29 * | 68.68 ± 7.69 * |
Au 25 | 14.8 ± 0.6 * | 42.4 ± 1.2 * | 95.2 ± 3.7 | 14.76 ± 0.95 * | 6.92 ± 0.9 * |
Ag 1.56 | 7.12 ± 0.08 * | 16.8 ± 1.8 * | 8.21 ± 0.3 * | 12.82 ± 0.33 * | 47.96 ± 8.83 * |
Ag 3.125 | 4.11 ± 0.51 * | 7.6 ± 0.2 * | 6.63 ± 0.8 * | 12.24 ± 0.29 * | 36.56 ± 2 * |
Ag 6.25 | 3.37 ± 0.08 * | 5.4 ± 0.3 * | 5.52 ± 0.6 * | 13.39 ± 0.94 * | 28.73 ± 5.31 * |
Ag 12.5 | 3.23 ± 0.14 * | 4.2 ± 0.1 * | 5.6 ± 0.1 * | 12.36 ± 0.28 * | 6.82 ± 0.04 * |
Ag 25 | 3.26 ± 0.21 * | 2.1 ± 0.05 * | 4.48 ± 0.4 * | 11.52 ± 0.79 * | 5.66 ± 1.56 * |
Pt 0.625 | 99.5 ± 1.8 | 101.2 ± 2.6 | 108.4 ± 4.5 | 114.96 ± 2.41 | 97.30 ± 3.37 |
Pt 1.25 | 100.6 ± 2.2 | 102.7 ± 3.1 | 107.12 ± 3.4 | 113.39 ± 4.55 | 97.7 ± 0.93 |
Pt 2.5 | 101.6 ± 4.2 | 102.4 ± 1.9 | 103 ± 3.6 | 109.42 ± 2.4 | 99.19 ± 0.39 |
Pt 5 | 99.2 ± 3.5 | 105.6 ± 2.1 | 101.7 ± 5.1 | 104.61 ± 8.68 | 103.54 ± 6.43 |
Pt 10 | 99.8 ± 1.2 | 107.2 ± 1.2 | 102.4 ± 2.1 | 104.13 ± 1.9 | 98.18 ± 1.92 |
Cu 1.56 | 3.49 ± 0.1 * | 67.2 ± 0.4 * | 69.7 ± 4.5 * | 12.68 ± 0.14 * | 101.57 ± 2.32 |
Cu 3.125 | 3.36 ± 0.2 * | 6.7 ± 0.3 * | 5.9 ± 0.3 * | 11.94 ± 0.29 * | 63.04 ± 6.8 * |
Cu 6.25 | 3.12 ± 0.1 * | 5.4 ± 0.1 * | 4.7 ± 0.1 * | 9.44 ± 0.38 | 4.43 ± 0.89 * |
Cu 12.5 | 2.42 ± 0.31 * | 2.54 ± 0.05 * | 3.3 ± 0.05 * | 7.75 ± 0.39 | 3.66 ± 0.2 * |
Cu 25 | 2.34 ± 0.15 * | 2.15 ± 0.1 * | 2.9 ± 0.1 * | 7.09 ± 0.47 | 2.24 ± 0.22 * |
Fe 1.56 | 101.15 ± 1.9 | 98.12 ± 4.6 | 106.6 ± 4.3 | 113.68 ± 13.62 | 99.67 ± 1.96 |
Fe 3.125 | 101.7 ± 2.2 | 99.1 ± 5.3 | 106.4 ± 3.7 | 104.34 ± 11.2 | 101.99 ± 2.07 |
Fe 6.25 | 103 ± 1.4 | 96.4 ± 3.2 | 107.5 ± 1.9 | 101.97 ± 3.8 | 102.32 ± 1.23 |
Fe 12.5 | 107.6 ± 3.4 | 94.2 ± 2.7 | 108.4 ± 4.7 | 106.24 ± 8.9 | 100.4 ± 2.25 |
Fe 25 | 113.2 ± 2.7 | 81.2 ± 2.1 * | 110.7 ± 7.2 | 119.28 ± 4.8 | 101.49 ± 0.92 |
p-value | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Nanoparticles (ppm) | Sphingomonas paucimobilis | Ochrobactrum intermedium I | Ochrobactrum intermedium II | Ochrobactrum gallinifaecis | Actinomyces odontolyticus |
---|---|---|---|---|---|
Control group | 100 ± 5.6 | 100 ± 6.88 | 100 ± 4.67 | 100 ± 3.69 | 100 ± 2.04 |
AgAu 0.78 | 11.24 ± 0.25 * | 29.7 ± 0.2 * | 29.24 ± 0.22 * | 36.9 ± 0.13 * | 37.89 ± 0.3 * |
AgAu 1.56 | 11.56 ± 0.65 * | 9.11 ± 0.58 * | 9.59 ± 0.56 * | 6.92 ± 0.08 * | 8.9 ± 0.12 * |
AgAu 3.125 | 11.75 ± 0.61 * | 9.17 ± 0.29 * | 9.81 ± 0.7 * | 6.84 ± 0.21 | 5.52 ± 0.76 * |
AgAu 6.25 | 11.23 ± 0.51 * | 9.34 ± 0.66 | 9.01 ± 0.53 * | 6.7 ± 0.35 * | 3.87 ± 0.58 * |
AgAu 12.5 | 9.68 ± 0.74 | 11.4 ± 0.38 * | 8.15 ± 0.8 * | 6.2 ± 0.4 * | 2.12 ± 0.05 * |
AgCu 0.78 | 12.5 ± 1.03 * | 9.26 ± 0.25 * | 15.21 ± 1.1 * | 12.54 ± 1.1 * | 16.5 ± 0.46 * |
AgCu 1.56 | 8.46 ± 0.51 * | 8.53 ± 0.47 * | 9.28 ± 1.16 * | 6.66 ± 0.96 * | 5.88 ± 0.56 * |
AgCu 3.125 | 7.4 ± 0.99 * | 7.67 ± 1.35 * | 9.85 ± 1.51 * | 4.54 ± 0.24 * | 4.95 ± 0.95 * |
AgCu 6.25 | 4.9 ± 0.21 * | 5.99 ± 0.17 * | 5.16 ± 0.21 * | 1.92 ± 0.12 * | 2.71 ± 0.11 * |
AgCu 12.5 | 3.42 ± 0.71 | 5.02 ± 0.36 * | 4.83 ± 0.36 * | 1.1 ± 0.06 * | 2.11 ± 0.12 * |
CuAu 0.78 | 12.06 ± 0.78 * | 12.18 ± 1.98 * | 89.7 ± 6.24 | 62.13 ± 16.1 * | 89.13 ± 0.82 |
CuAu 1.56 | 9.45 ± 0.21 * | 5.99 ± 0.17 * | 9.16 ± 0.21 * | 9.16 ± 0.12 * | 20.03 ± 2.73 * |
CuAu 3.125 | 9.24 ± 0.9 * | 7.5 ± 0.16 * | 8.24 ± 0.24 | 5.69 ± 0.02 * | 8.86 ± 0.11 * |
CuAu 6.25 | 2.52 ± 0.71 * | 5.02 ± 0.36 * | 5.83 ± 0.36 * | 3.12 ± 0.01 * | 6.71 ± 0.11 * |
CuAu 12.5 | 4.45 ± 0.21 * | 4.91 ± 0.3 * | 4.56 ± 0.05 * | 2.56 ± 0.01 * | 3.21 ± 0.05 * |
p-value | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kot, M.; Kalińska, A.; Jaworski, S.; Wierzbicki, M.; Smulski, S.; Gołębiewski, M. In Vitro Studies of Nanoparticles as a Potentially New Antimicrobial Agent for the Prevention and Treatment of Lameness and Digital Dermatitis in Cattle. Int. J. Mol. Sci. 2023, 24, 6146. https://doi.org/10.3390/ijms24076146
Kot M, Kalińska A, Jaworski S, Wierzbicki M, Smulski S, Gołębiewski M. In Vitro Studies of Nanoparticles as a Potentially New Antimicrobial Agent for the Prevention and Treatment of Lameness and Digital Dermatitis in Cattle. International Journal of Molecular Sciences. 2023; 24(7):6146. https://doi.org/10.3390/ijms24076146
Chicago/Turabian StyleKot, Magdalena, Aleksandra Kalińska, Sławomir Jaworski, Mateusz Wierzbicki, Sebastian Smulski, and Marcin Gołębiewski. 2023. "In Vitro Studies of Nanoparticles as a Potentially New Antimicrobial Agent for the Prevention and Treatment of Lameness and Digital Dermatitis in Cattle" International Journal of Molecular Sciences 24, no. 7: 6146. https://doi.org/10.3390/ijms24076146
APA StyleKot, M., Kalińska, A., Jaworski, S., Wierzbicki, M., Smulski, S., & Gołębiewski, M. (2023). In Vitro Studies of Nanoparticles as a Potentially New Antimicrobial Agent for the Prevention and Treatment of Lameness and Digital Dermatitis in Cattle. International Journal of Molecular Sciences, 24(7), 6146. https://doi.org/10.3390/ijms24076146